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The Havel–Hakimi Algorithm
Delete, reduce, reorder
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Degree sequence?

d = (2,2,1,1,1,1)

d1 = (1,0,1,1,1)

Theorem (V. Havel, 1995; S.L. Hakimi, 1962)

d is the degree sequence of a simple graph if and only if d1 is.
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The Havel–Hakimi Algorithm
Delete, reduce, reorder

d = (2,2,1,1,1,1)
d1 = (1,1,1,1,0)

d2 = (1,1,0,0)
d3 = (0,0,0)

The residue R(d) or R(G) is the number of zeroes remaining at the
end.

Theorem (Favaron–Mahéo–Saclé, 1991)
For all graphs G, R(G) ≤ α(G).

Conjectured originally by Fajtlowicz’ computer program Graffiti; improvements
to the proof provided by Griggs and Kleitman (1994) and Triesch (1996).
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Big Questions

How tight is the R(G) ≤ α(G) bound?

For which graphs G does R(G) = α(G)?
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How tight is the R(G) ≤ α(G) bound?

One of the tightest known lower bounds
rigorously: (Favaron et al., ’91) outperforms Brook’s, Turan’s,
Hansen’s, Caro–Wei’s
anecdotally: (Nelson, ’01); (Willis, ’11) outperforms Wilf’s bound?
anecdotally: (Larson et al., ’12 –) The Independence Number
Project / The Conjecturing Project

Exact for R(G) = 1

Arbitrarily weak in general
d = (k , . . . , k) (2k copies) R(d) = 2

R(d) ≤ αmin(d) = α(G) ≤ · · · ≤ α(G′)
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How tight is the R(G) ≤ αmin(d) bound?

The inequality may be proper:

d = (4,4,4,4,4,4,4,4,4) R(d) = 2 αmin(d) = 3

Theorem (Nelson–Radcliffe, 2004)
If d is semi-regular, then

R(d) ≤ αmin(d) ≤ R(d) + 1,

and we know which d are which.

M. D. Barrus () Independence Number and the HH Residue 11/03/17 7



How tight is the R(G) ≤ αmin(d) bound?

The inequality may be proper:

d = (4,4,4,4,4,4,4,4,4) R(d) = 2 αmin(d) = 3

Theorem (Nelson–Radcliffe, 2004)
If d is semi-regular, then

R(d) ≤ αmin(d) ≤ R(d) + 1,

and we know which d are which.

M. D. Barrus () Independence Number and the HH Residue 11/03/17 7



How tight is the R(G) ≤ α(G) bound?

An idea:

R(d) ≤ αmin(d) = α(G) ≤ · · · ≤ α(G′)︸ ︷︷ ︸
What if this can’t be large?

A unigraph is a graph that is the unique realization (up to
isomorphism) of its degree sequence.
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b b b b
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NOT UNIGRAPHS
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How tight is the R(G) ≤ α(G) bound?

Theorem (B, 2012)
If G is a unigraph, then

R(G) ≤ α(G) ≤ R(G) + 1,

and we know which G are which.

(In fact, R < α in only one simple family of counterexamples.)
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Key ideas of the proof
If G is a unigraph, then R(G) ≤ α(G) ≤ R(G) + 1.

R. Tyshkevich (’00) studied graph compositions of the form

clique B

ind. set A C

b

b b

b b b

b b

b
= b b b

b
b

b

b

b

b

She characterized unigraphs in terms of indecomposable
components; these included C5 and 6 infinite families of non-split
graphs, and K1 and 16 infinite families of split graphs.
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Key ideas of the proof
If G is a unigraph, then R(G) ≤ α(G) ≤ R(G) + 1.

Lemma (B, 2012)
For a graph G = (G1,A,B) ◦G0, both

α(G) = |A|+ α(G0) and R(G) = |A|+ R(G0).

clique B

ind. set A C

b

b b

b b b

b b

b

(3,2;1,1,1) ◦ (1,1,1,1)

=
b b b

b
b

b

b

b

b

(7,6,3,3,3,3,1,1,1)
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Big Questions

How tight is the R(G) ≤ α(G) bound?

For which graphs G does R(G) = α(G)?
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Mimicking vertex deletions in hopes of R(G) = α(G)
Joint with Grant Molnar (BYU)

b b b b

b b

b b

b b

b b

d = (2,2,1,1,1,1)

d1 = (1,1,1,1,0)

d2 = (1,1,0,0)

d3 = (0,0,0)

A graph has the strong Havel–Hakimi property if in every induced
subgraph every vertex of maximum degree has neighbors with as high
of degrees as possible.

Let S be the class of all such graphs.
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Results (B, Molnar, 2016)
S = {graphs with strong Havel–Hakimi property}

All graphs in S can be constructed via the natural “reverse
Havel–Hakimi process.”

(0,0,0)→ (1,1,0,0)→ (1,1,1,1,0)→ (2,2,1,1,1,1)

S contains all matrogenic graphs (and hence all matroidal graphs
and threshold graphs as well).

S is characterized by the minimal forbidden induced subgraphs
shown here:
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Results (B, Molnar, 2016)
S = {graphs with strong Havel–Hakimi property}

For all graphs G in S, R(G) = α(G).

In fact, since R(H) ≤ Maxine(H) ≤ α(H) for all graphs, a natural
greedy heuristic always identifies a maximum independent set in
G ∈ S.

Maxine produces a maximum independent set for arbitrary graphs
H whenever H is {C4,P5}-free.
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Hereditary classes of graphs for which R = α
(B, 2012, 2013; B, Molnar, 2016)

Split graphs
Hereditary unigraphs
S (⊃ matrogenic graphs, matroidal graphs, threshold graphs)

Let H be the maximal hereditary family consisting of graphs G for
which R(G) = α(G).

Minimal forbidden induced subgraphs for H?

Vertices 5 6 7 8 9 10
Subgraphs 3 1 1 8 19 8 b

b
b

b
b

b b
b

b
b b

b
b

b
b

No strong patterns, or end in sight (??)
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which R(G) = α(G).
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which R(G) = α(G).

Minimal forbidden induced subgraphs for H?

Vertices 5 6 7 8 9 10
Subgraphs 3 1 1

8 19 8

b b

b
b

b b

b

No strong patterns

, or end in sight

(??)

M. D. Barrus () Independence Number and the HH Residue 11/03/17 18
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Let H be the maximal hereditary family consisting of graphs G for
which R(G) = α(G).

Minimal forbidden induced subgraphs for H?
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Hereditary classes of graphs for which R = α
(B, 2012, 2013; B, Molnar, 2016)

Split graphs
Hereditary unigraphs
S (⊃ matrogenic graphs, matroidal graphs, threshold graphs)

Let H be the maximal hereditary family consisting of graphs G for
which R(G) = α(G).

Minimal forbidden induced subgraphs for H?

Vertices 5 6 7 8 9 10
Subgraphs 3 1 1 8 19 8

...

No strong patterns, or end in sight (??)
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Remaining Questions

How tight is the R(G) ≤ α(G) bound?

For which graphs G does R(G) = α(G)?
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Some forbidden subgraphs for H with 9 vertices

Thank you!
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