LESSON 1.8: Limats

sin 0

Consider the graph of *}

, (0 in radians), for 6 near 0 (but not actually 0).

The value of $2¢ seems to get close to 1 as @ gets close to zero. By zooming in

on the graph around the point (0, 1)

it seems that we can make the value of % as close to 1 as we like, provided we
take 6 sufficiently close to 0.

This is the idea behind a limit.

A function f is defined on an interval ¢, except possibly at the point z = ¢. We define
the limit of the function f(z) as z approaches ¢, written lim f(z), to be a number L
Tr—cC

(if one exists) such that f(x) is as close to L as we want whenever z is sufficiently
close to ¢ (but z # ¢). If L exists, we write

lim f(z) = L

r—C



A very useful result for breaking complicated limits down into simpler ones is
Theorem 1.2.

Theorem 1.2: Laws of Limits

1: If b is constant, then lim(bf(z)) = blim(f(z)).

Tr—C r—C

2: lim(f(z) + g(x)) = lim(f(z)) + lim(g(z))

Tr—C r—cC r—cC

3: lim(f(x)g(z)) = (lim(f(x)))(lim(g(z)))

Tr—C Tr—C Tr—C
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5: For any constant k, lim(k) =k
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6: lim(z) =rc
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We have to be careful here as we cannot just use Law 4 to take a quotient of limits

here as lin}3 z— = 0 (otherwise we get 3 which makes no sense).
T—

In situations like this, one resorts to algebraic tricks.

A very common one is the difference of two square, a*> — b* = (a — b)(a + b).

Here

= }E%(x +3)

= limz + lim 3 Law 2
z—3 z—3

=3+3 Law 5,6

=6



Same 8 problem as before. Trick to dealing with this is to multiply above and below
by the conjugate expression \/x + 1 (which is okay near 1) and then use the difference
of two squares, x = 1.

by difference of two squares

= lin% Vo +1 cancellation okay as x # 1 for limit at 1
r—r

=  /limx+1 Law 2
rx—1

=Vi+1



ONE-SIDED LIMITS

Consider again the Heaviside function, H (z).

If we approach x from the left, H(z) is 0 and if we approach from the right, H(z)
is 1. Say H(z) has limit 0 from the left and limit 1 from the write, and we write

lim H(x) =0, lim H(z)=1

z—0_ z—04

Formal definition for left- and right-handed limits are similar to that for a two-sided
limit.



WHEN LIMITS DO NOT EXIST:

Example 5:

|z —2]|

xr —

Explain why lim does not exist.
T—2

Recall

|z|=z,2>0
—z,x <0

Flx)= 1x1

fr>22-2>0,s0|2—2|=2—2and
tim 72l 22— tm1 =1

=24+ x — 2 T—24 T—24

(cancelation is okay since x # 2 for a limit at 2).

On the other hand, if r <2, x —2<0,s0 |z — 2 |= —(z — 2) and

——— = lim —(z—2)x—2= lim —1=-1

=2 1 — 2 r—2_ r—2_

Since the left- and right-hand limits don’t agree, the limit at 2 does not exist.



Example 6:

1
Explain why lim — does not exist.
z—0

As x approaches 0, # becomes arbitrarily large, so it cannot approach any finite
number, L. Hence there can be no limit at 0.

Example 7:

1
Explain why lim sin(—) does not exist.
z—0 x

The sine function varies between +1 and —1. From the graph, we see that
the function oscillates more and more as x approaches 0. There are values of x
approaching 0 where sin(1)) = 1, and there are some where sin(1) = —1. Hence,

there can be no limit at 0.
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LiMITS OF INFINITY:

Sometimes we want to know what happens to f(z) as = gets large, i.e. the end
behavior of f.

If f(x) gets as close to a number L as we please when = gets sufficiently large
and positive we write

lim f(z) = L.

Tr—r00

If f(z) gets as close to a number L as we please when z gets sufficiently large
and negative we write

lim f(z) = L.

T—r—00

Note: If either lim f(z) = L or lim f(z) = L, theny = L is a horizontal asymp-

T—r00 r——00

tote for f.

Example 8:

f(x) = -

X

As x gets large in either the positive or negative directions, i gets close to 0. Hence
lim f(z) =0and lim f(z)=0.
T—r00 Tr—r—00



DEFINITION OF CONTINUITY:
The function, f, is continuous at ¢ if it defined at = ¢ and if lim f(z) = f(c).

r—cC

In other words, f(x) is as close to f(c) as we want, provided x is close enough to
c¢. The function is continuous on an interval [a, 8] if it is continuous at each point of
the interval (where we use one-sided limits as appropriate and the end points).

Note: For a function, f, to be continuous at ¢ we need three things

1. f is defined at c.

2. f has a limit at c.

3. The value of this limit is f(c).

If one or more of these things fail, then f is not continuous at c.

A useful result:

Theorem 1.3: Continuity of Sums, Products and Quotients of Func-
tions:

Suppose that f and g are continuous on an interval and that b is a
constant. Then, on the same interval:

1: bf(x) is continuous.
2. f(z) £ g(x) is continuous.
3: f(x)g(x) is continuous.

4: % is continuous, provided g(x) does not vanish on this interval.
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