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Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): the smallest number of labels needed in a labeling
of the vertices of G such that every path with equally-labeled endpoints
also has a higher label. (Here, td(G) = 4)

Equivalently, the minimum number of vertex deletion steps needed to
delete all of G, where in each step at most one vertex is deleted from
each connected component.
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Tree-depth and minors

Theorem
If G contains H as a minor, then td(G) ≥ td(H).
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Tree-depth and minors

Theorem
If G contains H as a minor, then td(G) ≥ td(H).

NOTE: A substructure of G forces G to have a higher tree-depth
than it might otherwise have.

Call a graph critical if every proper minor has a smaller tree-depth.
(k -critical = critical, with tree-depth k )
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Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: 2: 3:

4:
5: 136 trees,

plus...

What structural properties must critical graphs possess?
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Structural properties of k -critical graphs

1: 2: 3:

4:

Conjectures If G is k -critical, then
|V (G)| ≤ 2k−1 [Dvořák–Giannopoulou–Thilikos, ’09, ’12]
∆(G) ≤ k − 1 [B–Sinkovic, ’16]
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An approach to the max degree conjecture

Any vertex with the smallest label has neighbors with distinct labels.

If in some optimal labeling of G a vertex of maximum degree receives
the label 1, then ∆(G) ≤ td(G)− 1.
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Stronger conjectures

1: 2: 3:

4:

Conjectures If G is k -critical, then
G has an optimal labeling where some vertex with maximum degree is
labeled 1.
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Stronger conjectures

1: 2: 3:

4:

Conjectures If G is k -critical, then
For each vertex v of G, there is an optimal labeling where v
receives label 1.

M. D. Barrus (URI) Dense graphs and a conjecture for tree-depth October 14, 2016 7



Stronger conjectures

1: 2: 3:

4:

Conjectures If G is k -critical, then
For each vertex v of G, there is an optimal labeling where v is the
unique vertex receiving label 1.
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1-uniqueness

Given a graph G, we say that a vertex v is 1-unique if there is an
optimal labeling of G where v is the only vertex receiving label 1.
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We say a graph G is 1-unique if each vertex of G is 1-unique.

Observation
If G is 1-unique, then ∆(G) ≤ td(G)− 1.

Conjecture
If G is critical, then G is 1-unique.
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Plausibility: 1-uniqueness as a type of criticality?

Theorem (B–Sinkovic, 2016)
If G is a 1-unique graph, then

deleting any vertex of G lowers the tree-depth, and
contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is td(G)-critical.

NOTE: We get a td(G)-critical graph by deleting some (possibly
none) of the edges of G.
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Plausibility: small tree-depths

1: 2: 3:

4:

Conjecture
If G is k -critical, then G is 1-unique. True for k ≤ 4...
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Another application of 1-uniqueness

Theorem (B–Sinkovic, 2016)
Graphs G constructed with k-critical “appendages” Li and an `-critical
“core” H...

...have tree-depth k + `− 1 if H and all the Li are critical;

...are critical if H is also 1-unique;

...are 1-unique if H and all the Li are 1-unique;
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Another application of 1-uniqueness

Theorem (B–Sinkovic, 2016)
Graphs G constructed with k-critical “appendages” Li and an `-critical
“core” H...

...have order at most 2td(G)−1 if |V (H)| ≤ 2`−1 and |V (Li)| ≤ 2k−1

for all i .
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Some notes

1: 2: 3:

4:
5: 136 trees,

plus...

Observations
Max degree conjecture always true, graph order bound often true
(at least!) if all critical graphs are 1-unique.

Most of the critical graphs seem to be sparse...
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Another view

Of course, Kn is always dense, n-critical...

Curiosity: For which (critical?) graphs G is tree-depth close to
n(G)?
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High tree-depth

Let G be a graph with n(G) = n.

td(G) = n iff G is {2K1}-free.

td(G) ≥ n − 1 iff G is {3K1,2K2}-free.
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td(G) ≥ n − 1 iff G is {3K1,2K2}-free.

Label the 3K1 the same; distinct labels on all other
vertices.

td(G) ≤ 1 + (n − 3) = n − 2.

Label the 2K2 with two labels; distinct labels on all
other vertices.

td(G) ≤ 2 + (n − 4) = n − 2.

NOTE: A substructure of G forces G to have a lower tree-depth
than it might otherwise have.
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td(G) ≥ n − 1 iff G is {3K1,2K2}-free.
Low tree-depth forces induced subgraphs

If td(G) ≤ n − 2 then fix an optimal labeling. Two vertices share labels
with other vertices.

Case: Only one label appears on multiple vertices.

Case: Two labels appears on multiple vertices.
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High tree-depth

Let G be a graph with n(G) = n.

td(G) = n iff G is {2K1}-free.

td(G) ≥ n − 1 iff G is {3K1,2K2}-free.

td(G) ≥ n − 2 iff G is {4K1,2K2 + K1,P3 + K2,2K3}-free.

Conjectured: td(G) ≥ n − 3 iff G is
{5K1,2K2 + 2K1,P3 + K2 + K1,2K3 + K1,2P3,S4 +
K2,3K2,diamond + K3,C4 + K3,paw + K3,P4 + K3,2K4}-free.

M. D. Barrus (URI) Dense graphs and a conjecture for tree-depth October 14, 2016 17



High tree-depth is hereditary

Theorem
Given a nonnegative integer k, let Fk denote the set of minimal
elements, under the induced subgraph ordering, of all graphs H for
which n(H)− td(H) ≥ k + 1. For all graphs G, the graph G satisfies
td(G) ≥ n(G)− k if and only if G is Fk -free.
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Back to criticality and 1-uniqueness

Theorem
If G is an n-vertex critical graph and td(G) ≥ n− 1, then G is 1-unique.

Lemma
td(G) ≥ n − 1 iff G is {3K1,2K2}-free.

Theorem (B–Sinkovic, 2016)
A graph G is 1-unique if and only if every star-clique
transformation lowers the tree-depth.

Outline: Easy to verify if td(G) = n, so assume td(G) = n − 1.
Let H be a graph obtained from G via a star-clique transformation at v .

H is still {3K1, 2K2}-free.
td(H) < td(G) unless H is a complete graph.
G − vu has tree-depth n − 2; subgraphs induced force H to not be complete.

M. D. Barrus (URI) Dense graphs and a conjecture for tree-depth October 14, 2016 19



Back to criticality and 1-uniqueness

Theorem
If G is an n-vertex critical graph and td(G) ≥ n− 1, then G is 1-unique.

Lemma
td(G) ≥ n − 1 iff G is {3K1,2K2}-free.

Theorem (B–Sinkovic, 2016)
A graph G is 1-unique if and only if every star-clique
transformation lowers the tree-depth.

Outline: Easy to verify if td(G) = n, so assume td(G) = n − 1.
Let H be a graph obtained from G via a star-clique transformation at v .

H is still {3K1, 2K2}-free.
td(H) < td(G) unless H is a complete graph.
G − vu has tree-depth n − 2; subgraphs induced force H to not be complete.

M. D. Barrus (URI) Dense graphs and a conjecture for tree-depth October 14, 2016 19



Back to criticality and 1-uniqueness

Theorem
If G is an n-vertex critical graph and td(G) ≥ n− 1, then G is 1-unique.

Lemma
td(G) ≥ n − 1 iff G is {3K1,2K2}-free.

Theorem (B–Sinkovic, 2016)
A graph G is 1-unique if and only if every star-clique
transformation lowers the tree-depth.

Outline: Easy to verify if td(G) = n, so assume td(G) = n − 1.
Let H be a graph obtained from G via a star-clique transformation at v .

H is still {3K1, 2K2}-free.
td(H) < td(G) unless H is a complete graph.
G − vu has tree-depth n − 2; subgraphs induced force H to not be complete.

M. D. Barrus (URI) Dense graphs and a conjecture for tree-depth October 14, 2016 19



Interesting families of dense(ish) graphs

The Andrasfai graphs

And(k) has vertex set {0, . . . ,3k − 2}.

Edges join vertices whose difference is 1
modulo 3. (The graph is a circulant graph.)
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And(k) is triangle-free.

Every maximal independent set is a vertex neighborhood.

And(k) is k -connected, k -regular, and has independence number k .
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Interesting families of dense(ish) graphs

The Andrasfai graphs

And(k) has vertex set {0, . . . ,3k − 2}.

Edges join vertices whose difference is 1
modulo 3. (The graph is a circulant graph.)
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And(k) is triangle-free.

Every maximal independent set is a vertex neighborhood.

And(k) is k -connected, k -regular, and has independence number k .

I td(And(k)) = 2k and td(And(k)− v) = 2k − 1
I And(k) and And(k)− v are both 1-unique.
I And(k) and And(k)− v are both tree-depth-critical.
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Separating 1-uniqueness from criticality

Conjecture
If G is critical, then G is 1-unique.

Theorem (B–Sinkovic, 2016)
If G is a 1-unique graph, then

deleting any vertex of G lowers the tree-depth, and
contracting any edge of G lowers the tree-depth.

Hence G has a connected spanning subgraph that is td(G)-critical.

NOTE: We get a td(G)-critical graph by deleting some (possibly
none) of the edges of G. (How many?)
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Another dense family: cycle complements

For all n ≥ 5,

td
(

Cn

)
= n − 1 and Cn is 1-unique.

For n ≥ 8, Cn is not critical.

But we can delete edges from Cn to reach
an (n − 1)-critical spanning
subgraph...how many edges can it take?
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1-unique can be far from critical

For all n ≥ 5, td
(

Cn

)
= n − 1 and Cn is 1-unique.

For n = 4k and k ≥ 2, let Gn be obtained
from Cn by deleting every other antipodal
chord.

For n = 4k ≥ 8, Gn is a {3K1,2K2}-free
spanning subgraph having k fewer edges
than Cn.

(Note that Gn need not be critical. Empirically, it seems

that Cn ’s nearest spanning critical subgraph differs from it

by an increasing number of edges.)
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Resolution

Conjecture
For any k , if G is k -critical, then G is 1-unique.

Known true for
k = 1,2,3,4,

5,6, . . . ,n − 2,

n − 1,n

False for
k =

1,2,3,4,

5,6, . . . ,n − 2

,n − 1,n
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Counterexample

A 7-vertex critical graph G with td(G) = 5 = n(G)− 2 that is not
1-unique!
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Counterexamples

For t ≥ 2, form Ht by subdividing all edges
incident with a vertex of Kt+2.

Here, n(Ht ) = 2t + 3
td(Ht ) = t + 3 = n − t

Ht is critical.

The vertex at the subdivided edges’ center
cannot receive the unique 1—a star-clique
transformation at this vertex yields Kt+1�K2,
which has tree-depth d(3/2)(t + 1)e ≥ t + 3.
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Finding counterexamples

3

3

3

2

Computer search using SageMath’s graph database and functions
Iterate through proper colorings of a graph.
Identify colorings with a unique lowest label; identify 1-unique (or
nearly 1-unique) graphs.
Use 1-uniqueness to produce candidates for criticality testing.
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Ongoing questions

3

3

3

2

Using non-1-unique critical graphs to construct larger critical
graphs.

Empirically, it appears each k -critical non-1-unique graph yields a
(k − 1)-critical graph when the sole problem vertex is removed. Is
this always the case?

How to prove/disprove that critical graphs satisfy
∆(G) ≤ td(G)− 1?
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Thank you!
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