LESsON 1.4: Logarithmic Functions

These are simply the inverses of the exponential functions, a*,a > 1.

Note that: if @ > 1, a” is increasing and so invertible (as it passes the horizontal
line test).

Hence we can define the logarithm to the base of a of z, log, x by:

log, r = c means a° = x

Note: a® = x means that x > 0 and so these functions naturally have domain
(0,00) (and range R).

Note: log,  makes no sense if z is zero or negative!!
The most important examples are log,, z = ¢ which is given by:
log,y# = ¢ means 10° = =

and (much more importantly) log, x, called the natural logarithm of = and usually
written In(z) which is given by:

Inz = ¢ means e“ = x

i fid=x

Example:

logy, 1,000 = 3 as 103 = 1,000 (as ¢ = 3)



LAaws OF LOGARITHMS

Law 1: In(ab) = In(a) + In(b)

Law 2: In(a/b) = In(a) — In(b)

Law 3: In(a®) = bln(a)

Law 4: In(e”) ==

Law 5: e™®) =z 2 >0

Law 6: log,(x) = £

Law 7: In(1) =0

Law 8: In(e) =1



EXAMPLES:
Example 1:

Find ¢ such that 2t = 7.

Take the In of both sides.

t1n(2) = In(7) (Law 3)

~ 2.81

Note: The book uses log;,, but In is more widely used.



Example 2:

Recall from Example 2 in Lesson 2 where we had a sample of radioactive material
with a half-life of 2 days. Find the time it take until all but 10% of the atoms have
decayed. Now recall that we derived the formula

N(t) = Ny27t/?

for the number of atoms as a function of ¢ days.
Start with Ny atoms. When only 10% are undecayed, we have Ny/10 radioactive
atoms left.

Now set
Noy/10 = Ny27t/2

and solve for ¢.

1: Divide by Ny

SR
10
2: Take the In of both sides.
ln(%) In(2742)
= —(t/2)In(2) (Law 3)
—1In(10) = —(¢/2) In(2) (Law 2,111(1—10) =In(1) — In(b))

In(10) = (£/2) In(2)

(t/2)In(2) = In(10)

(t/2) =




Example 3:
The ozone in the ozone layer decays due to the steady release of CFCs according
to the formula

Q(t) — Q0670.0025t

where t is measured in years. Find the half-life of the ozone, i.e. the time it takes
for half of the ozone to decay.

To find the half-life, t, we set Q = Qy/2 to get:

Qo

— (e 00025t
2

1
= _ p—0.0025
2

1

ln(2) — ln(670.0025t)

= —0.0025t (Law 4)

ln%
f=—2_
—0.0025

—1In(2
_ —hid (Law 2)
—0.0025
_ @
~0.0025

= 4001n(2)

~ 2TTyears



In the following example, we need to find the growth constant from knowing the
quantity at two different times.
Example 4:

The population of Kenya was 19.5 million in 1986. Find a formula for the popu-
lation as a function of time (assuming the population grows exponentially).

Let P(t) be the population (in millions) where ¢ is measured in years, starting at
1984.

Have P = Pyekt = 19.5¢* (initial population in 1984). We need to find k, the
growth constant.

Well, in 1986, t = 2, and we have 21.2 million, so:

21.2 = 19.5¢"2
21.2
2k
¢ T 105
~ 1.087

2k ~ In(1.087) (Law 4)

Hence P(t) = 19.5¢%94%

Note:
The assumption of exponential growth in this problem is actually rather unrealistic.



Example 5:

Give a formula for the inverse of the following function (i.e. solve for ¢ in terms
of P).

P=f(t)= 67.38(1.026)t
Take In:

In(P) = In(67.38(1.026)")
= In(67.38) + In(1.026)" (Law 1)
— In(67.38) + ¢ In(1.026) (Law 3)
#1n(1.026) = In(P) — In(67.38) (Rearranging)

P In(P) In(67.38)
T In(1.026)  In(1.026)

~ 38.96 In(P) — 164.03

Note:
Again we used In instead of log.



