Dense graphs and a conjecture for tree-depth

Michael D. Barrus

Department of Mathematics
University of Rhode Island

URI Discrete Mathematics Seminar

October 14, 2016
Joint work with John Sinkovic (University of Waterloo)

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: the smallest number of labels needed in a labeling of the vertices of G such that every path with equally-labeled endpoints also has a higher label. $\quad($ Here, $\operatorname{td}(G)=4)$

Equivalently, the minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth and minors

Theorem

If G contains H as a minor, then $\operatorname{td}(G) \geq \operatorname{td}(H)$.

Tree-depth and minors

Theorem

If G contains H as a minor, then $\operatorname{td}(G) \geq \operatorname{td}(H)$.
NOTE: A substructure of G forces G to have a higher tree-depth than it might otherwise have.

Call a graph critical if every proper minor has a smaller tree-depth. (k-critical $=$ critical, with tree-depth k)

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

- What structural properties must critical graphs possess?

Structural properties of k-critical graphs

1:

 0

Conjectures If G is k-critical, then

- $|V(G)| \leq 2^{k-1} \quad$ [Dvořák-Giannopoulou-Thilikos, '09, '12]
- $\Delta(G) \leq k-1$
[B-Sinkovic, '16]

An approach to the max degree conjecture

Any vertex with the smallest label has neighbors with distinct labels.

If in some optimal labeling of G a vertex of maximum degree receives the label 1 , then $\Delta(G) \leq \operatorname{td}(G)-1$.

Stronger conjectures

1: \quad

Stronger conjectures

1:

: $1: 1:$

Conjectures
If G is k-critical, then

- G has an optimal labeling where some vertex with maximum degree is labeled 1.

Stronger conjectures

1:

3:
 0

Conjectures
If G is k-critical, then

- For each vertex v of G, there is an optimal labeling where v receives label 1.

Stronger conjectures

1:

3:
 0

Conjectures
If G is k-critical, then

- For each vertex v of G, there is an optimal labeling where v is the unique vertex receiving label 1.

1-uniqueness

Given a graph G, we say that a vertex v is 1 -unique if there is an optimal labeling of G where v is the only vertex receiving label 1 .

(2)

We say a graph G is 1 -unique if each vertex of G is 1 -unique.

Observation

If G is 1 -unique, then $\Delta(G) \leq \operatorname{td}(G)-1$.

Conjecture

If G is critical, then G is 1 -unique.

Plausibility: 1-uniqueness as a type of criticality?

Theorem (B-Sinkovic, 2016)
If G is a 1 -unique graph, then

- deleting any vertex of G lowers the tree-depth, and
- contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is $\operatorname{td}(G)$-critical.

Plausibility: 1-uniqueness as a type of criticality?

Theorem (B-Sinkovic, 2016)

If G is a 1 -unique graph, then

- deleting any vertex of G lowers the tree-depth, and
- contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is $\operatorname{td}(G)$-critical.

NOTE: We get a $\operatorname{td}(G)$-critical graph by deleting some (possibly none) of the edges of G.

Plausibility: small tree-depths

1:

Conjecture

- If G is k-critical, then G is 1 -unique.

Another application of 1-uniqueness

Theorem (B-Sinkovic, 2016)

Graphs G constructed with k-critical "appendages" L_{i} and an ℓ-critical "core" H...

- ...have tree-depth $k+\ell-1$ if H and all the L_{i} are critical;
- ...are critical if H is also 1-unique;
- ...are 1-unique if H and all the L_{i} are 1-unique;

Another application of 1-uniqueness

Theorem (B-Sinkovic, 2016)

Graphs G constructed with k-critical "appendages" L_{i} and an ℓ-critical "core" H...

- ...have order at most $2^{\text {tdd }(G)-1}$ if $|V(H)| \leq 2^{\ell-1}$ and $\left|V\left(L_{i}\right)\right| \leq 2^{k-1}$ for all i.

Some notes

Observations

- Max degree conjecture always true, graph order bound often true (at least!) if all critical graphs are 1-unique.

Some notes

Observations

- Max degree conjecture always true, graph order bound often true (at least!) if all critical graphs are 1-unique.
- Most of the critical graphs seem to be sparse...

Another view

Of course, K_{n} is always dense, n-critical...

Curiosity: For which (critical?) graphs G is tree-depth close to $n(G)$?

High tree-depth

Let G be a graph with $n(G)=n$.

- $\operatorname{td}(G)=n$ iff G is $\left\{2 K_{1}\right\}$-free.

High tree-depth

Let G be a graph with $n(G)=n$.

- $\operatorname{td}(G)=n$ iff G is $\left\{2 K_{1}\right\}$-free.

- $\operatorname{td}(G) \geq n-1$ iff G is $\left\{3 K_{1}, 2 K_{2}\right\}$-free.

$\operatorname{td}(G) \geq n-1$ iff G is $\left\{3 K_{1}, 2 K_{2}\right\}$-free.

Label the $3 K_{1}$ the same; distinct labels on all other vertices.

$$
\operatorname{td}(G) \leq 1+(n-3)=n-2
$$

Label the $2 K_{2}$ with two labels; distinct labels on all other vertices.

$$
\operatorname{td}(G) \leq 2+(n-4)=n-2
$$

$\operatorname{td}(G) \geq n-1$ iff G is $\left\{3 K_{1}, 2 K_{2}\right\}$-free.

Label the $3 K_{1}$ the same; distinct labels on all other vertices.

$$
\operatorname{td}(G) \leq 1+(n-3)=n-2
$$

Label the $2 K_{2}$ with two labels; distinct labels on all other vertices.

$$
\operatorname{td}(G) \leq 2+(n-4)=n-2
$$

NOTE: A substructure of G forces G to have a lower tree-depth than it might otherwise have.

$\operatorname{td}(G) \geq n-1$ iff G is $\left\{3 K_{1}, 2 K_{2}\right\}$-free.

Low tree-depth forces induced subgraphs

If $\operatorname{td}(G) \leq n-2$ then fix an optimal labeling. Two vertices share labels with other vertices.

Case: Only one label appears on multiple vertices.
Case: Two labels appears on multiple vertices.

High tree-depth

Let G be a graph with $n(G)=n$.

- $\operatorname{td}(G)=n$ iff G is $\left\{2 K_{1}\right\}$-free.
- $\operatorname{td}(G) \geq n-1$ iff G is $\left\{3 K_{1}, 2 K_{2}\right\}$-free.
- $\operatorname{td}(G) \geq n-2$ iff G is $\left\{4 K_{1}, 2 K_{2}+K_{1}, P_{3}+K_{2}, 2 K_{3}\right\}$-free.
- Conjectured: $\operatorname{td}(G) \geq n-3$ iff G is
$\left\{5 K_{1}, 2 K_{2}+2 K_{1}, P_{3}+K_{2}+K_{1}, 2 K_{3}+K_{1}, 2 P_{3}, S_{4}+\right.$ $K_{2}, 3 K_{2}$, diamond $+K_{3}, C_{4}+K_{3}$, paw $\left.+K_{3}, P_{4}+K_{3}, 2 K_{4}\right\}$-free.

High tree-depth is hereditary

Theorem

Given a nonnegative integer k, let \mathcal{F}_{k} denote the set of minimal elements, under the induced subgraph ordering, of all graphs H for which $n(H)-\operatorname{td}(H) \geq k+1$. For all graphs G, the graph G satisfies $\operatorname{td}(G) \geq n(G)-k$ if and only if G is \mathcal{F}_{k}-free.

Back to criticality and 1-uniqueness

Abstract

Theorem If G is an n-vertex critical graph and $\operatorname{td}(G) \geq n-1$, then G is 1 -unique.

Back to criticality and 1-uniqueness

Theorem

If G is an n-vertex critical graph and $\operatorname{td}(G) \geq n-1$, then G is 1 -unique.

Abstract

Lemma $\operatorname{td}(G) \geq n-1$ iff G is $\left\{3 K_{1}, 2 K_{2}\right\}$-free.

Theorem (B-Sinkovic, 2016)
 A graph G is 1 -unique if and only if every star-clique transformation lowers the tree-depth.

Back to criticality and 1-uniqueness

Theorem

If G is an n-vertex critical graph and $\operatorname{td}(G) \geq n-1$, then G is 1 -unique.

```
Lemma
td}(G)\geqn-1 iff G is {3\mp@subsup{K}{1}{},2\mp@subsup{K}{2}{}}\mathrm{ -free.
```


Theorem (B-Sinkovic, 2016)

A graph G is 1 -unique if and only if every star-clique transformation lowers the tree-depth.

Outline: Easy to verify if $\operatorname{td}(G)=n$, so assume $\operatorname{td}(G)=n-1$. Let H be a graph obtained from G via a star-clique transformation at v.

- H is still $\left\{3 K_{1}, 2 K_{2}\right\}$-free.
- $\operatorname{td}(H)<\operatorname{td}(G)$ unless H is a complete graph.
- $G-v u$ has tree-depth $n-2$; subgraphs induced force H to not be complete.

Interesting families of dense(ish) graphs

The Andrasfai graphs

And (k) has vertex set $\{0, \ldots, 3 k-2\}$.
Edges join vertices whose difference is 1 modulo 3. (The graph is a circulant graph.)

- $\operatorname{And}(k)$ is triangle-free.
- Every maximal independent set is a vertex neighborhood.
- And (k) is k-connected, k-regular, and has independence number k.

Interesting families of dense(ish) graphs

The Andrasfai graphs

And (k) has vertex set $\{0, \ldots, 3 k-2\}$.
Edges join vertices whose difference is 1 modulo 3. (The graph is a circulant graph.)

- And (k) is triangle-free.
- Every maximal independent set is a vertex neighborhood.
- And (k) is k-connected, k-regular, and has independence number k.
- $\operatorname{td}(\operatorname{And}(k))=2 k$ and $\operatorname{td}(\operatorname{And}(k)-v)=2 k-1$
- $\operatorname{And}(k)$ and $\operatorname{And}(k)-v$ are both 1-unique.
- And (k) and $\operatorname{And}(k)-v$ are both tree-depth-critical.

Separating 1-uniqueness from criticality

Conjecture

If G is critical, then G is 1 -unique.

Theorem (B-Sinkovic, 2016)

If G is a 1-unique graph, then

- deleting any vertex of G lowers the tree-depth, and
- contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is $\operatorname{td}(G)$-critical.

NOTE: We get a $\operatorname{td}(G)$-critical graph by deleting some (possibly none) of the edges of G.
(How many?)

Another dense family: cycle complements

For all $n \geq 5$,
$\operatorname{td}\left(\overline{C_{n}}\right)=n-1$ and $\overline{C_{n}}$ is 1-unique.
For $n \geq 8, \overline{C_{n}}$ is not critical.
But we can delete edges from $\overline{C_{n}}$ to reach an ($n-1$)-critical spanning subgraph...how many edges can it take?

1-unique can be far from critical

For all $n \geq 5, \operatorname{td}\left(\overline{C_{n}}\right)=n-1$ and $\overline{C_{n}}$ is 1 -unique.

For $n=4 k$ and $k \geq 2$, let G_{n} be obtained from $\overline{C_{n}}$ by deleting every other antipodal chord.

For $n=4 k \geq 8, G_{n}$ is a $\left\{3 K_{1}, 2 K_{2}\right\}$-free spanning subgraph having k fewer edges than $\overline{C_{n}}$.
(Note that G_{n} need not be critical. Empirically, it seems that $\overline{C_{n}}$'s nearest spanning critical subgraph differs from it
 by an increasing number of edges.)

Resolution

Conjecture

For any k, if G is k-critical, then G is 1 -unique.

Known true for

$$
k=1,2,3,4, \quad n-1, n
$$

Resolution

Conjecture

For any k, if G is k-critical, then G is 1 -unique.

Known true for

$$
k=1,2,3,4, \quad n-1, n
$$

False for

$$
k=\quad 5,6, \ldots, n-2
$$

Counterexample

A 7-vertex critical graph G with $\operatorname{td}(G)=5=n(G)-2$ that is not 1-unique!

Counterexamples

For $t \geq 2$, form H_{t} by subdividing all edges incident with a vertex of K_{t+2}.

Here, $n\left(H_{t}\right)=2 t+3$
$\operatorname{td}\left(H_{t}\right)=t+3=n-t$
H_{t} is critical.

The vertex at the subdivided edges' center cannot receive the unique 1-a star-clique transformation at this vertex yields $K_{t+1} \square K_{2}$, which has tree-depth $\lceil(3 / 2)(t+1)\rceil \geq t+3$.

Finding counterexamples

Computer search using SageMath's graph database and functions

- Iterate through proper colorings of a graph.
- Identify colorings with a unique lowest label; identify 1-unique (or nearly 1 -unique) graphs.
- Use 1-uniqueness to produce candidates for criticality testing.

Ongoing questions

- Using non-1-unique critical graphs to construct larger critical graphs.
- Empirically, it appears each k-critical non-1-unique graph yields a ($k-1$)-critical graph when the sole problem vertex is removed. Is this always the case?
- How to prove/disprove that critical graphs satisfy $\Delta(G) \leq \operatorname{td}(G)-1$?

Thank you!

