Mycielski's Theorem

Gabriel Lugo
Math 548
December 2007

Introduction

The goal here is to present Mycielski's theorem and a proof. First, Mycielski's construction will be presented. Then the theorem will be stated and a theorem will be given. Examples on special cases of Mycielski's construction and theorem will be presented for illustration purposes.

Mycielski's construction

This construction is defined on simple graphs. Let G be such a graph with $V(G) = \{v_1, \ldots, v_n\}$. Let $W = \{u_1, \ldots, u_n\} \cup \{w\}$. A graph, G', gotten by this construction, by adding the vertices of W to G such that u_i is adjacent to all of the vertices of $N_G(v_i)$, and w is adjacent to all of the vertices of $U = \{u_1, \ldots, u_n\}$.

Example: The yield of a 2-chromatic graph K_2.

The Statement of The Theorem (Mycielski [1955])

Starting with a k-chromatic triangle-free graph G, constructing a graph, using Mycielski's construction, produces a $k + 1$-chromatic triangle-free graph G'.

Example: The yield of a 3-chromatic graph C_5.
Ugly Proof:

Assume that G' has a triangle, containing the vertex u_i. This vertex is adjacent to the vertices that the v_i are adjacent to, but this would imply that G has a triangle, where the vertices that u_i forms a triangle with, are vertices of this triangle along with v_i. This would contradict that G is triangle-free.

A proper k-coloring f of G extends to a proper $k + 1$-coloring of G' by setting $f(u_i) = f(v_i)$ and $f(w) = k + 1$; hence $\chi(G') \leq \chi(G) + 1$. We prove equality by showing that $\chi(G) < \chi(G')$. To prove this consider a proper $k + 1$-coloring of G' on and obtain from it a proper k-coloring of G.

Let g be a proper $k + 1$-coloring of G'. By changing the names of colors, we may assume that $g(w) = k + 1$. This restricts g to $\{1, ..., k\}$ on U. On $V(G)$, all $k + 1$ colors may be used. Let A be a set of vertices in G on which g uses color $k + 1$; we change the colors used on A to obtain a proper k-coloring of G.

For each $v_i \in A$, it is shown that a change in color of v_i to $g(u_i)$ is possible. So we show that with this new color, vertices adjacent to $v_i \in A$ have a color different from $g(u_i)$. First notice that because all vertices of A have the same color, no two vertices of A are adjacent. Second, since edges $v' \in V(G) - A$ adjacent to $v_i \in A$ are also adjacent to u_i, where u_i is not adjacent to $v_i \in A$ by the construction, and since $g(u_i) \neq g(v')$, by construction, the new color of $v_i \in A$ is not the color $g(v')$. We have shown that the modified coloring of $V(G)$ is a proper k-coloring of G.

Reference

West, D. “Introduction to Graph Theory, Second Edition.” pp.205-206