MTH 436

Final Exam - Real Analysis II Due Monday May 10th. at 3:00 PM in Lippit 200B

Name:

Solve 5 problems. Show all your work.!

1). Suppose that $f^{(n+1)}$ exists on (a, b), x_0, x_1, \ldots, x_n are in (a, b), and p is the polynomial of degree $\leq n$ such that $p(x_i) = f(x_i), 0 \leq i \leq n$. Prove that if $x \in (a, b)$, then

$$f(x) = p(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

where c, which depends on x, is in (a, b).

2). Suppose that f is continuous and $F(x) = \int_{a}^{x} f(t) dt$ is bounded on [a, b).

Suppose also that g > 0, g' is nonnegative and locally integrable on [a, b), and $\lim_{x\to b^-} g(x) = \infty$. Show that

$$\lim_{x \to b^{-}} \frac{1}{[g(x)]^{\rho}} \int_{a}^{x} f(t)g(t) dt = 0. \qquad \rho > 1.$$

If in addition we assume that $\int_{a}^{b} f(t)dt$ converges. Show that

$$\lim_{x \to b^{-}} \frac{1}{g(x)} \int_{a}^{x} f(t)g(t) dt = 0.$$

Definition: Let f and g be defined on [a, b]. We say that f is *Riemann-Stieltjes integrable* with respect to g on [a, b] if there is a number L with the following property: For every $\epsilon > 0$, there is a $\delta > 0$ such that

$$\left|\sum_{j=1}^{n} f(c_j)[g(x_j) - g(x_{j-1})] - L\right| < \epsilon,$$

provided only that $P = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b] such that $||P|| < \delta$ and $x_{j-1} \le c_j \le x_j$, $j = 1, 2, \dots, n$. In this case, we say that L is

the Riemann-Stieltjes integral of f with respect to g over [a, b], and write

$$\int_{a}^{b} f(x) \, dg(x) = L.$$

3). Choose ONE of the following:

3a). Suppose that f and g'' are bounded and fg' is integrable on [a, b]. Show that $\int_{a}^{b} f(x) dg(x)$ exists and equals $\int_{a}^{b} f(x)g'(x) dx$.

3b). Suppose that
$$g'$$
 is integrable and f is continuous on $[a, b]$. Show that
$$\int_{a}^{b} f(x) dg(x)$$
 exists and equals $\int_{a}^{b} f(x)g'(x) dx.$

4). Choose ONE of the following:

- **4a).** Suppose that $\{f_n\}$ converges pointwise on [a, b] and, for each $x \in [a, b]$, there is an open interval I_x containing x such that $\{f_n\}$ converges uniformly on $I_x \cap [a, b]$. Show that $\{f_n\}$ converges uniformly on [a, b].
- **4b).** Show that if $\sum |a_n| < \infty$, then $\sum a_n \cos(nx)$ and $\sum a_n \sin(nx)$ define continuous functions on $(-\infty, \infty)$.

5). Choose ONE of the following:

- **5a.)** Show that each point of the Cantor set \mathbb{F} is a cluster point of \mathbb{F} .
- **5b.)** Let $(K_n : n \in \mathbb{N})$ be a sequence of non-empty compact sets in \mathbb{R} such that $K_1 \supseteq K_2 \supseteq \cdots \supseteq K_n \supseteq \cdots$. Prove that there exists at least one point $x \in \mathbb{R}$ such that $x \in K_n$ for all $n \in \mathbb{N}$; that is, the intersection $\bigcap_{n=1}^{\infty} K_n$ is not empty.