Section 6.5 Least-Squares Problem

Problem: What do we do when $A \mathbf{x}=\mathbf{b}$ has no solution \mathbf{x} ?
Answer: Find $\widehat{\mathbf{x}}$ such that $A \widehat{\mathbf{x}}$ is as "close" as possible to \mathbf{b}. (Least Squares Problem) If A is $m \times n$ and \mathbf{b} is in \mathbf{R}^{m}, a least-squares solution of $A \mathbf{x}=\mathbf{b}$ is an $\widehat{\mathbf{x}}$ in \mathbf{R}^{n} such that

$$
\|\mathbf{b}-A \widehat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|
$$

for all \mathbf{x} in \mathbf{R}^{n}.

Let $W=\operatorname{Col} A$ where A is $m \times n$ and $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$. Suppose \mathbf{b} is in \mathbf{R}^{m} and $\hat{\mathbf{b}}=\operatorname{proj}_{W} \mathbf{b}$.

Since $\widehat{\mathbf{b}}$ is in Col A, then $\widehat{\mathbf{x}}$ is a vector in \mathbf{R}^{n} such that $\hat{\mathbf{b}}=A \widehat{\mathbf{x}}$.

By the Orthogonal Projection Theorem, \mathbf{z} is in W^{\perp} where $\mathbf{z}=\mathbf{b}-A \widehat{\mathbf{x}}$.

Then $\mathbf{b}-A \widehat{\mathbf{x}}$ is orthogonal to every column of A. Meaning that

$$
\begin{gathered}
\left.\mathbf{a}_{1}^{T}(\mathbf{b}-A \widehat{\mathbf{x}})=0 \begin{array}{cc}
\mathbf{a}_{2}^{T}(\mathbf{b}-A \widehat{\mathbf{x}})=0 & \cdots \\
\mathbf{a}_{n}^{T}(\mathbf{b}-A \widehat{\mathbf{x}})=0 \\
\mathbf{a}_{2}^{T} \\
\vdots \\
\mathbf{a}_{n}^{T}
\end{array}\right](\mathbf{b}-A \widehat{\mathbf{x}})=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right] \\
A^{T}(\mathbf{b}-A \widehat{\mathbf{x}})=\mathbf{0} \\
A^{T} \mathbf{b}-A^{T} A \widehat{\mathbf{x}}=\mathbf{0} \\
A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b} \\
\\
\text { (normal equations for } \widehat{\mathbf{x}} \text {) }
\end{gathered}
$$

THEOREM 13

The set of least squares solutions of $A \mathbf{x}=\mathbf{b}$ is the set of all solutions of the normal equations $A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}$.

EXAMPLE: Find a least squares solution to the inconsistent system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
2 & 2
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Solution: Solve $A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b}$ after first finding $A^{T} A$ and $A^{T} \mathbf{b}$.
$A^{T} A=\left[\begin{array}{lll}2 & 0 & 2 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 0 \\ 0\end{array} 1\right.$
So solve the following:

$$
\begin{gathered}
\underbrace{\left[\begin{array}{ll}
8 & 2 \\
4 & 3
\end{array}\right]} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}=\underbrace{\left[\begin{array}{l}
8 \\
8
\end{array}\right]} \\
{\left[\begin{array}{lll}
8 & 2 & 8 \\
4 & 3 & 8
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & \frac{1}{2} \\
0 & 1 & 2
\end{array}\right]}
\end{gathered}
$$

When $A^{T} A$ is invertible,

$$
\begin{gathered}
A^{T} A \widehat{\mathbf{x}}=A^{T} \mathbf{b} \\
\left(A^{T} A\right)^{-1} A^{T} A \widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
\widehat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
\end{gathered}
$$

So in the last example,

$$
\begin{gathered}
\left(A^{T} A\right)^{-1}=\left[\begin{array}{ll}
8 & 2 \\
4 & 3
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{3}{16} & -\frac{1}{8} \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right] \\
\text { and } \\
\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\left[\begin{array}{cc}
\frac{3}{16} & -\frac{1}{8} \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
8 \\
8
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
2
\end{array}\right]
\end{gathered}
$$

THEOREM 14

The matrix $A^{T} A$ is invertible if and only if the columns of A are linearly independent. In this case, the equation $A \mathbf{x}=\mathbf{b}$ has only one least-squares solution \mathbf{x}, and it is given by

$$
\mathbf{x}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} .
$$

$$
\text { least-squares error }=\|\mathbf{b}-A \widehat{\mathbf{x}}\|
$$

From the last example,

$$
\begin{aligned}
& \qquad \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { and } A \widehat{\mathbf{x}}=\left[\begin{array}{ll}
2 & 0 \\
0 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right] \\
& \text { least-squares error }=\|\mathbf{b}-A \widehat{\mathbf{x}}\|=\left\|\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right]\right\|=2
\end{aligned}
$$

For another way to compute $\widehat{\mathbf{x}}$, see Theorem 15 (page 414) and Example 5, page 415.

