2.2 The Inverse of a Matrix

The inverse of a real number a is denoted by a^{-1}. For example, $7^{-1}=1 / 7$ and

$$
7 \cdot 7^{-1}=7^{-1} \cdot 7=1
$$

An $n \times n$ matrix A is said to be invertible if there is an $n \times n$ matrix C satisfying

$$
C A=A C=I_{n}
$$

where I_{n} is the $n \times n$ identity matrix. We call C the inverse of A.

FACT If A is invertible, then the inverse is unique.

Proof: Assume B and C are both inverses of A. Then

$$
B=B I=B\left(_\right)=(\square)=I _=C .
$$

So the inverse is unique since any two inverses coincide.
The inverse of A is usually denoted by A^{-1}.

We have

$$
A A^{-1}=A^{-1} A=I_{n}
$$

Not all $n \times n$ matrices are invertible. A matrix which is not invertible is sometimes called a singular matrix. An invertible matrix is called nonsingular matrix.

Theorem 4

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is not invertible.

Assume A is any invertible matrix and we wish to solve $A \mathbf{x}=\mathbf{b}$. Then
$\quad A \mathbf{x}=\ldots \mathbf{b} \quad$ and so
$I \mathbf{x}=\ldots \quad$ or $\mathbf{x}=\ldots$

Suppose \mathbf{w} is also a solution to $A \mathbf{x}=\mathbf{b}$. Then $A \mathbf{w}=\mathbf{b}$ and

$$
\ldots \ldots \quad A \mathbf{w}=\ldots \mathbf{b} \quad \text { which means } \quad \mathbf{w}=A^{-1} \mathbf{b} .
$$

So, $\mathbf{w}=A^{-1} \mathbf{b}$, which is in fact the same solution.

We have proved the following result:

Theorem 5

If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbf{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

EXAMPLE: Use the inverse of $A=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right]$ to solve $\begin{aligned}-7 x_{1}+3 x_{2} & =2 \\ 5 x_{1}-2 x_{2} & =1\end{aligned}$.
Solution: Matrix form of the linear system: $\left[\begin{array}{rr}-7 & 3 \\ 5 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

$$
\left.\begin{array}{l}
A^{-1}=\frac{1}{14-15}\left[\begin{array}{cc}
-2 & -3 \\
-5 & -7
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right] \\
\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right][
\end{array}\right]=\left[\begin{array}{l}
\\
\end{array}\right] .
$$

Theorem 6 Suppose A and B are invertible. Then the following results hold:
a. A^{-1} is invertible and $\left(A^{-1}\right)^{-1}=A$ (i.e. A is the inverse of A^{-1}).
b. $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$
c. A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Partial proof of part b :

$$
\begin{aligned}
& \quad(A B)\left(B^{-1} A^{-1}\right)=A(\ldots) A^{-1} \\
& =A(\ldots) A^{-1}=\ldots
\end{aligned}
$$

Similarly, one can show that $\left(B^{-1} A^{-1}\right)(A B)=I$.
Theorem 6, part b can be generalized to three or more invertible matrices:

$$
(A B C)^{-1}=
$$

Earlier, we saw a formula for finding the inverse of a 2×2 invertible matrix. How do we find the inverse of an invertible $n \times n$ matrix? To answer this question, we first look at elementary matrices.

Elementary Matrices

Definition

An elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix.

EXAMPLE: Let $E_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right], E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], E_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]$ and
$A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$.
E_{1}, E_{2}, and E_{3} are elementary matrices. Why?

Observe the following products and describe how these products can be obtained by elementary row operations on A.
$E_{1} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{ccc}a & b & c \\ 2 d & 2 e & 2 f \\ g & h & i\end{array}\right]$
$E_{2} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{lll}a & b & c \\ g & h & i \\ d & e & f\end{array}\right]$
$E_{3} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ 3 a+g & 3 b+h & 3 c+i\end{array}\right]$

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_{m}.

Elementary matrices are invertible because row operations are reversible. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

For example,

$$
E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \quad E_{3}^{-1}=[
$$

Example: Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0\end{array}\right]$. Then
$E_{1} A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$E_{2}\left(E_{1} A\right)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$
$E_{3}\left(E_{2} E_{1} A\right)=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
So

$$
E_{3} E_{2} E_{1} A=I_{3} \text {. }
$$

Then multiplying on the right by A^{-1}, we get

$$
E_{3} E_{2} E_{1} A_{\ldots}=I_{3}
$$

So

$$
E_{3} E_{2} E_{1} I_{3}=A^{-1}
$$

The elementary row operations that row reduce A to I_{n} are the same elementary row operations that transform \mathbf{I}_{n} into \mathbf{A}^{-1}.

Theorem 7

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}, and in this case, any sequence of elementary row operations that reduces A to I_{n} will also transform I_{n} to A^{-1}.

Algorithm for finding \mathbf{A}^{-1}

Place A and I side-by-side to form an augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$. Then perform row operations on this matrix (which will produce identical operations on A and I). So by Theorem 7:
$\left[\begin{array}{ll}A & I\end{array}\right]$ will row reduce to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$
or A is not invertible.
EXAMPLE: Find the inverse of $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, if it exists.
Solution:

$$
\left[\begin{array}{ll}
A & I
\end{array}\right]=\left[\begin{array}{cccccc}
2 & 0 & 0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \sim \cdots \sim\left[\begin{array}{cccccc}
1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & \frac{3}{2} & 1 & 0
\end{array}\right]
$$

So $A^{-1}=\left[\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0\end{array}\right]$

Order of multiplication is important!

EXAMPLE Suppose A, B, C, and D are invertible $n \times n$ matrices and $A=B\left(D-I_{n}\right) C$.

Solve for D in terms of A, B, C and D.

Solution:

$$
\begin{gathered}
A _=Z_{-} B\left(D-I_{n}\right) C _ \\
D-I_{n}=B^{-1} A C^{-1} \\
D-I_{n}+\ldots=B^{-1} A C^{-1}+\ldots
\end{gathered}
$$

