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Outline, I

• Rational Krylov subspace (RKS) reduction for the 1st order 
Hermitian problem 

– Rational approximation+subspace reduction=RKS reduction

– Error bound via rational approximation (with prescribed poles ) on  the 
spectrum of the operator

– A well known simplest case: (conventional) Krylov subspace, spectral 
Lanczos decomposition, quadratic convergence

– Pole optimization,  the third Zolotarev problem on complex plane
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Outline, II

• Extension to stable high order dynamic systems
– Parameter-dependent Krylov subspace (PDKS) reduction

– Spectral estimate (resonance domain)

– A priori error bound via  for  instant pulse and arbitrary time-dependent 
r.h.s. via rational approximation of the exponential  on the resonance 
domain.
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I. 1st order problem with Hermitian matrix
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Rational approximation of matrix functions

• Matrix exponential is a particular case of matrix functions

• Generally, matrix function can be computed via rational 
approximants [Varga et al,  60s;  Tal-Ezer et al, 1989; 
Trefethen et al, 00s; etc. ]
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Spectral estimate

• Approximation (not necessary  rational)  of matrix 
function==approximation on the spectrum
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Subspace reduction

• Need  a good subspace!
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Rational Krylov Subspace (RKS)
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Krylov and Rational Krylov, history

• Krylov subspaces were originally introduced for the 
solution of eigenproblem and linear systems by Lanczos, 
Hestenes , Stiefel and Arnoldi (for nonsymmetric A) in 
1950s.  Application to more general matrix functions In 
1980s (Moro&Freed, Nour-Amid, van der Vorst etc)

• RKS  (includes the Kryllov subspace as a particular case for  
q=1) was introduced by Ruhe in 1994 for eigenproblems. 

• The RKS  reduction == the reduction on the rational Krylov
subspaces, or equivalently the Galerkin method on such 
subspaces. Model reduction: Bai, Freund, Grimme, 
Sorensen, Van Dooren, etc (90s).  Matrix functions: 
Dr.&Kn,98; Moret&Novatti, 03;van Eshof&Hochbruck, 06; 
BÄorner,  Ernst, Spitzer, 08; Beckerman&Reichel, 2008 
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Error bound for the RKS  reduction
main result

• Dr&Kn&Z., Submitted to SISC, 2008; 
Beckermann&Reichel,  Submitted to SINUM,  2008 (also 
for nonsymmetric A the  field of values instead of  the 
spectral interval) 

1,deg 1 [ , ]

|| ( ) ( ) ||

( )
2 min max ( )

( )N

n n n

p p n
n

f A b G V b

p z
f z b

q z  



 



QuickTime™ and a
TIFF decompressor

are needed to see this picture.

The simplest case:  Krylov subspace, SLDM

Cost per step  is similar to the explicit time-stepping but 
better convergence! Still  strong dependence on ||A||
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RKS reduction: pole optimization

• RKS reduction== rational approximation with prescribed 
poles. The poles can be taking from the optimal rational 
approximants for corresponding problems. The cost per 
step is similar to the implicit time stepping. 

• For the solution of multiscale inverse problems in 
geophysical oil exploration we need the time domain 
solutions on very  large (practically infinite) time intervals, 
i.e., equivalently we need to solve the frequency domain 
problem for all harmonic frequencies.



QuickTime™ and a
TIFF decompressor

are needed to see this picture.

Pole optimization, Zolotarev problem

• Closed form asymptotically optimal solution with real 
poles; Zolotarev, 1893; Le Bailly&Thiran, SINUM, 2000; 
Ingerman, Dr&Kn, CPAM, 2000; Kn., Dr.,&Z, SINUM 2008.
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2. Hermitian high order dynamic systems
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LET US MAKE IT EVEN MORE 
COMPLICATED

Standard approach i: the m-th order dynamical problem can be 
transformed to the  1st order (nonHermitian) system at expense of m-
fold increase of the dimensionality.  Approaches to Krylov subspace 
model reduction for the 1st formulation are developed in 90s:  Freund, 
Grimme, Sorensen, Van Dooren, etc.  How about  the infinite m ?! 



QuickTime™ and a
TIFF decompressor

are needed to see this picture.

Time-dependent force term, two cases

• Conventional formulation:  pulse (instant) source

0 0( ) ( ), .b t b t b  N
R

• Arbitrary Laplace-transformable b(t), not assuming that  its 
evolution  to be described by a low-dimensional subspace 
as in the conventional approaches (Gu&Simoncini, 05; etc.). 
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YES, WE CAN!!!
Can we extend the rational Krylov subspace approach for this?
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Frequency domain formulation
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Well-posedness assumption

• Stability of the time domain problem and  existence of the 
inverse Fourier transform
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Parameter-dependent Krylov subspace 

1

The parameter-dependent Krylov subspace (PDKS):

do not coinside, are outside of the nonlinear spectrum
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• For the instant pulse==nonlinear Krylov subspace, Voss , 
04;  for m=2 and the infinite shifts == second order Krylov
subspace, Bai 02.
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PDKS    reduction

• Cost does not depend on m!
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Why do we need  new analysis

• A straightforward approach would be to transform a high 
order problem to the first order form and apply the 
estimates via the approximation of the exponential on the 
field of values  (Lothar’s talk).  Not good even for the stable 
second order Hermitian problems, because their field of 
values includes the origin.

• We obtain bounds for the PDKSR  reduction via the 
approximation on an easily computable domain in the left 
complex half-plane.   Apparently it gives the sharp estimate 
of the nonlinear spectrum from given spectral intervals of

.andRe     Im A A 
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The bounds on the pseudospectrum

• Functions                        can be easily computed from the 
estimates of the spectral intervals of resp.    
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Example:  the 2nd order problem
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Error bound for the pulse

Theorem 1  the estimates the PDKS reduction error for 
the the pulse via the (absolute) error of the rational 
approximation with prescribed poles on  the boundary of 
the resonance domain S.  For  the first order symmetric 
problem it coincides with the spectral interval.
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Error bound for the general r.h.s. 
the solution at one time

• The causality restriction does not affect the solution at t0,, 
i.e., it’s effective for the solution for a single time point, e.g., 
for exponential integrators. 

• The estimate is reduced  to the relative rational 
approximation of the exponential
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Single input/output reduced order modeling

• The degree of the rational approximant is doubled for the 
reduced order model

* 1 * 1
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Conclusions I

• The error of the Rational Krylov subspace reduction of the 
solution of the  1st order Hermitian problem (with instant 
pulse r.h.s.) can be estimated via the error of the rational 
approximation (with prescribed  denominator) of the 
exponential function  on the spectral interval.

– the pole optimization can be obtained using methods of rational  
approximation . In the case of  the infinite time interval the optimization is 
reduced to the third Zolotarev problem on complex plane, that can be 
solved  in  closed form
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Conclusion II.

• The parameter-dependent Krylov subspace reduction 
allows to extend   the above results to the high order stable 
dynamic systems with Hermitian coefficients. 

– The algorithm works for both pulse and arbitrary  r.h.s. satisfying a natuarl
causality principles.

– It preserves stability of the original problem.

– The error can be estimated via the error of the rational approximation  (with 
prescribed poles) of exponential function on an easily computable estimate 
(resonance domain) of  the nonlinear spectrum that always belongs to the  
complex  right half plain.
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Conclusions, Conclusion

• Applications and future research.
– Obtained results are applied to the  1st order diffusion and  fractional order  

Maxwell systems for dispersive media arising in geophysical oil 
exploration,  very good agreement with the theory  (Mike Zaslavsky talk)

– Obvious potential applications are wave equation n lossy media,  model 
reduction for circuit simulation, fractional diffusion, exponential 
integrations etc.

– Connection with structure-preserving model reduction Krylov methods 
SPRIM should be further investigated. Our approach may provide time 
domain error bounds for the latter.

– Pole optimization when  the resonance domain has significant  imaginary 
part,
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Error bound for the RKS reduction,
two lemmas

• Minmax property (true for all Ritz approximations of 
Hermitian matrices )

• Interpolation property
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