MTH 562
Complex Function Theory
TuTh 5:00-6:15 PM
Tyler 109
Instructor
Araceli Bonifant
Office: Tyler Hall 217
Phone: 4-4394
Email: bonifant@math.uri.edu
Office Hours: By appointment.
Textbook: Functions of One Complex Variable
John B. Conway (Springer, Second Ed.)
ISBN-10: 0387903283; ISBN-13: 978-0387903286
About the course:
We shall cover chapters I--V of the text, and sections 1,2 of VI if time
permits:
The complex number system (the complex plane, roots of complex numbers, the extended plane and stereographic projection)
Metric Spaces and the topology of C (compactness, continuity and uniform convergence)
Elementary properties of analytic functions (power series, analytic functions, Cauchy Riemann Equations, branches of the logarithm, linear fractional transformations, conformal functions)
Complex integration (Riemann Stieltjes integrals, zeros of analytic functions, Liouville's Theorem, The Fundamental Theorem of Algebra, the index of a closed curve, Cauchy's theorem, the open mapping theorem, Goursat's theorem)<\li>
Singularities (Laurent expansions, classification of singularities, Casorati-Weierstrass Theorem, residues, the argument principle, Rouche's Theorem)
The Maximum Modulus Theorem and Schwarz's lemma.
We shall develop the theory of complex functions in a mathematically rigorous way.
Evaluation Policy:
Homeworks 50%
Midterm Exam 25 %
Final Exam 25 %