Section 1.9 (Through Theorem 10) The Matrix of a Linear Transformation

Identity Matrix I_{n} is an $n \times n$ matrix with 1 's on the main left to right diagonal and 0 's elsewhere. The ith column of I_{n} is labeled \mathbf{e}_{i}.

EXAMPLE:

$$
I_{3}=\left[\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note that

$$
I_{3} \mathbf{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

In general, for \mathbf{x} in \mathbf{R}^{n},

$$
I_{n} \mathbf{x}=
$$

From Section 1.8, if $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear transformation, then $T(c \mathbf{u}+d \mathbf{v})=c \mathbf{T}(\mathbf{u})+d \mathbf{T}(\mathbf{v})$.

Generalized Result:

$$
T\left(c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{p} T\left(\mathbf{v}_{p}\right)
$$

EXAMPLE: The columns of $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Suppose T is a linear transformation from \mathbf{R}^{2} to $\mathbf{R}^{\frac{1}{2}}$ where

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right] \text { and } T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right] .
$$

Compute $T(\mathbf{x})$ for any $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Solution: A vector \mathbf{x} in \mathbf{R}^{2} can be written as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-\left[\begin{array}{l}
1 \\
0
\end{array}\right]+-\left[\begin{array}{l}
0 \\
1
\end{array}\right]=-\quad \mathbf{e}_{1}+\ldots \mathbf{e}_{2}
$$

Then

$$
\begin{gathered}
T(\mathbf{x})=T\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}\right)=_T\left(\mathbf{e}_{1}\right)+\ldots T\left(\mathbf{e}_{2}\right) \\
=\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right]+\longrightarrow\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\end{array}\right] .
\end{gathered}
$$

Note that

So

$$
T(\mathbf{x})=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)
\end{array}\right] \mathbf{x}=A \mathbf{x}
$$

To get A, replace the identity matrix $\left[\begin{array}{ll}\mathbf{e}_{1} & \mathbf{e}_{2}\end{array}\right]$ with $\left[\begin{array}{ll}T\left(\mathbf{e}_{2}\right) & T\left(\mathbf{e}_{2}\right)\end{array}\right]$.

Theorem 10
Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} .
$$

In fact, A is the $m \times n$ matrix whose jth column is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the jth column of the identity matrix in \mathbf{R}^{n}.

$$
\left.\begin{array}{cccc}
A=\left[\begin{array}{ccc}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots
\end{array} \quad T\left(\mathbf{e}_{n}\right)\right.
\end{array}\right]
$$

standard matrix for the linear transformation T

EXAMPLE: $\left[\begin{array}{ll}? & ? \\ ? & ? \\ ? & ?\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}-2 x_{2} \\ 4 x_{1} \\ 3 x_{1}+2 x_{2}\end{array}\right]$
Solution:

$$
\left.\begin{array}{l}
\\
 \tag{fill-in}\\
{\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]=\text { standard matrix of the linear transformation } T} \\
? \\
?
\end{array}\right]=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)
\end{array}\right]=
$$

EXAMPLE: Find the standard matrix of the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).

