
Lesson 1.8: Limits

Consider the graph of sin θ
θ

, (θ in radians), for θ near 0 (but not actually 0).

The value of sin θ
θ

seems to get close to 1 as θ gets close to zero. By zooming in
on the graph around the point (0, 1)

it seems that we can make the value of sin θ
θ

as close to 1 as we like, provided we
take θ sufficiently close to 0.

This is the idea behind a limit.

A function f is defined on an interval c, except possibly at the point x = c. We define
the limit of the function f(x) as x approaches c, written lim

x→c
f(x), to be a number L

(if one exists) such that f(x) is as close to L as we want whenever x is sufficiently
close to c (but x 6= c). If L exists, we write

lim
x→c

f(x) = L
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A very useful result for breaking complicated limits down into simpler ones is
Theorem 1.2.

Theorem 1.2: Laws of Limits

1: If b is constant, then lim
x→c

(bf(x)) = b lim
x→c

(f(x)).

2: lim
x→c

(f(x)± g(x)) = lim
x→c

(f(x))± lim
x→c

(g(x))

3: lim
x→c

(f(x)g(x)) = (lim
x→c

(f(x)))(lim
x→c

(g(x)))

4: lim
x→c

(
f(x)

g(x)
) =

lim
x→c

(f(x))

lim
x→c

(g(x))

5: For any constant k, lim
x→c

(k) = k

6: lim
x→c

(x) = c
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Examples:

1.

lim
x→1

(2x+ 3) = lim
x→1

(2x) + lim
x→1

3 Law 2

= 2 lim
x→1

(x) + lim
x→1

3 Law 1

= 2 · 1 + 3 Law 5,6

= 5

2.

lim
x→3

x2 + 5x

x+ 9
=

lim
x→3

x2 + 5x

lim
x→3

x+ 9
Law 4

=
lim
x→3

x2 + lim
x→3

5x

lim
x→3

x+ lim
x→3

9
Law 2

=
(lim
x→3

x)2 + 5 lim
x→3

x

lim
x→3

x+ lim
x→3

9
Laws 1,3

=
32 + 5 · 3

3 + 9
Laws 5,6

= 2
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3.

lim
x→3

x2 − 9

x− 3

We have to be careful here as we cannot just use Law 4 to take a quotient of limits
here as lim

x→3
x− = 0 (otherwise we get 0

0
which makes no sense).

In situations like this, one resorts to algebraic tricks.

A very common one is the difference of two square, a2 − b2 = (a− b)(a+ b).

Here

lim
x→3

x2 − 9

x− 3
= lim

x→3

(x− 3)(x+ 3)

x− 3

= lim
x→3

(x+ 3)

= lim
x→3

x+ lim
x→3

3 Law 2

= 3 + 3 Law 5,6

= 6
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4.

lim
x→1

x− 1√
x− 1

Same 0
0

problem as before. Trick to dealing with this is to multiply above and below
by the conjugate expression

√
x+1 (which is okay near 1) and then use the difference

of two squares, x = 1.

lim
x→1

x− 1√
x− 1

= lim
x→1

x− 1√
x− 1

·
√
x+ 1√
x+ 1

= lim
x→1

(x− 1)(
√
x+ 1)

x− 1
by difference of two squares

= lim
x→1

√
x+ 1 cancellation okay as x 6= 1 for limit at 1

=
√

lim
x→1

x+ 1 Law 2

=
√

1 + 1

= 2
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One-sided Limits

Consider again the Heaviside function, H(x).

If we approach x from the left, H(x) is 0 and if we approach from the right, H(x)
is 1. Say H(x) has limit 0 from the left and limit 1 from the write, and we write

lim
x→0−

H(x) = 0, lim
x→0+

H(x) = 1

Formal definition for left- and right-handed limits are similar to that for a two-sided
limit.
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When Limits do not exist:

Example 5:

Explain why lim
x→2

| x− 2 |
x− 2

does not exist.

Recall

| x | = x, x ≥ 0

− x, x < 0

If x > 2, x− 2 > 0, so | x− 2 |= x− 2 and

lim
x→2+

| x− 2 |
x− 2

= lim
x→2+

x− 2x− 2 = lim
x→2+

1 = 1

(cancelation is okay since x 6= 2 for a limit at 2).

On the other hand, if x < 2, x− 2 < 0, so | x− 2 |= −(x− 2) and

lim
x→2−

| x− 2 |
x− 2

= lim
x→2−

−(x− 2)x− 2 = lim
x→2−

−1 = −1

Since the left- and right-hand limits don’t agree, the limit at 2 does not exist.
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Example 6:

Explain why lim
x→0

1

x2
does not exist.

As x approaches 0, 1
x2

becomes arbitrarily large, so it cannot approach any finite
number, L. Hence there can be no limit at 0.

Example 7:

Explain why lim
x→0

sin(
1

x
) does not exist.

The sine function varies between +1 and −1. From the graph, we see that
the function oscillates more and more as x approaches 0. There are values of x
approaching 0 where sin( 1

x
)) = 1, and there are some where sin( 1

x
) = −1. Hence,

there can be no limit at 0.
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Limits of Infinity:

Sometimes we want to know what happens to f(x) as x gets large, i.e. the end
behavior of f .

If f(x) gets as close to a number L as we please when x gets sufficiently large
and positive we write

lim
x→∞

f(x) = L.

If f(x) gets as close to a number L as we please when x gets sufficiently large
and negative we write

lim
x→−∞

f(x) = L.

Note: If either lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, then y = L is a horizontal asymp-

tote for f .

Example 8:

f(x) =
1

x

As x gets large in either the positive or negative directions, 1
x

gets close to 0. Hence
lim
x→∞

f(x) = 0 and lim
x→−∞

f(x) = 0.
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Definition of Continuity:
The function, f , is continuous at c if it defined at x = c and if lim

x→c
f(x) = f(c).

In other words, f(x) is as close to f(c) as we want, provided x is close enough to
c. The function is continuous on an interval [a, b] if it is continuous at each point of
the interval (where we use one-sided limits as appropriate and the end points).

Note: For a function, f , to be continuous at c we need three things

1. f is defined at c.

2. f has a limit at c.

3. The value of this limit is f(c).

If one or more of these things fail, then f is not continuous at c.

A useful result:

Theorem 1.3: Continuity of Sums, Products and Quotients of Func-
tions:

Suppose that f and g are continuous on an interval and that b is a
constant. Then, on the same interval:

1: bf(x) is continuous.

2: f(x)± g(x) is continuous.

3: f(x)g(x) is continuous.

4: f(x)
g(x)

is continuous, provided g(x) does not vanish on this interval.
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