### 1.6 Linear Independence

Recall, for example, that the solution sets of

$$
\left[\begin{array}{rrr}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and the vector equation

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

are identical.

The vector equation has the trivial solution $\left(x_{1}=0, x_{2}=0, x_{3}=0\right)$, but is this the only one?

## Definition

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in $\mathbf{R}^{n}$ is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution. The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists weights $c_{1}, \ldots, c_{p}$, not all 0 , such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0} .
$$

| $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}$ |
| :---: |
| $\uparrow$ |
| linear dependence relation |
| (when weights are all not zero) |

EXAMPLE 1 Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}-3 \\ 9 \\ 3\end{array}\right]$.
a. Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.
b. If possible, find a linear dependence relation among $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Solution: a. Examine solution of

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Corresponding augmented matrix:

$$
\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $x_{3}$ is a free variable, there are nontrivial solutions. So $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly dependent (and not linearly independent).
(b) Reduced echelon form: $\left[\begin{array}{cccc}1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Rightarrow \begin{array}{ll}x_{1} & = \\ x_{2} & = \\ x_{3} & \end{array}$

Choose $x_{3}$ to be any nonzero number. Say $x_{3}=$ $\qquad$ . Then $x_{1}=$ $\qquad$ and $x_{2}=$ $\qquad$ .

Therefore

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+\_\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+\_\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\text { or } \\
\mathbf{v}_{1}+\ldots \mathbf{v}_{2}+\ldots \mathbf{v}_{3}=\mathbf{0}
\end{gathered}
$$

## Linear Independence of Matrix Columns

In last example, note that the linear dependence relation

$$
-33\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+18\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+1\left[\begin{array}{r}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

can be written as the matrix equation $A \mathbf{x}=\mathbf{0}$ :

$$
\left[\begin{array}{rrr}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{r}
-33 \\
18 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Each linear dependence relation among the columns of $A$ corresponds to a nontrivial solution to $A \mathbf{x}=\mathbf{0}$.
The columns of matrix $A$ are linearly independent if and only if the equation of $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

EXAMPLE 2 Determine if the columns of $A=\left[\begin{array}{llll}1 & 2 & 3 & 5 \\ 0 & 2 & 9 & 5 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 7\end{array}\right]$ are linearly dependent.

Solution: Corresponding augmented matrix of $A \mathbf{x}=\mathbf{0}$ :

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 5 & 0 \\
0 & 2 & 9 & 5 & 0 \\
0 & 0 & 2 & 3 & 0 \\
0 & 0 & 0 & 7 & 0
\end{array}\right]
$$

Answer:

## Special Cases

Sometimes we can determine linear independence of a set with minimal effort.

## 1. A Set of One Vector

Consider the set containing one nonzero vector: $\left\{\mathbf{v}_{1}\right\}$

The only solution to $x_{1} \mathbf{v}_{1}=0$ is the $\qquad$ .

$$
\text { So }\left\{\mathbf{v}_{1}\right\} \text { is linearly independent when } \mathbf{v}_{1} \neq \mathbf{0} \text {. }
$$

## 2. A Set of Two Vectors

EXAMPLE 3 Let $\mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}4 \\ 2\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
a. Determine if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a linearly dependent set or a linearly independent set.
b. Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_{2}=$ $\qquad$ $\mathbf{u}_{1}$. Therefore

$$
\ldots \mathbf{u}_{1}+\ldots \quad \mathbf{u}_{2}=0
$$

This means that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a linearly $\qquad$ set.
(b) Suppose

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{0} .
$$

Then $\mathbf{v}_{1}=-\mathbf{v}_{2}$ if $c_{1} \neq 0$. But this is impossible since $\mathbf{v}_{1}$ is not a multiple of $\mathbf{v}_{2}$ which means $c_{1}=$ $\qquad$ .

Similarly, $\mathbf{v}_{2}=-\mathbf{v}_{1}$ if $c_{2} \neq 0$. But this is impossible since $\mathbf{v}_{2}$ is not a multiple of $\mathbf{v}_{1}$ and so $c_{2}=0$.

This means that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a linearly $\qquad$ set.

Complete: A set of two vectors is linearly independent if $\qquad$

linearly

linearly $\qquad$

## 3. A Set Containing the 0 Vector

EXAMPLE 4 Consider the set $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 7\end{array}\right]\right\}$.
A nontrivial solution to

$$
x_{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
4 \\
5 \\
7
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is $x_{1}=$ $\qquad$ , $x_{2}=$ $\qquad$ , $x_{3}=$ $\qquad$ .

## Theorem 9

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in $\mathbf{R}^{n}$ containing the zero vector is linearly dependent.

## 4. A Set Containing Too Many Vectors

EXAMPLE 5 Suppose $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 7 & 6 & 5 & 4\end{array}\right]$. Explain why the columns of $A$ are linearly dependent.

## Theorem 8

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in $\mathbf{R}^{n}$ is linearly dependent if $p>n$.

EXAMPLE 6 With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.
a. $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}9 \\ 6 \\ 3\end{array}\right]\right\}$
b. $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}9 \\ 6 \\ 4\end{array}\right]\right\}$
c. $\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{l}9 \\ 6\end{array}\right],\left[\begin{array}{l}9 \\ 5\end{array}\right]\right\}$
d. $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}9 \\ 6 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
e. $\left\{\left[\begin{array}{l}8 \\ 2 \\ 1 \\ 4\end{array}\right]\right\}$
f. Columns of $\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 0 \\ 9 & 8 & 7 & 6 & 5 \\ 4 & 3 & 2 & 1 & 8\end{array}\right]$.

## Characterization of Linearly Dependent Sets

EXAMPLE 7 Consider the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ in $\mathbf{R}^{3}$ in the following diagram. Is the set linearly dependent? Explain


## Theorem 7

A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in $S$ is a linear combination of the others. In fact, if $S$ is linearly dependent, and $\mathbf{v}_{1} \neq \mathbf{0}$, then some vector $\mathbf{v}_{j}(j \geq 2)$ is a linear combination of the preceding vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{j-1}$.

EXAMPLE With the least amount of work possible, decide if the following set of vectors is linearly independent.

$$
\left\{\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
9 \\
6 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

