LESSON 2.2 AND 2.3: The Derivative as a function:

Consider a function, f(z),
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If we take tangent lines to the graph at different points, and then take the slopes of
these lines, we get a new function called the derivative of f, f’.

Definition:
For any function, f, we define the derivative function of f, f’, by

f'(z) = Rate of change of f at x
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e limit of average rates of change over smaller and smaller intervals containing x.

For every x-value for which this limit exists, we say f is differentiable (diff) at z. If f
is differentiable at every point in it’s domain, we say f is differentiable everywhere.



WHAT DOES THE DERIVATIVE TELL US GRAPHICALLY?

Consider the following picture of a function and it’s derivative.

What we notice is that when f is increasing, f’ appears to be positive, and when f
is decreasing, f’ appears to be negative.

The general principle is:

e If f/ > 0 on an interval, then f is increasing on that interval.

e If f/ < 0 on an interval, then f is decreasing on that interval.

e if /=0 on an interval, then f is constant on that interval.



DERIVATIVE OF SIMPLE FUNCTIONS:

Example 1: Constant Function

Graph of a constant function is a horizontal line, the derivative is zero everywhere.
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Example 2: Linear Function

The graph of a linear function f(x) = mx + b is a straight line whose slope is m, the
derivative is m everywhere.

For any &
Average Rate of Change = fle+h) = f(z) = m(@+h)+b— (me+b) = mh =m
h h h
* S+ ) = (@)
! R E Qi-i— - T IRT .
Fo=m=—  —mm=m

Hence, f’(x) = m everywhere.



Example 3: Power Functions

Find a formula for the derivative of f(z) = 2% For any x
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Hence f'(z) = 2.



Example 4:

Find the derivative of g(z) = 23
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Now (z + h)? = 23 + 322h + 3zh? + h®, and so substituting,
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Hence ¢'(x) = 322



More generally, we can use the Binomial Theorem to show that for a positive integer
n’

If f(z) = 2", then f’(z) = na™ !, in particular, f is differentiable on
all of R.

or




