Independence number and the Havel–Hakimi Residue

Michael D. Barrus

URI Discrete Math Seminar November 3, 2017

The independence number

Delete, reduce, reorder

Degree sequence?

d = (2, 2, 1, 1, 1, 1)

Delete, reduce, reorder

Degree sequence?

$$d = (2, 2, 1, 1, 1, 1)$$

 $d^1 = (1, 0, 1, 1, 1)$

Delete, reduce, reorder

Degree sequence?

$$d = (2, 2, 1, 1, 1, 1)$$

 $d^1 = (1, 1, 1, 1, 0)$

Delete, reduce, reorder

Degree sequence?

$$d = (2, \underline{2}, \underline{1}, 1, 1, 1)$$

$$d^{1} = (1, 1, 1, 1, 0)$$

Theorem (V. Havel, 1995; S.L. Hakimi, 1962)

d is the degree sequence of a simple graph if and only if d^1 is.

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

The **residue** R(d) or R(G) is the number of zeroes remaining at the end.

Theorem (Favaron–Mahéo–Saclé, 1991)

For all graphs G, $R(G) \leq \alpha(G)$.

Delete, reduce, reorder

$$\begin{array}{rcl} d & = & (2,2,1,1,1,1) \\ d^1 & = & (1,1,1,1,0) \\ d^2 & = & (1,1,0,0) \\ d^3 & = & (0,0,0) \end{array}$$

The **residue** R(d) or R(G) is the number of zeroes remaining at the end.

Theorem (Favaron–Mahéo–Saclé, 1991)

For all graphs G, $R(G) \leq \alpha(G)$.

Conjectured originally by Fajtlowicz' computer program Graffiti; improvements to the proof provided by Griggs and Kleitman (1994) and Triesch (1996).

M. D. Barrus ()

Big Questions

• How tight is the $R(G) \leq \alpha(G)$ bound?

• For which graphs G does $R(G) = \alpha(G)$?

- One of the tightest known lower bounds
 - rigorously: (Favaron et al., '91) outperforms Brook's, Turan's, Hansen's, Caro–Wei's
 - anecdotally: (Nelson, '01); (Willis, '11) outperforms Wilf's bound?
 - anecdotally: (Larson et al., '12 –) The Independence Number Project / The Conjecturing Project

- One of the tightest known lower bounds
 - rigorously: (Favaron et al., '91) outperforms Brook's, Turan's, Hansen's, Caro–Wei's
 - anecdotally: (Nelson, '01); (Willis, '11) outperforms Wilf's bound?
 - anecdotally: (Larson et al., '12 –) The Independence Number Project / The Conjecturing Project
- Exact for R(G) = 1

- One of the tightest known lower bounds
 - rigorously: (Favaron et al., '91) outperforms Brook's, Turan's, Hansen's, Caro–Wei's
 - anecdotally: (Nelson, '01); (Willis, '11) outperforms Wilf's bound?
 - anecdotally: (Larson et al., '12 –) The Independence Number Project / The Conjecturing Project
- Exact for R(G) = 1
- Arbitrarily weak in general
 d = (k,...,k) (2k copies)

- One of the tightest known lower bounds
 - rigorously: (Favaron et al., '91) outperforms Brook's, Turan's, Hansen's, Caro–Wei's
 - anecdotally: (Nelson, '01); (Willis, '11) outperforms Wilf's bound?
 - anecdotally: (Larson et al., '12 –) The Independence Number Project / The Conjecturing Project
- Exact for R(G) = 1
- Arbitrarily weak in general d = (k, ..., k) (2k copies) R(d) = 2

- One of the tightest known lower bounds
 - rigorously: (Favaron et al., '91) outperforms Brook's, Turan's, Hansen's, Caro–Wei's
 - anecdotally: (Nelson, '01); (Willis, '11) outperforms Wilf's bound?
 - anecdotally: (Larson et al., '12 –) The Independence Number Project / The Conjecturing Project
- Exact for R(G) = 1
- Arbitrarily weak in general d = (k, ..., k) (2k copies) R(d) = 2

$$R(d) \leq \alpha_{\min}(d) = \alpha(G) \leq \cdots \leq \alpha(G')$$

• The inequality may be proper:

d = (4, 4, 4, 4, 4, 4, 4, 4, 4) R(d) = 2 $\alpha_{\min}(d) = 3$

• The inequality may be proper:

 $d = (4, 4, 4, 4, 4, 4, 4, 4) \qquad R(d) = 2 \qquad \alpha_{\min}(d) = 3$

• **Theorem** (Nelson–Radcliffe, 2004) If *d* is **semi-regular**, then

$$R(d) \leq \alpha_{\min}(d) \leq R(d) + 1$$
,

and we know which *d* are which.

An idea:

$$R(d) \le \alpha_{\min}(d) = \underbrace{\alpha(G) \le \cdots \le \alpha(G')}_{\text{What if this can't be large?}}$$

An idea:

$$R(d) \le \alpha_{\min}(d) = \underbrace{\alpha(G) \le \cdots \le \alpha(G')}_{\text{What if this can't be large?}}$$

A **unigraph** is a graph that is the **unique realization** (up to isomorphism) of its degree sequence.

Theorem (B, 2012)

If G is a **unigraph**, then

$$R(G) \leq \alpha(G) \leq R(G) + 1,$$

and we know which G are which.

(In fact, $R < \alpha$ in only one simple family of counterexamples.)

Key ideas of the proof If G is a unigraph, then $R(G) \le \alpha(G) \le R(G) + 1$.

R. Tyshkevich ('00) studied graph compositions of the form

She characterized unigraphs in terms of indecomposable components; these included C_5 and 6 infinite families of non-split graphs, and K_1 and 16 infinite families of split graphs.

Key ideas of the proof

If G is a **unigraph**, then $R(G) \le \alpha(G) \le R(G) + 1$.

$(3, 2; 1, 1, 1) \circ (1, 1, 1, 1)$

(7, 6, 3, 3, 3, 3, 1, 1, 1)

Key ideas of the proof If G is a unigraph, then $R(G) \le \alpha(G) \le R(G) + 1$.

Big Questions

• How tight is the $R(G) \leq \alpha(G)$ bound?

• For which graphs G does $R(G) = \alpha(G)$?

Mimicking vertex deletions in hopes of $R(G) = \alpha(G)$ Joint with Grant Molnar (BYU)

$$d = (2, 2, 1, 1, 1, 1)$$

 $d^{1} = (1, 1, 1, 1, 0)$
 $d^{2} = (1, 1, 0, 0)$
 $d^{3} = (0, 0, 0)$

Mimicking vertex deletions in hopes of $R(G) = \alpha(G)$ Joint with Grant Molnar (BYU)

$$d = (2, 2, 1, 1, 1, 1)$$

 $d^{1} = (1, 1, 1, 1, 0)$
 $d^{2} = (1, 1, 0, 0)$
 $d^{3} = (0, 0, 0)$

A graph has the **strong Havel–Hakimi property** if in **every** induced subgraph **every** vertex of maximum degree has neighbors with as high of degrees as possible.

Let \mathcal{S} be the class of all such graphs.

M. D. Barrus ()

 $S = \{ graphs with strong Havel–Hakimi property \}$

• All graphs in *S* can be constructed via the natural "reverse Havel–Hakimi process."

 $(0,0,0) \to (1,1,0,0) \to (1,1,1,1,0) \to (2,2,1,1,1,1)$

 $S = \{ graphs with strong Havel-Hakimi property \}$

• All graphs in *S* can be constructed via the natural "reverse Havel–Hakimi process."

 $(0,0,0) \to (1,1,0,0) \to (1,1,1,1,0) \to (2,2,1,1,1,1)$

• *S* contains all matrogenic graphs (and hence all matroidal graphs and threshold graphs as well).

 $S = \{ graphs with strong Havel-Hakimi property \}$

• All graphs in *S* can be constructed via the natural "reverse Havel–Hakimi process."

 $(0,0,0) \to (1,1,0,0) \to (1,1,1,1,0) \to (2,2,1,1,1,1)$

- S contains all matrogenic graphs (and hence all matroidal graphs and threshold graphs as well).
- *S* is characterized by the minimal forbidden induced subgraphs shown here:

 $S = \{ graphs with strong Havel-Hakimi property \}$

• For all graphs G in S, $R(G) = \alpha(G)$.

In fact, since $R(H) \leq Maxine(H) \leq \alpha(H)$ for all graphs, a natural greedy heuristic always identifies a maximum independent set in $G \in S$.

 $S = \{ graphs with strong Havel–Hakimi property \}$

• For all graphs G in S, $R(G) = \alpha(G)$.

In fact, since $R(H) \leq Maxine(H) \leq \alpha(H)$ for all graphs, a natural greedy heuristic always identifies a maximum independent set in $G \in S$.

 Maxine produces a maximum independent set for arbitrary graphs *H* whenever *H* is {*C*₄, *P*₅}-free.

- Split graphs
- Hereditary unigraphs
- S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Split graphs

Hereditary unigraphs

• S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

 $S = \{ graphs with strong Havel–Hakimi property \}$

• All graphs in *S* can be constructed via the natural "reverse Havel–Hakimi process."

 $(0,0,0) \rightarrow (1,1,0,0) \rightarrow (1,1,1,1,0) \rightarrow (2,2,1,1,1,1)$

- *S* contains all matrogenic graphs (and hence all matroidal graphs and threshold graphs as well).
- *S* is characterized by the minimal forbidden induced subgraphs shown here:

Split graphs

Hereditary unigraphs

• S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

Split graphs

- Hereditary unigraphs
- S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

Vertices	5	6	7	8	9	10
Subgraphs	3	1	1			

Split graphs

- Hereditary unigraphs
- S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

Vertices	5	6	7	8	9	10
Subgraphs	3	1	1			

Split graphs

- Hereditary unigraphs
- S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

Vertices	5	6	7	8	9	10
Subgraphs	3	1	1			

Split graphs

- Hereditary unigraphs
- S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

Minimal forbidden induced subgraphs for \mathcal{H} ?

Vertices	5	6	7	8	9	10
Subgraphs	3	1	1			

No strong patterns

Split graphs

Hereditary unigraphs

• S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

Minimal forbidden induced subgraphs for \mathcal{H} ?

Vertices	5	6	7	8	9	10
Subgraphs	3	1	1	8	19	

•••

No strong patterns, or end in sight

Split graphs

Hereditary unigraphs

• S (\supset matrogenic graphs, matroidal graphs, threshold graphs)

Let \mathcal{H} be the maximal hereditary family consisting of graphs G for which $R(G) = \alpha(G)$.

Minimal forbidden induced subgraphs for \mathcal{H} ?

Vertices	5	6	7	8	9	10
Subgraphs	3	1	1	8	19	8

No strong patterns, or end in sight (??)

. . .

Remaining Questions

• How tight is the $R(G) \leq \alpha(G)$ bound?

• For which graphs G does $R(G) = \alpha(G)$?

Some forbidden subgraphs for ${\mathcal H}$ with 9 vertices

Thank you!

M. D. Barrus ()