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Part 1. Twist Transformation Pavel Zhlobich

Part 1. Twist transformation. Recurrence relations for
polynomials associated to certain five-diagonal matrices

Joint work with Tom Bella and Vadim Olshevsky.
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Part 1. Twist Transformation Pavel Zhlobich

Unitary Hessenberg and CMV matrices

—pPoP1 —PoM1P2  —Polifaps  —PoliM2i3Ps  — Pl 231405

M1 —pip2 —Pil2p3 — P12 ft3 P4 — P12 i3 4P

M = 0 M2 —PaP3 — P23 P4 — P23 a5
y 0 13 — P304 —P3H4p5

0 0 0 s —pips

—PoP1  Polh 0
—H1p2  —PiP2 —H2pP3  H2fi3
fafle  Pifle —P3P3  Paps y
0 —H3Ps —P3Ps —HaPs  fhafls
fi3fta  p3fta —paps  Papts 0O

Both are related to the same system of polynomials orthogonal on the unit circle!
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Part 1. Twist Transformation Pavel Zhlobich

Companion and Fiedler matrix

i —a; —Aa2 —AUp—1 —Ap ]
1 0 0 0
C = 0 1 0 0
00 10
i —a1 —a9 1 |
1 0 0 0
0 —as 0 — Ay 1
b= r o 0 0 0
0 —Axg 0 —Ug 1

p(x) =a" +aa" " Fax" -+ ap_1T + ap
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Pavel Zhlobich

Common properties of CMV and Fiedler matrices

% five-diagonal matrices having a 'staircase’ structure:

* 0 S

* Kk % * x 0

* x x 0 0 %« * %

0 % * * ’ * K K 0
* % 0 0 =% *

"% connection to a certain Hessenberg matrix

" quasiseparability
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Pavel Zhlobich

(1,1)-quasiseparable matrices

Definition. [Rank definition of (1, 1)—gs matrices]
A matrix A is called (1, 1)—qs (i.e., Order-One-Quasiseparable) if

max rankA(l:4,i+1:n)= max rankA(i+1:n,1:7)=1.

1<i<n—1 1<i<n—1

rank one

rank one
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Pavel Zhlobich

CMV and Fiedler matrices are (1, 1)—qs

—pPoP1  Polh 0
—H1p2  —PipP2 —Ha2Ps  Hepis
faftz  PiH2  —pP3P3  Palls 0
0 —p3ps —p3ps —Haps  Hafls
f3fta  p3fa —paps  Pats 0

—a1 —Aas 1
1 0 0 0
0 —as 0 —ay 1
F= r 0 0 0 O
0 —Us5 0 —Ug 1
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Pavel Zhlobich

CMV and Fiedler matrices are (1, 1)—qs

—PoP1 | Poth 0
—H1p2 | —p1P2 —H2pP3  H2pi3
Pafa | pifl2 —paps Pk 0
0 —U3Ps  —P3P4 —H4aPs  fhafls
fi3fta  p3pta —pPaps  Papts 0
I —ay | —as 1 |
1 0O 0 O
o 0 | —a3 0 —as 1
0
0
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Pavel Zhlobich

CMV and Fiedler matrices are (1, 1)—qs

—psp1 P |0
—H1p2 —pPip2 | —H2P3  [all3
oo | ke Pilla | —Paps  Paiis 0
0 —U3Ps  —P3P4 —H4aPs  fhafls
fi3fta  p3pta —pPaps  Papts 0
I —a; —as |1 |
1 0O (0 O
o 0 —a3|0 —as 1
0
0
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Pavel Zhlobich

CMV and Fiedler matrices are (1, 1)—qs

—gip1 P O
—pip2 —pPiP2 —H2pP3 | H2fi3
fafa  PiH2  —pP3p3 | Pk 0
0 —M3P4 | —P3P4  —HapP5  Hafls
papta | pP3pta —paps  paps O

—a1 —Aa9 1
1 0O 0 O
o 0 —ds 0 —ay
L 0, 0 0 O
0 —dx5 0 — g 1
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Pavel Zhlobich

CMV and Fiedler matrices are (1, 1)—qs

H2 M43
5 0
K Po b3
0 — 3P4
f3 L4
0
—ay 1
F =
1 0
0
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Pavel Zhlobich

Unitary Hessenberg and companion matrices are also (1, 1)—qs!

—PoP1  —PoMiP2  —Polbif2p3  —PoliMafisps — Polblfhe i3 P
251 — P12 —p7 203 — P12 43 P4 — P12 43 b P5
M = 0 12 — 303 — P33 P4 — P L3[4 5
0 0 143 — P304 —P3H4Ps
0 0 0 L4 —P4Ps ]
I —a; —a —Ap—1 —0anp
1 0 0 0
C = 0 1 0 0
] 0 0 1 0
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Pavel Zhlobich

Unitary Hessenberg and companion matrices are also (1, 1)—qs!

—pPoP1 | —PoMip2 —PolH2ps  —PolaHefiaPs — Pk i haps
H1 —pP1P2 —P1H2P3 — P1H2 14304 — P12 43445
M = 0 12 —P303 — P31 — P33 4P5
0 0 H3 — P304 —P3/4p5
0 0 0 i —PaPs |
i —a1 | —ag —Qp—1 —Ap
1 0 0 0
C = 0 1 0 0
0 0 1 0
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Pavel Zhlobich

Unitary Hessenberg and companion matrices are also (1, 1)—qs!

—PoP1 —PoHIP2 | —PoMIH2P3  —PoM1H2M3Ps = Pok i3 lafs
1 —pP1P2 —P1H2P3 — P 2 /4304 — P H2/43 /4405
M = 0 42 —P303 —P3H3P4 — P33 4P5
0 y H3 — P304 —P3/4p5
0 0 0 f4 —P1P5 ]
) —a1 —Aa2 —Up—1 —0an
1 0 0 0
C=1| 0 1 0 0
0 0 1 0
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Pavel Zhlobich

Unitary Hessenberg and companion matrices are also (1, 1)—qs!

—poP1  —PoMipP2  —PoMifeps | —PoMaHapaPs  —Pokifafiatlafs
[ —pP1P2 —pil2pP3 — P12 /4304 — P12 /3445
M = 0 42 —P2P3 — P33 P4 — Pa 3 a5
0 y H3 — P304 —P3/4p5
0 0 0 L4 —PaPs ]
) —a1 —Aaz —Ap—1 —0ap
1 0 0 0
C=| 0 1 0 0
0 0 1 0
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Pavel Zhlobich

Unitary Hessenberg and companion matrices are also (1, 1)—qs!

—PoH1f2fl3Pa —Pol 235
— P71 H2f3 04 — P71 2 i3 a5
M = — P34 —Pa 345
0 0 M3
0 0 0 |
i —Aap—1 —Ap
0 0
C = 0 0
00
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Pavel Zhlobich

A generator representation for (1, 1)—qs matrices

A matrix is (1, 1)—gs if and only if it has the following representation

dy g1hs g1bahs g1b2b3hy g1b20304 15
P21 dy g2hs3 G234 G2bsbshs
P3a2qs P3G d3 g3hy g3bshs
P4a3a2q1  Paa3qo Paqs3 dy galvs
| P5a4G30241  P5A4d3qa  Ps5A4q3 D544 ds |

where d;., qi, @y, Pi, 9k, i, ;. are scalars.
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Pavel Zhlobich

Generators of Unitary Hessenberg and CMV matrices

Table 1: Generators of unitary Hessenberg matrix

ar  br  qx Jk P hk

—Pr_1Pe 0wk ke —pp_qkk 1 pi

Table 2: Generators of CMV matrix

k ap by dk 9k pr hi
odd  —pp 1ok 0 ok —prn_1bk 1 pr
even —pp 1pk k0 —ph_ gt [k pr 1

Generators are interchanged for even indices!
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Pavel Zhlobich

Generators of companion and Fidler matrices

Table 3: Generators of companion matrix

k dr ar by g g pPr Ik

k‘:]_ _a’l — - 1 ]_

k<21 0 0 1 1 0 1 —a

Table 4: Generators of Fiedler matrix

k di. ar br qr 9 Dk I

k = —ai — — 1 1

k > 1 odd 0 1 0 0 1 —ag 1
1 1 0 1 —ay

even 0 0

Generators are interchanged for odd indices greater than one!
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Pavel Zhlobich

Recurrence relations for polynomials related to (1, 1)-qs matrices

Theorem. (due to Eidelman, Gohberg and Olshevsky)
Let {rk(x)}zzo be a system of characteristic polynomials of leading submatrices of an
(1, 1)-gs matrix A. Then they satisfy two-term recurrence relations

Fy(x) _ 0 Fi.(x) _ apbrr — e —qrgr | | Fr_1(x)
ro() 1 | ru(2) il T — re—1(z) |
where ¢, = a0, — qpprbr — grhray.

Corollary 1. The following operation on generators preserve characteristic polynomials of
leading submatrices:

TWIST TRANSFORMATION

ay <— by, P +— hr, qr<— gk

Corollary 2. For every n X n (1, 1)—gs matrix there are 2" (probably not distinct) matrices
with the same system of characteristic polynomials.
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Pavel Zhlobich

Hessenberg Order-One quasiseparable matrices

Since both CMV and Fidler matrices were obtained from strongly Hessenberg qua-
siseparable matrices we define general (H, 1)-gqs matrices

dr giha  gibahg g1b2bzhy g1b20304 N5

q1 da g2hs3 gabshy Gab3bshs

0 q2 d3 g3 g3bshs

0 0 q3 dy gahs
00 0 G4 ds |

Remark. Comparing definitions of (1, 1)—gs and (H, 1)—gs matrices one can easily see
that an (1, 1)—gs matrix is (H, 1)—gs if and only if it has a choice of generators such that

Cbk:O,pkzl,Qk#O
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Pavel Zhlobich

Twisted (H, 1)-gs matrices and their patterns

Definition. [Twisted (H, 1)-gs matrices]
An (1, 1)-gs matrix A is called twisted (H, 1)-gs if it can be obtained from an (H, 1)-gs
matrix via twist transformations:

ay <— by, P <— hi, qr<— gk

Definition. [Pattern of twisted (H, 1)-gs matrices]

For an arbitrary twisted (H, 1)—qs matrix A we will say that a sequence of binary digits
(21,99, ...,1%,) is the pattern of A if A can be transformed to some (H, 1)-gs matrix H
applying the twist transformations for all k = ¢; such that ; = 1. Under these conditions
we will also say that A = H (71,79, ..., 1,).
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Pavel Zhlobich

Examples of twisted ( H, 1)-qs matrices

H(0,0,0,0) H(0,1,0,0)
di gihs  gibshs  g1b2b3hy dy g 0 0
q g2h3 g2b3ha haolgn  do |q2lhs [g2|b3ha
0 2 ds3 g3ha balgr |92 ds3 g3ha
0 0 q3 dy | 0 0 g3 dy |
H(1,1,1,1) H(0,1,0,1)
[ 4 a0 0 0 I g 0 0o
g1hs do g 0 hoqr do  qahg  qabzhy
g1bahs  gahs ds g3 bogr g2 d3 93
| 910203ha  gabsha  g3ha dy | ] 0 hags  dy |
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Pavel Zhlobich

Five-diagonal twisted ( H, 1)-qs matrices

Note that twisted (H : 1)—qs matrices of the interlacing patterns are always five-diagonal
with a familiar staircase structure:

di g 0
qiha  do q2h3  Gobs
qiby g2 3 93 0
0 q3hs d qahs  qabs
@by gs  ds g5 O

H(0,1,0,1,0,...) =

N
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Pavel Zhlobich

Five-diagonal twisted ( H, 1)-qs matrices

_ . ,
*x x ok
* x *x 0
H(%,1,0,1,0,...) = 0 % =
* ok 0
- - n
* % 0
0 * x *
H(%,0,1,0,1,...) = T = 0
0  * * *%
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Pavel Zhlobich

Full description of five-diagonal twisted ( H, 1)-qs matrices

r

\_

five-diagonal matrices

-

five-diagonal matrices & (1, 1)-gs

\_

\

G/e-diagonal matrices & twisted

(H7 1)“13
N

~N

~

J
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Pavel Zhlobich

General five-diagonal matrix

* X X X X O
X X X X O O
* X X O o o

O O O * o *
S O X X A X
DS X X X X X

a22
a3

42

No restrictions

24
34
44

54

as3s
45

as5

46

as56

New England Numerical Analysis Day 2009
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Pavel Zhlobich

five-diagonal matrices & (1, 1)—qs

X% X X X O
X X X O O
XX X X O O O

O O O * A X
S O X X A X
el SR D D D o

a292
a32

42

Qi i+2 * Qip1,i43 = Qip2 * Q3,41 = 0,

ai13 0
a23 24
a33 (34
43  A44
53 A4
0 ae4
1 =1,.

0 0

0 0
ass 0
Q45 Q46
ass5  As6
A5  A66
,n— 3

New England Numerical Analysis Day 2009
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Pavel Zhlobich

five-diagonal matrices & twisted (H, 1)—qgs

* * = 0 0 0 aiq a12 A13 0 0 0

* * % |%x| 0 0 a21 A9 Q23 |0A24 0 0

A * * * *x x 0 B a31 A3 A33 A34 Asg 0

B 0O |*x| * * * % B 0 Aq2 | Ayg3 Qg4 A45 (A4

0 0 % x % % 0 0 as3 Arq4 Ar5  (A56

i 0 0 0 %= % % | i 0 0 0 Qs A5 Ae6 |

Qigv2 * Q143 = Qg2 Gip3,11 =0, 1=1,...,n—3,
CLZ"H_2°CLZ'+27Z':O, 221,,?1—2
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Pavel Zhlobich

An auxiliary result

The choice of generators of quasiseparable matrices is not unique. Hence, by taking
different generators one can obtain different twisted (H, 1)—qs matrices

An old Fiedler matrix

Our Fiedler matrix

)
|

1

—ao 1
0 0
—asz 0
1 0
0

—az —as
0 0
1 0
—ay 0
0

= o = O

New England Numerical Analysis Day 2009
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Pavel Zhlobich

Bijection between strongly Hessenberg matrices and polynomial
systems

The following widely-known result is due to Barnett.

hO,l h0,2 hO,S T hO,n
hl,l h1,2 h1,3 T hl,n | |
H = 0 h2,2 h2,3 : 3 {>\07)\n} — {h -, }
0,0 n,n
: s . s hn—Q,n
0 T 0 hn—l,n—l hn—l,n
)
BIJECTION
Y

To(ZE) — )\0, Tk(CE') — )\0)\1 . >\k det(:r:] — Hkxk)a k= 1, .o, n.
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Pavel Zhlobich

Correspondence between five-diagonal twisted ( H, 1)-qs matrices
and polynomial systems

Of course there cannot be any bijections between polynomial systems and five-diagonal
matrices because for a given system of polynomials there can exist infinitely many
five-diagonal matrices related to it.

But one can try to find a good representative in the family of five-diagonal matrices
related to the given system of polynomials and establish the bijection in this sense.

_—
//@;sentative
polynomial system /

\_ /
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Pavel Zhlobich

Case 1. General three-term recurrence relations

Theorem 1. A system of polynomials R = {ry(x)}}_, satisfies three-term recurrence
relations

ro(x) = ag, r1(x) = (12 + B1) - ro(x),
re(z) = (ox + Bk) - re—1(x) + (W + 0k) - Th—2(x), oy # 0.

if and only if it is related to a matrix A of the following zero pattern

S X X X
X X X O
* X X

-

with nonzero highlighted entries.
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Pavel Zhlobich

Case 1. General three-term recurrence relations

Example 1. Fiedler matrix

—a; 1 O
—ay 0 —as 1
P I 0 0 0 0
0 —ay 0 —as 1
1 0 0 0 0

If a;, # 0, then the highlighted entries in matrix F'T" are not zeros and Horner polynomials
satisfy general three-term recurrence relations:

)Pr—1(x) —

ar—1 ar—1

ag

pk(x) = (x T L Pk—2-
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Pavel Zhlobich

Case 1. General three-term recurrence relations
Example 2. CMV matrix

—pPoP1  Poi 0
—p1p2  —pip2  —H2P3  H2i3
pifle  pif2 —pP3p3 P33 0
0 —p3pa —p3ps  —Haps  frafis
f3pa  p3pa —pyps paps O

If p. # 0, then the highlighted entries in matrix /X are not zeros and Szegd polynomials
satisfy general three-term recurrence relations (Geronimus result):

1 1

o (x) = —, o (x) = —(x-of (x) + p1pg - & (x)),
Ho H1
w1 pr 1| & N _
ol (z) = [Mk T+ or1 ,Lék] Or_1() PR 2 ¢/<;—2(37)7 k=2,...,n.
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Pavel Zhlobich

Case 2. Szego-type two-term recurrence relations

Theorem 2. A system of polynomials R = {r;(x)}}_, satisfies Szegb-type two-term
recurrence relations
1 Bo
00

Go(z)
ro(z)

with a0, — B e £ 0, 0 7 0 if and only if it is related to a matrix A of the following zero

pattern

()

?

Ve Or| | (x4 0k) - 1Tr_1(x)

[Oék B

Groo1(7) ]

S X X X
* X X X O
b Sl D . o

-

with nonzero highlighted entries.
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Pavel Zhlobich

Case 2. Szego-type two-term recurrence relations

Example 1. Fiedler matrix

—a; 1 O
—ay 0 —asz 1
5T I 0 O 0 0
0 —as 0 —as 1
1 0 0 0 0

Highlighted entries in the matrix are always not zeros. Hence, Horner polynomials satisfy
two-term Szego-type recurrence relations without any restrictions:

RARE
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Pavel Zhlobich

Case 2. Szego-type two-term recurrence relations

Example 2. CMV matrix

—PoP1  Pol 0
—H1p2  —pPiP2 —H2pP3  H2M3
fafla  pife —pP3P3  Paps 0
0 —p3ps —p3ps —Haps  Hafls
papta  p3pa —paps  Paps O

Highlighted entries in the matrix are always not zeros. Hence, Szegd polynomials satisfy
two-term Szego-type recurrence relations without any restrictions (this is well-known):

[%(w)] 1 [ps] [(ﬁk(az)] 1 [1 p;z] [askl(x)]
o (@) ko | 1|7 |of (@)  mw|—pr 1| |zei(x)]|
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Pavel Zhlobich

Case 3. EGO-type two-term recurrence relations

Theorem 3. A system of polynomials R = {r.(x)}}_,, satisfies EGO-type recurrence
k=0

relations
B 0
— 6, :

if and only if it is related to some five-diagonal twisted ( H, 1)—qgs matrix.

Fy(x)

ro()

ri(T)

_ Bk Tk
(Sk 9k$+€k

Fkl(@] |

rr_1(T)

Remark. Five diagonal twisted (H, 1)—gs matrices A = |a;;] are those satisfying

Qi 42 * Aj41,i43 — Ai424 ° Aj435+1 — 0, :=1,...,n—3,

Qi 42 * Aj42.1 :O, 1 = 1,...,71—2.
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Pavel Zhlobich

Case 3. EGO-type two-term recurrence relations

Examples. Horner and Szeg0 polynomials

Horner polynomials satisfy the following EGO-type two-term recurrence relations:

Fo(z)| |0 Fi(z)| 1 Fp(z)| |1 0 |Fpa(2)
po(flf) 1| pl(flf) T+ ap pk(ﬂf) ap T pk—1(3§‘) |
Similarly, Szeg0d polynomials satisfy
Fo(z)| _ |0 Fy(x) | _ [ Pr—1 1k Fr—1(z)
& (x) 17 o] () e Ly BB o ()
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Part 2. Twisted Green’s matrices. Factorizations.
Multiplication operators.

Joint work with Vadim Olshevsky and Gilbert Strang.
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Factorizations

Unitary Hessenberg and CMV matrices

It is well-known that Unitary Hessenberg matrix is factorizable into the product of Givens
rotations (the so-called Schur representation):

M =Ty, Ty...T,.
I—1

I, = —Pk Mk r —
‘]"’L—l | He P - ‘—pn

]ﬁ—k—l

It was proved by Cantero, Moral and Velazquez that CMV matrix has similar factorization:
K =[Toly...] [[1ls...]

Even terms first, then odd terms!
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Factorizations

Companion and Fiedler matrices

Companion matrix admits similar factorization:

C=AAy. A,
Iy—1
— 1 I, _
A= v 0 A= |
i [n—k:—l i

And Fiedler matrix is factorizable into the product of the same terms but in a different order:
F=[AAy...] [AsAy...]

Odd terms first, then even terms!
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Part 1. Twisted Green’s matrices Pavel Zhlobich

General ( H, 1)-qs matrices are not factorizable

Example. Consider a 3 X 3 twisted (H, 1)-gs matrix

A:

S = =
_ o =
—_ = O

Assume that it has a factorization
@ b 0] [1 0 0 @ b f bg_
A= lc d 0| |0 e f| =|c df dg|,
_O 0 1_ 0 g h _0 h e

then coefficients {b, d, f, g} must obey a system of equations

bg=df =0
bf =dg=1

which is inconsistent. — Too wide class!
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Factorizable ( H, 1)-qs matrices

Green’s matrices

Definition. [Rank definition of Green’s matrices] A strictly upper Hessenberg matrix & is
called Green’s (H, 1)-gs if

max rankG(1 : 4,7 :n) = 1.
1<i<n

rank one
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Generators of Green’s matrices.

Definition. [Generator definition of Green’s matrices] A strictly upper Hessenberg matrix G
is called Green’s (H, 1)-gs if it can be represented in the form

T0T1 TO17T2 T010273 T001...0n—-1Tn
T172 T10927T3 T102...0n—1Tn
0 ?27’3 ?20’3...0'71_17%
G = :
Tn—2Tn—1 Tn—20n—1Tn
i () .. .. 0 ?n—lTn
where {0}, 7, 01, T } are called generators of G.
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Factorization of Green’s and twisted Green’s matrices.

I
70 Tk Ok L1
@0 — ‘ ’ @k — ~ ) @n — ‘
‘ In—1 Tk ‘ Tn
_ In_k—1 |
Theorem. Let GG be a twisted Green’s matrix of pattern (i1, is, ..., 1,) with generators
{(Tk, Tk ,/T\k}. Then it can be constructed by the following procedure:
GrL_1©9: if i, =0
G():@Q, Gk: ’ ]{:1,...72, and G:Gn

OLGr_1 if i, =1,

Corollary. All the matrices in the Theorem above have the same system of characteristic
polynomials of leading submatrices.
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Part 1. Twisted Green’s matrices Pavel Zhlobich

New twist transformation.

It turns out that matrices in the factorization above
can be interchanged without transposition!

Theorem. Let (G be a Green’s matrix of size n having generators {ak, Ty Ok, ?k} and
(71,72, - - -, jn) be an arbitrary sequence of binary digits. Then all 2" matrices
G(j1,J2, - - -, Jn) constructed via the following procedure:

G109, if 4. =0, o :
Go =0y, Gj= k=1,...n, G, 2, jn) = Gy
0 0 k 0,Gr 1 if iy =1, (]1 J2 J )

share the same system of characteristic polynomials.

Since these matrices don’t coincide in general with twisted Green’s ones, this theorem
introduces a new kind of twist transformation.
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Five-diagonal twisted Green’s matrices

Lemma. A pentadiagonal matrix A is twisted Green’s of pattern (0, 1,0, 1, ... ) if and only
if it has the following zero pattern:

_ - TOT1 T 092
* O P AN P
ToO 1 T1T2 T1092 0
* | * % N
0 T3 ToT3 T4 o4
* | * % 0 —~ A -
_ o3 T203 T3T4 T304 0
0|~ *% * * — N
0 Ts TATS T6 o6
*x % * * 0 R R R
05 T405 T5T6 T506 0

with rank-one 2 X 2 marked blocks.
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Part 1. Twisted Green’s matrices Pavel Zhlobich

Recurrence relations for Green’s polynomials

Theorem. [Recurrence relations for Green’s polynomials] Let G be an n X n Green’s matrix
having generators { o, 7%, 01, T }, then a system of polynomials {7 (z) }}_, is related to
it via if and only if polynomials rk(aj) satisfy two-term recurrence relations

Go(z) Bo Gr(r)|  |ar Br| | Gr-1()

ro(x) 5o | ri(z) Yo On| |@-re_i(x)]

Remark. Recurrence relations via generators

felx)| 1 owor =Tkme Ti| | fe-a(2)
Tk(ZE') — Tk 1 £C'Tk_1($) ’
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Multiplication operators

Let M be an infinite-dimensional unitary Hessenberg matrix and {¢7" () } ;>0 be the infinite
sequence of polynomials orthogonal on the unit circle related to M, then

[0 (2) &7 (2) 65 () - | M = 2[6]/ () 1 () ¢ (2) ]
If M, is of size m and \ is a root of polynomial ¢7 (), then
(65 (N) 6T (N) - D1 (V)] M = A[6F (V) 67 (N) - di 1 (V)]

i.e. vector [gb#(A) PT(N) - gb#_l(A)] is the left eigenvector of M, corresponding to
the eigenvalue A.

Define for Szegé polynomials {¢7 () }x>o right Laurent polynomials as follows:

(2) v p(z) k=2l

T) =

Xk x_lgbz’é(:v) k=20+1,

It turns out that an infinite-dimensional CMV matrix /K play the same role for Laurent poly-

nomials {xx ()} x>0 as unitary Hessenberg does for Szegd polynomials i.e.

[XO(CU) x1() Xg(w)}K = x[XO(:B) x1(z) x2(x)-- ]
x0(A) x1(A) -+ Xn—1 (W) K = X xo(A) x1(A) - xn—1(N)].
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Twisted Green’s matrices as multiplication operators

Let 7 = (J1, J2, J3, - - - ) be an infinite sequence of binary digits. We define twisted Green’s
matrices (G 7 by the recursion

Grp-109y if j =0,

, Gg =G,
©1Gr_1 if jr =1, 7 >~

Go = Oy, sz{

Matrices G 7 are related to the same polynomials as G For every J we also define a
sequence of Laurent polynomials {1y () } x>0:

x m Te\L) mjg+1 =Y,
¢k($) _ { ( ) +1

_ Nkt e -
x™ Zm=tIm fi (@) i g = 1,

Theorem.

(i) [Yo(z) ¥1(x) a(z) - |Gy = x[tho(x) Y1 (x) Pa(z)---].
(i) If X # 0, then [1o(A) Y1 (A) -+ - p1(N)]| Gz, = Atho(A) Y1 (N) -+ Y1 (N)].
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Pavel Zhlobich

Thank you for your attention!
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