Section 6.4 The Gram-Schmidt Process

Goal: Form an orthogonal basis for a subspace W.
EXAMPLE: Suppose $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ where $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]$. Find an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ for W.

Let

$$
\begin{gathered}
\mathbf{v}_{1}=\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] . \\
\widehat{\mathbf{y}}=\operatorname{proj}_{\mathbf{v}_{1}} \mathbf{x}_{2}=\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}
\end{gathered}
$$

and

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\widehat{\mathbf{y}}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]-\frac{4}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]
$$

(component of \mathbf{x}_{2} orthogonal to \mathbf{x}_{1})

EXAMPLE: Suppose $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ is a basis for a subspace W of \mathbf{R}^{4}. Describe an orthogonal basis for W.

Solution: Let

$$
\begin{gathered}
\mathbf{v}_{1}=\mathbf{x}_{1} \text { and } \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot v_{1}} \mathbf{v}_{1} . \\
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \text { is an orthogonal basis for Span }\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\} .
\end{gathered}
$$

Let

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}
$$

$$
\text { (component of } \mathbf{x}_{3} \text { orthogonal to Span }\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\} \text {) }
$$

Note that \mathbf{v}_{3} is in W. Why?
$\Rightarrow\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis for W.

THEOREM 11 THE GRAM-SCHMIDT PROCESS

Given a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$ for a subspace W of \mathbf{R}^{n}, define

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{x}_{1} \\
& \mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} \\
& \mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
& \vdots \\
& \mathbf{v}_{p}=\mathbf{x}_{p}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\cdots-\frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot v_{p-1}} \\
& \mathbf{v}_{p-1}
\end{aligned}
$$

Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is an orthogonal basis for W and

$$
\operatorname{Span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}
$$

EXAMPLE Suppose $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$, where $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right]$, is a basis for a subspace W of \mathbf{R}^{4}. Describe an orthogonal basis for W.
Solution:

$$
\begin{gathered}
\mathbf{v}_{1}=\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right] \text { and } \\
\mathbf{v}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]-\frac{5}{14}\left[\begin{array}{c}
1 \\
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{9}{14} \\
\frac{9}{7} \\
-\frac{15}{14} \\
0
\end{array}\right] \\
\text { Replace } \mathbf{v}_{2} \text { with } 14 \mathbf{v}_{2}: \mathbf{v}_{2}=14\left[\begin{array}{c}
\frac{9}{14} \\
\frac{9}{7} \\
-\frac{15}{14} \\
0
\end{array}\right]=\left[\begin{array}{c}
9 \\
18 \\
-15 \\
0
\end{array}\right]
\end{gathered}
$$

(optional step - to make \mathbf{v}_{2} easier to work with in the next step)

$$
\begin{gathered}
\mathbf{v}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{V}_{1}}{\mathbf{v}_{1} \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{V}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} \\
\mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}\right]-\frac{1}{14}\left[\begin{array}{c}
1 \\
2 \\
3 \\
0
\end{array}\right]-\frac{9}{630}\left[\begin{array}{c}
9 \\
18 \\
-15 \\
0
\end{array}\right] \\
=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]-\frac{1}{14}\left[\begin{array}{c}
1 \\
2 \\
3 \\
0
\end{array}\right]-\frac{1}{70}\left[\begin{array}{c}
9 \\
18 \\
-15 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{5} \\
-\frac{2}{5} \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\text { Rescale (optional): } \mathbf{v}_{3}=\left[\begin{array}{c}
4 \\
-2 \\
0 \\
5
\end{array}\right] \\
\text { Orthogonal Basis for } W \text { : } \\
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
9 \\
18 \\
-15 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
0 \\
5
\end{array}\right]\right\}
\end{gathered}
$$

Orthonomal Basis

Suppose the following is an orthogonal basis for subspace $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]\right\}$:

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]\right\}
$$

Rescale to form unit vectors:

$$
\begin{gathered}
\mathbf{u}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \\
\mathbf{u}_{2}=\frac{1}{\left\|\mathbf{v}_{2}\right\|} \mathbf{v}_{2}=\frac{1}{3}\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Orthonormal basis for W : $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$

QR Factorization

THEOREM 12 (The QR Factorization)

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A=Q R$, where Q is an $m \times n$ matrix whose columns form an orthogonal basis for $\operatorname{Col} A$ and R is an $n \times n$ upper triangular invertible matrix with positive entries on its main diagonal.

EXAMPLE Find the QR factorization of $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 0 & 3\end{array}\right]$. Solution: Use the Gram Schmidt process to find $\left\{\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ which is an orthonomal basis for
$\operatorname{col} A=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]\right\}$. So $Q=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 \\ 0 & 1\end{array}\right]$.
Since U has orthonormal columns, $Q^{T} Q=I$. So if $A=Q R$, then

$$
\ldots \quad A=\ldots \quad Q R
$$

$$
R=Q^{T} A=\left[\begin{array}{ccc}
\frac{1}{2} \sqrt{2} & \frac{1}{2} \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
1 & 2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{2} & 2 \sqrt{2} \\
0 & 3
\end{array}\right]
$$

