Practice Exam 3
Below is a list of problems that should help you study for the exam. Problems referred by a number and a page number are problems from your text.
1) # 51, # 67 p. 285
2) Express as a single logarithm and simplify as far as possible
3) #21 p. 295 (Simplify as far as possible)
4) Simplify
(a)
(b)
5) # 71 p. 295
6) # 17, #39 p.302 (You do not have to check your solution on a grapher unless you want to.)
7) A radioactive element decays exponentially according to the formula
for some constants
and
. Time t is measured in days. The initial amount of 50 grams at
decays to 40 grams in 10 days.
(a) Find the half-life of the element.
(b) When will the amount be 10 grams?
8) The population of a town,
, in thousands, increases according to the formula
,
where
is the time in years since Jan.1, 1990.
(a) What will the population be on Jan 1, 2005?
(b) Find the doubling time of the population.
9) A forester is standing 200 ft from the base of a tree. He measures that the angle of elevation from the point he is standing to the top of the tree is 0.68 radians. Find the height of the tree.
10) #1, p. 369, # 17, # 23 , # 27 p.370
11) # 25, #37 p. 387
12) #51, #53 p. 388
13) Suppose that the angle t is in the II quadrant. Suppose sin(t)=0.3. Find cos(t), tan(t), cot(t), sec(t).
14) Determine the amplitude and the period of the following functions:
(a)
(b)
(c)
15) Find a possible formula for the following graphs
(A)
(B)
("Pi" stands for
.)