Section 6.3 Orthogonal Sets

Review

$\hat{\mathbf{y}}=\frac{\mathrm{y} \cdot \mathbf{u}}{u \cdot u} \mathbf{u} \quad$ is the orthogonal projection of \qquad .

Suppose $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthogonal basis for W in \mathbf{R}^{n}. For each \mathbf{y} in W,

$$
\mathbf{y}=\left(\frac{y \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}}\right) \mathbf{u}_{p}
$$

EXAMPLE: Suppose $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis for \mathbf{R}^{3} and let $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Write \mathbf{y} in \mathbf{R}^{3} as the sum of a vector $\widehat{\mathbf{y}}$ in W and a vector \mathbf{z} in W^{\perp}.

Solution: Write

$$
\mathbf{y}=\left(\frac{y \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}+\left(\frac{\mathrm{y} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}}\right) \mathbf{u}_{3}
$$

where

$$
\begin{gathered}
\widehat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2} \\
\mathbf{z}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}}\right) \mathbf{u}_{3} .
\end{gathered}
$$

To show that \mathbf{z} is orthogonal to every vector in W, show that \mathbf{z} is orthogonal to the vectors in $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.

Since

$$
\begin{array}{lll}
\mathbf{z} \cdot \mathbf{u}_{1}= & = & =\mathbf{0} \\
& \\
\mathbf{z} \cdot \mathbf{u}_{2}= & = & =\mathbf{0}
\end{array}
$$

THEOREM 8 THE ORTHOGONAL DECOMPOSITION THEOREM

Let W be a subspace of \mathbf{R}^{n}. Then each \mathbf{y} in \mathbf{R}^{n} can be uniquely represented in the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}. In fact, if $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis of W, then
and $\mathbf{z}=\mathbf{y}-\widehat{\mathbf{y}}$.

$$
\hat{\mathbf{y}}=\left(\frac{\mathrm{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}}\right) \mathbf{u}_{p}
$$

The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto W.

EXAMPLE: Let $\mathbf{u}_{1}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\mathbf{y}=\left[\begin{array}{c}0 \\ 3 \\ 10\end{array}\right]$. Observe that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

Solution:

$$
\begin{gathered}
\operatorname{proj}_{W} \mathbf{y}=\hat{\mathbf{y}}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}=(\quad)\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]+(\quad)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right] \\
\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}=\left[\begin{array}{c}
0 \\
3 \\
10
\end{array}\right]-\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
0 \\
9
\end{array}\right]
\end{gathered}
$$

Geometric Interpretation of Orthogonal Projections

THEOREM 9 The Best Approximation Theorem

Let W be a subspace of \mathbf{R}^{n}, \mathbf{y} any vector in \mathbf{R}^{n}, and $\widehat{\mathbf{y}}$ the orthogonal projection of \mathbf{y} onto W. Then $\widehat{\mathbf{y}}$ is the point in W closest to \mathbf{y}, in the sense that

$$
\|\mathbf{y}-\widehat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\|
$$

for all \mathbf{v} in W distinct from $\widehat{\mathbf{y}}$.

Outline of Proof: Let \mathbf{v} in W distinct from \mathfrak{y}. Then

$$
\begin{gathered}
\mathbf{v}-\hat{\mathbf{y}} \text { is also in } W \text { (why?) } \\
\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}} \text { is orthogonal to } W \Rightarrow \mathbf{y}-\hat{\mathbf{y}} \text { is orthogonal to } \mathbf{v}-\hat{\mathbf{y}} \\
\mathbf{y}-\mathbf{v}=(\mathbf{y}-\widehat{\mathbf{y}})+(\hat{\mathbf{y}}-\mathbf{v}) \quad \Rightarrow \quad\|\mathbf{y}-\mathbf{v}\|^{2}=\|\mathbf{y}-\widehat{\mathbf{y}}\|^{2}+\|\hat{\mathbf{y}}-\mathbf{v}\|^{2} . \\
\|\mathbf{y}-\mathbf{v}\|^{2}>\|\mathbf{y}-\hat{\mathbf{y}}\|^{2}
\end{gathered}
$$

Hence, $\|\mathbf{y}-\hat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\|$.

EXAMPLE: Find the closest point to \mathbf{y} in $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ where $\mathbf{y}=\left[\begin{array}{c}2 \\ 4 \\ 0 \\ -2\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$, and $\mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$.

Solution: $\hat{\mathbf{y}}=\left(\frac{y \cdot u_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{u_{2} \cdot \mathbf{u}_{2}}\right) \mathbf{u}_{2}=(\quad)\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]+(\quad)\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]=$

Part of Theorem 10 below is based upon another way to view matrix multiplication where A is $m \times p$ and B is $p \times n$

$$
\begin{aligned}
A B & =\left[\begin{array}{llll}
\operatorname{col}_{1} A & \operatorname{col}_{2} A & \cdots & \operatorname{col}_{p} A
\end{array}\right]\left[\begin{array}{c}
\operatorname{row}_{1} B \\
\operatorname{row}_{2} B \\
\vdots \\
\operatorname{row}_{p} B
\end{array}\right] \\
& =\left(\operatorname{col}_{1} A\right)\left(\operatorname{row}_{1} B\right)+\cdots+\left(\operatorname{col}_{p} A\right)\left(\operatorname{row}_{p} B\right)
\end{aligned}
$$

For example

$$
\begin{aligned}
& {\left[\begin{array}{ll}
5 & 6 \\
3 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & 0 & -2
\end{array}\right]=\left[\begin{array}{lll}
34 & 5 & 3 \\
10 & 3 & 7
\end{array}\right]} \\
& {\left[\begin{array}{ll}
5 & 6 \\
3 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & 0 & -2
\end{array}\right]=\left[\begin{array}{l}
5 \\
3
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]+\left[\begin{array}{l}
6 \\
1
\end{array}\right]\left[\begin{array}{lll}
4 & 0 & -2
\end{array}\right]} \\
& =
\end{aligned}
$$

So if $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$. Then $U^{T}=\left[\begin{array}{c}\mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \vdots \\ \mathbf{u}_{p}^{T}\end{array}\right]$. So

$$
\begin{gathered}
U U^{T}=\mathbf{u}_{1} \mathbf{u}_{1}^{T}+\mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots+\mathbf{u}_{p} \mathbf{u}_{p}^{T} \\
\left(U U^{T}\right) \mathbf{y}=\left(\mathbf{u}_{1} \mathbf{u}_{1}^{T}+\mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots+\mathbf{u}_{p} \mathbf{u}_{p}^{T}\right) \mathbf{y} \\
=\left(\mathbf{u}_{1} \mathbf{u}_{1}^{T}\right) \mathbf{y}+\left(\mathbf{u}_{2} \mathbf{u}_{2}^{T}\right) \mathbf{y}+\cdots+\left(\mathbf{u}_{p} \mathbf{u}_{p}^{T}\right) \mathbf{y}=\mathbf{u}_{1}\left(\mathbf{u}_{1}^{T} \mathbf{y}\right)+\mathbf{u}_{2}\left(\mathbf{u}_{2}^{T} \mathbf{y}\right)+\cdots+\mathbf{u}_{p}\left(\mathbf{u}_{p}^{T} \mathbf{y}\right) \\
=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p} \\
\Rightarrow\left(U U^{T}\right) \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
\end{gathered}
$$

THEOREM 10

If $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbf{R}^{n}, then

$$
\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
$$

If $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then
$\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y} \quad$ for all \mathbf{y} in \mathbf{R}^{n}.

Outline of Proof:

$$
\begin{gathered}
\operatorname{proj}_{W} \mathbf{y}=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}}\right) \mathbf{u}_{p} \\
=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}=U U^{T} \mathbf{y} .
\end{gathered}
$$

