Math 215 Homework 1

Dr. Mark Comerford

Due Wednesday May 28, 2014
1.1.2 Solve using elementary row operations

$$
\begin{aligned}
& 2 x_{1}+6 x_{2}=-4 \\
& 5 x_{1}+7 x_{2}=10
\end{aligned}
$$

1.1.12 Solve using row operations on the augmented matrix

$$
\begin{aligned}
x_{1}-5 x_{2}+4 x_{3} & =-3 \\
2 x_{1}-7 x_{2}+3 x_{3} & =-2 \\
-2 x_{1}+x_{2}+7 x_{3} & =-1
\end{aligned}
$$

1.1.16 Determine if the following system is consistent without solving it.

$$
\begin{aligned}
x_{1}-6 x_{2} & =5 \\
x_{2}-4 x_{3}+x_{4} & =0 \\
-x_{1}+6 x_{2}+x_{3}+5 x_{4} & =3 \\
-x_{2}+5 x_{3}+4 x_{4} & =0
\end{aligned}
$$

1.2.4 Row reduce the following matrix to reduced echelon form.

$$
\left[\begin{array}{llll}
1 & 2 & 4 & 5 \\
2 & 4 & 5 & 4 \\
4 & 5 & 4 & 2
\end{array}\right]
$$

1.2.12,13 Find the general solutions of the systems whose augmented matrices are as below.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & -9 & 0 & 4 \\
0 & 1 & 3 & 0 & -1 \\
0 & 0 & 0 & 1 & -7 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{rrrrr|r}
1 & -3 & 0 & -1 & 0 & -2 \\
0 & 1 & 0 & 0 & -4 & 1 \\
0 & 0 & 0 & 1 & 9 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

1.2.31 A system of linear equations with more equations than unknowns is sometimes called an overdetermined system. Can such a system be consistent? Illustrate your answer with a specific system of three equations in two unknowns.
1.3.1,2 Compute $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-2 \mathbf{v}$ for the following examples:

$$
\mathbf{u}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

1.3.10 Write a vector equation which is equivalent to the following system of equations.

$$
\begin{array}{r}
3 x_{1}-2 x_{2}+4 x_{3}=3 \\
-2 x_{1}-7 x_{2}+5 x_{3}=1 \\
5 x_{1}+4 x_{2}-3 x_{3}=2
\end{array}
$$

1.3.165 (Similar to 1.3 .18 in 3rd Ed.) Let

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
7
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{r}
h \\
-3 \\
-5
\end{array}\right] .
$$

For what values of h is \mathbf{y} in the plane spanned by \mathbf{v}_{1} and \mathbf{v}_{2} ?
1.3.25 Let

$$
A=\left[\begin{array}{rrr}
1 & 0 & -4 \\
0 & 3 & -2 \\
-2 & 6 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
4 \\
1 \\
-4
\end{array}\right]
$$

Denote the columns of A by $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$, and let $W=\operatorname{Span}\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right]$.
a. Is \mathbf{b} in $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$? How many vectors are in $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$?
b. Is \mathbf{b} in W ?
c. Show that \mathbf{a}_{1} is in W. Hint: Row operations are unnecessary here!
1.4.12 Let

$$
A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
-3 & -4 & 2 \\
5 & 2 & 3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{r}
1 \\
2 \\
-3
\end{array}\right] .
$$

Write the augmented matrix for the linear system which corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$. Then solve the system and write the solution as a vector.
1.4.13 Let

$$
\mathbf{u}=\left[\begin{array}{l}
0 \\
4 \\
4
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{rr}
3 & -5 \\
-2 & 6 \\
1 & 1
\end{array}\right]
$$

Is \mathbf{u} in the plane in \mathbb{R}^{3} spanned by the columns of A ? Justify your answer!
1.4.17 Let

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right]
$$

Does A have a pivot position in every row? Hint: Recall that a pivot position in a matrix A is a location in A that corresponds to a 1 (in the same position) in the reduced echelon form of A.
1.4.18 Let

$$
B=\left[\begin{array}{rrrr}
1 & 4 & 1 & 2 \\
0 & 1 & 3 & -4 \\
0 & 2 & 6 & 7 \\
2 & 9 & 5 & -7
\end{array}\right]
$$

Do the columns of B span \mathbb{R}^{4} ? Hint: For this you will need a theorem from the notes which you should cite. The previous question may also be of help!
1.5.3 Determine if the following system has a solution. You should try to use as few row operations as possible.

$$
\begin{aligned}
& -3 x_{1}+4 x_{2}-8 x_{3}=0 \\
& -2 x_{1}+5 x_{2}+4 x_{3}=0
\end{aligned}
$$

1.5.5 Write the solution of the following homogeneous system in parametric form.

$$
\begin{array}{r}
2 x_{1}+2 x_{2}+4 x_{3}=0 \\
-4 x_{1}-4 x_{2}-8 x_{3}=0 \\
-3 x_{2}-3 x_{3}=0
\end{array}
$$

1.5.7 Let

$$
A=\left[\begin{array}{llll}
1 & 3 & -3 & 7 \\
0 & 1 & -4 & 5
\end{array}\right]
$$

and describe all solutions of the matrix equation $A \mathbf{x}=\mathbf{0}$ in parametric form.
1.5.13 Suppose the solution set of a certain system of linear equations can be described as $x_{1}=5+4 x_{3}, x_{2}=-2-7 x_{3}$, with x_{3} free. Use vectors to describe this set as a line in \mathbb{R}^{3}
1.5.15 (1.5.17 in 3rd Ed.) Describe and compare the solution sets of $x_{1}+5 x_{2}-3 x_{3}=0$ and $x_{1}+5 x_{2}-3 x_{3}=-2$

