Dense graphs and a conjecture for tree-depth

Michael D. Barrus

Department of Mathematics
University of Rhode Island

URI Discrete Mathematics Seminar
October 14, 2016

Joint work with John Sinkovic (University of Waterloo)
Tree-depth \(td(G) \): the smallest number of labels needed in a labeling of the vertices of \(G \) such that every path with equally-labeled endpoints also has a higher label.

(Here, \(td(G) = 4 \))

Equivalently, the minimum number of vertex deletion steps needed to delete all of \(G \), where in each step at most one vertex is deleted from each connected component.
Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.
Theorem

If \(G \) contains \(H \) as a minor, then

\[
\text{td}(G) \geq \text{td}(H).
\]

M. D. Barrus (URI)
Theorem

If G contains H as a minor, then $td(G) \geq td(H)$.
Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.

Dense graphs and a conjecture for tree-depth

October 14, 2016
Theorem

If G contains H as a minor, then $td(G) \geq td(H)$.
Theorem

If G contains H as a minor, then $td(G) \geq td(H)$.
Tree-depth and minors

Theorem

If G contains H as a minor, then $td(G) \geq td(H)$.

M. D. Barrus (URI)

Dense graphs and a conjecture for tree-depth

October 14, 2016
Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.

NOTE: A substructure of G forces G to have a higher tree-depth than it might otherwise have.

Call a graph critical if every proper minor has a smaller tree-depth.

(k-critical = critical, with tree-depth k)
Tree-depth and minors

Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.

NOTE: A substructure of G forces G to have a higher tree-depth than it might otherwise have.

Call a graph critical if every proper minor has a smaller tree-depth. (k-critical = critical, with tree-depth k)
Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: ●
2: ●●
3: ●●●

4:
5: 136 trees, plus...

What structural properties must critical graphs possess?
Structural properties of k-critical graphs

1: \hspace{1cm} 2: \hspace{1cm} 3: \hspace{1cm} 4:

Conjectures

If G is k-critical, then

- $|V(G)| \leq 2^{k-1}$ \hspace{1cm} [Dvořák–Giannopoulou–Thilikos, ’09, ’12]
- $\Delta(G) \leq k - 1$ \hspace{1cm} [B–Sinkovic, ’16]
An approach to the max degree conjecture

Any vertex with the smallest label has neighbors with distinct labels.

If in some optimal labeling of G a vertex of maximum degree receives the label 1, then $\Delta(G) \leq \text{td}(G) - 1$.
Stronger conjectures

1:

2:

3:

4:

If G is k-critical, then G has an optimal labeling where some vertex with maximum degree is labeled 1.
Stronger conjectures

1: 2: 3: 4:

Conjectures

If G is k-critical, then

- G has an optimal labeling where some vertex with maximum degree is labeled 1.
Stronger conjectures

1: \[\bullet \]
2: \[\bullet - \bullet \]
3: \[\bullet - \bullet - \bullet - \bullet \]
4: \[\text{Various graphs showing conjectures} \]

Conjectures
If \(G \) is \(k \)-critical, then

- For each vertex \(v \) of \(G \), there is an optimal labeling where \(v \) receives label 1.
Stronger conjectures

1:

2:

3:

4:

Conjectures

If G is k-critical, then

- For each vertex v of G, there is an optimal labeling where v is the unique vertex receiving label 1.
1-uniqueness

Given a graph G, we say that a vertex v is **1-unique** if there is an optimal labeling of G where v is the only vertex receiving label 1.

We say a graph G is **1-unique** if each vertex of G is 1-unique.

Observation

If G is 1-unique, then $\Delta(G) \leq \text{td}(G) - 1$.

Conjecture

If G is critical, then G is 1-unique.
Theorem (B–Sinkovic, 2016)

If G is a 1-unique graph, then

- deleting any vertex of G lowers the tree-depth, and
- contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is $td(G)$-critical.
Plausibility: 1-uniqueness as a type of criticality?

Theorem (B–Sinkovic, 2016)

If G is a 1-unique graph, then
- deleting any vertex of G lowers the tree-depth, and
- contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is $\text{td}(G)$-critical.

NOTE: We get a $\text{td}(G)$-critical graph by deleting some (possibly none) of the edges of G.
Plausibility: small tree-depths

Conjecture

- If G is k-critical, then G is 1-unique.

True for $k \leq 4...$
Another application of 1-uniqueness

Graphs G constructed with k-critical “appendages” L_i and an ℓ-critical “core” H...

- have tree-depth $k + \ell - 1$ if H and all the L_i are critical;
- are critical if H is also 1-unique;
- are 1-unique if H and all the L_i are 1-unique;
Another application of 1-uniqueness

Theorem (B–Sinkovic, 2016)

Graphs G constructed with k-critical “appendages” L_i and an ℓ-critical “core” H...

...have order at most $2^{\text{td}(G)-1}$ if $|V(H)| \leq 2^{\ell-1}$ and $|V(L_i)| \leq 2^{k-1}$ for all i.

M. D. Barrus (URI) Dense graphs and a conjecture for tree-depth October 14, 2016 11
Some notes

1:

2:

3:

4:

5: 136 trees, plus...

Observations

- Max degree conjecture always true, graph order bound often true (at least!) if all critical graphs are 1-unique.
1: \[\bullet \]
2: \[\bullet \bullet \]
3: \[\bullet \bullet \bullet \]
4: \[\bullet \bullet \bullet \bullet \]
5: \[\bullet \bullet \bullet \bullet \]

Observations

- Max degree conjecture always true, graph order bound often true (at least!) if all critical graphs are 1-unique.
- Most of the critical graphs seem to be sparse...
Another view

Of course, K_n is always dense, n-critical...

Curiosity: For which (critical?) graphs G is tree-depth close to $n(G)$?
High tree-depth

Let G be a graph with $n(G) = n$.

- $td(G) = n$ iff G is $\{2K_1\}$-free.
High tree-depth

Let G be a graph with $n(G) = n$.

- $\text{td}(G) = n$ iff G is $\{2K_1\}$-free.
- $\text{td}(G) \geq n - 1$ iff G is $\{3K_1, 2K_2\}$-free.
\(\text{td}(G) \geq n - 1 \) iff \(G \) is \(\{3K_1, 2K_2\}\)-free.

Label the \(3K_1 \) the same; distinct labels on all other vertices.

\[
\text{td}(G) \leq 1 + (n - 3) = n - 2.
\]

Label the \(2K_2 \) with two labels; distinct labels on all other vertices.

\[
\text{td}(G) \leq 2 + (n - 4) = n - 2.
\]
\(\text{td}(G) \geq n - 1 \) iff \(G \) is \(\{3K_1, 2K_2\}\)-free.

Label the 3\(K_1 \) the same; distinct labels on all other vertices.

\[\text{td}(G) \leq 1 + (n - 3) = n - 2. \]

Label the 2\(K_2 \) with two labels; distinct labels on all other vertices.

\[\text{td}(G) \leq 2 + (n - 4) = n - 2. \]

NOTE: A substructure of \(G \) forces \(G \) to have a **lower** tree-depth than it might otherwise have.
\(\text{td}(G) \geq n - 1 \) iff \(G \) is \(\{3K_1, 2K_2\}\)-free.

Low tree-depth forces induced subgraphs

If \(\text{td}(G) \leq n - 2 \) then fix an optimal labeling. Two vertices share labels with other vertices.

Case: Only one label appears on multiple vertices.

Case: Two labels appears on multiple vertices.
Let G be a graph with $n(G) = n$.

- $\text{td}(G) = n$ iff G is $\{2K_1\}$-free.

- $\text{td}(G) \geq n - 1$ iff G is $\{3K_1, 2K_2\}$-free.

- $\text{td}(G) \geq n - 2$ iff G is $\{4K_1, 2K_2 + K_1, P_3 + K_2, 2K_3\}$-free.

- Conjectured: $\text{td}(G) \geq n - 3$ iff G is $\{5K_1, 2K_2 + 2K_1, P_3 + K_2 + K_1, 2K_3 + K_1, 2P_3, S_4 + K_2, 3K_2, \text{diamond} + K_3, C_4 + K_3, \text{paw} + K_3, P_4 + K_3, 2K_4\}$-free.
High tree-depth is hereditary

Theorem

Given a nonnegative integer k, let \mathcal{F}_k denote the set of minimal elements, under the induced subgraph ordering, of all graphs H for which $n(H) - \text{td}(H) \geq k + 1$. For all graphs G, the graph G satisfies $\text{td}(G) \geq n(G) - k$ if and only if G is \mathcal{F}_k-free.
Theorem

If G is an n-vertex critical graph and $\text{td}(G) \geq n - 1$, then G is 1-unique.

Lemma

$\text{td}(G) \geq n - 1$ iff G is $\{3K_1, 2K_2\}$-free.

Theorem (B–Sinkovic, 2016)

A graph G is 1-unique if and only if every star-clique transformation lowers the tree-depth.
Back to criticality and 1-uniqueness

Theorem

If G is an n-vertex critical graph and $\text{td}(G) \geq n - 1$, then G is 1-unique.

Lemma

$\text{td}(G) \geq n - 1$ iff G is $\{3K_1, 2K_2\}$-free.

Theorem (B–Sinkovic, 2016)

A graph G is 1-unique if and only if every star-clique transformation lowers the tree-depth.
Back to criticality and 1-uniqueness

Theorem

If G is an n-vertex critical graph and $\text{td}(G) \geq n - 1$, then G is 1-unique.

Lemma

$t_d(G) \geq n - 1$ iff G is $\{3K_1, 2K_2\}$-free.

Theorem (B–Sinkovic, 2016)

A graph G is 1-unique if and only if every star-clique transformation lowers the tree-depth.

Outline:

Easy to verify if $t_d(G) = n$, so assume $t_d(G) = n - 1$. Let H be a graph obtained from G via a star-clique transformation at v.

- H is still $\{3K_1, 2K_2\}$-free.
- $t_d(H) < t_d(G)$ unless H is a complete graph.
- $G - vu$ has tree-depth $n - 2$; subgraphs induced force H to not be complete.
Interesting families of dense(ish) graphs

The **Andrasfai graphs**

$\text{And}(k)$ has vertex set $\{0, \ldots , 3k - 2\}$.

Edges join vertices whose difference is 1 modulo 3. (The graph is a circulant graph.)

- $\text{And}(k)$ is triangle-free.
- Every maximal independent set is a vertex neighborhood.
- $\text{And}(k)$ is k-connected, k-regular, and has independence number k.
Interesting families of dense(ish) graphs

The **Andrasfai graphs**

And\((k)\) has vertex set \(\{0, \ldots, 3k - 2\}\).

Edges join vertices whose difference is 1 modulo 3. (The graph is a circulant graph.)

- And\((k)\) is triangle-free.
- Every maximal independent set is a vertex neighborhood.
- And\((k)\) is \(k\)-connected, \(k\)-regular, and has independence number \(k\).

\[
\begin{align*}
\text{td}(\text{And}(k)) &= 2k \\
\text{td}(\text{And}(k) - v) &= 2k - 1
\end{align*}
\]

- And\((k)\) and And\((k) - v\) are both 1-unique.
- And\((k)\) and And\((k) - v\) are both tree-depth-critical.
Conjecture

If G is critical, then G is 1-unique.

Theorem (B–Sinkovic, 2016)

If G is a 1-unique graph, then

- deleting any vertex of G lowers the tree-depth, and
- contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is $td(G)$-critical.

NOTE: We get a $td(G)$-critical graph by deleting some (possibly none) of the edges of G.

(How many?)
Another dense family: cycle complements

For all $n \geq 5$,
\[\text{td} \left(\overline{C_n} \right) = n - 1 \]
and $\overline{C_n}$ is 1-unique.

For $n \geq 8$, $\overline{C_n}$ is not critical.

But we can delete edges from $\overline{C_n}$ to reach an $(n - 1)$-critical spanning subgraph...how many edges can it take?
For all $n \geq 5$, $\text{td}(\overline{C_n}) = n - 1$ and $\overline{C_n}$ is 1-unique.

For $n = 4k$ and $k \geq 2$, let G_n be obtained from $\overline{C_n}$ by deleting every other antipodal chord.

For $n = 4k \geq 8$, G_n is a $\{3K_1, 2K_2\}$-free spanning subgraph having k fewer edges than $\overline{C_n}$.

(Note that G_n need not be critical. Empirically, it seems that $\overline{C_n}$’s nearest spanning critical subgraph differs from it by an increasing number of edges.)
Conjecture

For any k, if G is k-critical, then G is 1-unique.

Known true for

$$k = 1, 2, 3, 4,$$ \hspace{1cm} $$n - 1, n$$
Resolution

Conjecture
For any k, if G is k-critical, then G is 1-unique.

Known true for
\[k = 1, 2, 3, 4, \quad n - 1, n \]

False for
\[k = 5, 6, \ldots, n - 2 \]
A 7-vertex critical graph G with $\text{td}(G) = 5 = n(G) - 2$ that is not 1-unique!
For $t \geq 2$, form H_t by subdividing all edges incident with a vertex of K_{t+2}.

Here, $n(H_t) = 2t + 3$

$td(H_t) = t + 3 = n - t$

H_t is critical.

The vertex at the subdivided edges’ center cannot receive the unique 1—a star-clique transformation at this vertex yields $K_{t+1} \square K_2$, which has tree-depth $\lceil (3/2)(t + 1) \rceil \geq t + 3$.
Computer search using SageMath’s graph database and functions
- Iterate through proper colorings of a graph.
- Identify colorings with a unique lowest label; identify 1-unique (or nearly 1-unique) graphs.
- Use 1-uniqueness to produce candidates for criticality testing.
Ongoing questions

- Using non-1-unique critical graphs to construct larger critical graphs.

- Empirically, it appears each \(k \)-critical non-1-unique graph yields a \((k - 1)\)-critical graph when the sole problem vertex is removed. Is this always the case?

- How to prove/disprove that critical graphs satisfy \(\Delta(G) \leq \text{td}(G) - 1 \)?
Thank you!