The A_{4}-structure of a graph

Michael D. Barrus

Department of Mathematics
Brigham Young University
Graphs and Matrices Seminar
September 24, 2012

The A_{4}-Structure

Alternating 4-cycle $\left(A_{4}\right)$

A_{4}-structure H of a graph G

$$
V(H)=V(G), \quad E(H)=\left\{A \subseteq V(G): G[A] \cong 2 K_{2} \text { or } C_{4} \text { or } P_{4}\right\}
$$

The A_{4}-Structure

The P_{4}-Structure of a Graph

Chvátal, 1984

Theorem (Reed, 1987)

Let G and H be two graphs with isomorphic P_{4}-structures. Then G is perfect if and only if H is perfect.

P_{4}-Classes

Reprinted from A. Brandstädt and V. B. Le, Split-perfect graphs: characterization and algorithmic use, SIAM J. Discrete Math. 17(3), 341-360.

Motivation: Degree Sequences

2-switches

Theorem (Fulkerson-Hoffman-McAndrew, 1965)

$\operatorname{deg}(G)=\operatorname{deg}(H)$ iff 2-switches transform G into H.

Are there any A_{4}-structure/degree sequence connections?

Motivation: Graph Classes

- Threshold graphs $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free
- Matrogenic graphs

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs Edge sets of A_{4} 's are circuits of a matroid on E.

Motivation: Graph Classes

- Threshold graphs $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free The A_{4}-structure has no edges.
- Matrogenic graphs

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs Edge sets of A_{4} 's are circuits of a matroid on E.

Motivation: Graph Classes

- Threshold graphs
$\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free
The A_{4}-structure has no edges.
- Matrogenic graphs

Vertex sets of A_{4} 's are circuits of a matroid on V.
No 5 vertices contain exactly 2 or 3 edges of the A_{4}-structure.

- Matroidal graphs

Edge sets of A_{4} 's are circuits of a matroid on E.
No 5 vertices contain more than 1 edge of the A_{4}-structure.

Motivation: Graph Classes

- Threshold graphs $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free The A_{4}-structure has no edges.
- Matrogenic graphs

Vertex sets of A_{4} 's are circuits of a matroid on V.
No 5 vertices contain exactly 2 or 3 edges of the A_{4}-structure.

- Matroidal graphs

Edge sets of A_{4} 's are circuits of a matroid on E. No 5 vertices contain more than 1 edge of the A_{4}-structure.

Can the A_{4}-structure be used to characterize other interesting classes?

A Graph Operation

Definition (Tyshkevich-Chernyak, 1978).
Given a split graph G with stable set A and clique B, and an arbitrary graph H, define the composition $(G, A, B) \circ H$ to be graph formed by adding to $G+H$ the edges in $\{u v: u \in B, v \in V(H)\}$.

Canonical Decomposition

Theorem (Tyshkevich-Chernyak, 1978; Tyshkevich, 2000)

Every graph F can be represented as a composition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

of indecomposable components. Here the $\left(G_{i}, A_{i}, B_{i}\right)$ are indecomposable splitted graphs and F_{0} is an indecomposable graph. This decomposition is unique up to isomorphism of components.

Modules and $P_{4} \mathrm{~S}$

Definition.
A module is a vertex subset S such that each vertex outside S either dominates S or is isolated from S.

Modules and $P_{4} \mathrm{~S}$

Definition.
A module is a vertex subset S such that each vertex outside S either dominates S or is isolated from S.

Modules and $P_{4} \mathrm{~S}$

Definition.
A module is a vertex subset S such that each vertex outside S either dominates S or is isolated from S.

Modules and $P_{4} \mathrm{~S}$

Definition.
A module is a vertex subset S such that each vertex outside S either dominates S or is isolated from S.

Modules and $P_{4} \mathrm{~S}$

Definition.
A module is a vertex subset S such that each vertex outside S either dominates S or is isolated from S.

Modules and $P_{4} \mathrm{~S}$

Definition.
A module is a vertex subset S such that each vertex outside S either dominates S or is isolated from S.

Theorem

- An induced P_{4} intersects a module in exactly 0, 1, or 4 vertices.
- (Seinsche, 1974) In a graph G every induced subgraph on at least 3 vertices contains a nontrivial module iff G is P_{4}-free.

P_{4}-Structures and Decomposition

Primeval Decomposition Theorem (Jamison-Olariu, 1995)

For any graph $G=(V, E)$ precisely one of the following conditions holds:
(i) G is disconnected.
(ii) \bar{G} is disconnected.
(iii) The P_{4}-structure of G is connected.
(iv) There exists a P_{4}-component hooked up to the rest of G in a special way.

P_{4}-Structures and Decomposition

Primeval Decomposition Theorem (Jamison-Olariu, 1995)

For any graph $G=(V, E)$ precisely one of the following conditions holds:
(i) G is disconnected.
(ii) \bar{G} is disconnected.
(iii) The P_{4}-structure of G is connected.
(iv) There exists a P_{4}-component hooked up to the rest of G in a special way.

P_{4}-Structures and Decomposition

Primeval Decomposition Theorem (Jamison-Olariu, 1995)

For any graph $G=(V, E)$ precisely one of the following conditions holds:
(i) G is disconnected.
(ii) \bar{G} is disconnected.
(iii) The P_{4}-structure of G is connected.
(iv) There exists a P_{4}-component hooked up to the rest of G in a special way.

P_{4}-Structures and Decomposition

Primeval Decomposition Theorem (Jamison-Olariu, 1995)

For any graph $G=(V, E)$ precisely one of the following conditions holds:
(i) G is disconnected.
(ii) \bar{G} is disconnected.
(iii) The P_{4}-structure of G is connected.
(iv) There exists a P_{4}-component hooked up to the rest of G in a special way.

P_{4}-Structures and Decomposition

Primeval Decomposition Theorem (Jamison-Olariu, 1995)

For any graph $G=(V, E)$ precisely one of the following conditions holds:
(i) G is disconnected.
(ii) \bar{G} is disconnected.
(iii) The P_{4}-structure of G is connected.
(iv) There exists a P_{4}-component hooked up to the rest of G in a special way.

P_{4}-Structures and Decomposition

Primeval Decomposition Theorem (Jamison-Olariu, 1995)

For any graph $G=(V, E)$ precisely one of the following conditions holds:
(i) G is disconnected.
(ii) \bar{G} is disconnected.
(iii) The P_{4}-structure of G is connected.
(iv) There exists a P_{4}-component hooked up to the rest of G in a special way.

A_{4}-Analogues

Definition.

A module S is a vertex subset such that no alternating path of length 2 begins and ends in S and has its midpoint outside S.

Forbidden:

A_{4}-Analogues

Definition.
Define a strict module to be a vertex subset S such that no (possibly closed) alternating path of length 2 or 3 begins and ends in S and has its midpoints outside S.

Forbidden:

This is equivalent to not having alternating paths of any length begin and end in S.

A_{4}-Analogues

Proposition

An A_{4} intersects a strict module in exactly 0 or 4 vertices.

Forbidden:

Proposition

In a graph G every induced subgraph on at least 2 vertices has a nontrivial strict module if and only if G is A_{4}-free, i.e., threshold.

Strict Modules and Graph Structure

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Forbidden:

Strict Modules and Graph Structure

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Strict Modules and Graph Structure

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Strict Modules and Graph Structure

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

"Strict modular decomposition" = canonical decomposition

Indecomposable Graphs

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_{4}-structure is connected.

A Degree Sequence Connection

Theorem (Tyshkevich, 1980?, 2000)

An n-vertex graph with degree sequence d is decomposable if and only if there exists nonnegative integers p and q such that

$$
0<p+q<n, \quad \sum_{i=1}^{p} d_{i}=p(n-q-1)+\sum_{i=n-q+1}^{n} d_{i}
$$

Corollary

If two graphs have the same degree sequence, then their A_{4}-structures have the same number and orders of components.

Obtaining All Realizations

Given an A_{4}-structure, how do we generate all graphs realizing it?

Obtaining Other Realizations: Decomposable Graphs

Substitutions and transpositions preserve A_{4}-structure.

The rightmost A_{4}-component may only be transposed if it has a split realization.

Which graphs have the same A_{4}-structure as a split graph?

A_{4}-Separable Graphs

Observation

A graph G is A_{4}-split, i.e., it has the same A_{4}-structure as a split graph, iff each of its indecomposable component is A_{4}-split.

A graph G is A_{4}-separable if we can partition $V(G)$ into two sets so that each A_{4} can be drawn with both edges and both nonedges spanning the divide.

A_{4}-separable $\Longrightarrow A_{4}$-split

A_{4}-Balanced Graphs with the BRP

A graph G is A_{4}-balanced if we can partition $V(G)$ into two sets so that each set contains two vertices of each A_{4}. An A_{4}-balanced graph has the bipartite restriction property if for each v, the graph G_{v} is bipartite.

G_{a}
G_{b}
G_{c}
A_{4}-split $\Longrightarrow A_{4}$-balanced with the bipartite restriction property

A_{4}-Balanced Graphs with the BRP

A graph G is A_{4}-balanced if we can partition $V(G)$ into two sets so that each set contains two vertices of each A_{4}. An A_{4}-balanced graph has the bipartite restriction property if for each v, the graph G_{v} is bipartite.

G_{b}
G_{c}
A_{4}-split $\Longrightarrow A_{4}$-balanced with the bipartite restriction property

A_{4}-Balanced Graphs with the BRP

A graph G is A_{4}-balanced if we can partition $V(G)$ into two sets so that each set contains two vertices of each A_{4}. An A_{4}-balanced graph has the bipartite restriction property if for each v, the graph G_{v} is bipartite.

G_{c}
A_{4}-split $\Longrightarrow A_{4}$-balanced with the bipartite restriction property

A_{4}-Balanced Graphs with the BRP

A graph G is A_{4}-balanced if we can partition $V(G)$ into two sets so that each set contains two vertices of each A_{4}. An A_{4}-balanced graph has the bipartite restriction property if for each v, the graph G_{v} is bipartite.

G_{C}

A_{4}-split $\Longrightarrow A_{4}$-balanced with the bipartite restriction property

A_{4}-Balanced Graphs with the BRP

A graph G is A_{4}-balanced if we can partition $V(G)$ into two sets so that each set contains two vertices of each A_{4}. An A_{4}-balanced graph has the bipartite restriction property if for each v, the graph G_{v} is bipartite.

A_{4}-split $\Longrightarrow A_{4}$-balanced with the bipartite restriction property

Forbidden subgraphs

The following graphs are not A_{4}-balanced or do not have the BRP:

Forbidden subgraphs

Say G induces none of the forbidden graphs:

G disconnected \Longrightarrow Each component is $\left\{K_{3}, C_{4}, P_{4}\right\}$-free

Forbidden subgraphs

Say G induces none of the forbidden graphs:

G disconnected \Longrightarrow Each component is a star

Forbidden subgraphs

Say G induces none of the forbidden graphs:

G connected, co-connected $\Longrightarrow G$ is split.

Forbidden subgraphs

Say G induces none of the forbidden graphs:

\mathcal{F}

$G A_{4}$-balanced, has BRP $\Longrightarrow G$ is \mathcal{F}-free $\Longrightarrow G$ is split, or G or \bar{G} is a forest of stars

Completing the chain

G split, or G or \bar{G} a forest of stars $\Longrightarrow G A_{4}$-separable

A_{4}-Split Graphs

Theorem

For an indecomposable graph G with A_{4}-structure H, the following are equivalent:
(i) G is A_{4}-split.
(ii) H is balanced and satisfies the bipartite restriction property.
(iii) G is $\left\{C_{5}, P_{5}\right.$, house, $K_{2}+K_{3}, K_{2,3}, P, \bar{P}, K_{2}+P_{4}, P_{4} \vee 2 K_{1}, K_{2}+$ $\left.C_{4}, 2 K_{2} \vee 2 K_{1}\right\}$-free.
(iv) G is split, or G or \bar{G} is a disjoint union of stars.
(v) G is A_{4}-separable.

Left to Do

- Graph classes, especially A_{4} - and P_{4}-balanced graphs, and the A_{4}-analogues of the (q, t) graphs (Threshold $=(4,0)$, matroidal $=(5,1), \ldots)$.
- Other A_{4}-structure characteristics dependent only on degree sequence.
- Complete list of operations which suffice to link all realizations of an A_{4}-structure.

Appendix

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_{4}-structure is connected.

Beginnings

Lemma

The graphs $2 K_{2}, C_{4}$, and P_{4} are all indecomposable. Therefore, connected A_{4}-structure \Longrightarrow indecomposable.

Forbidden:

Lemma

In an indecomposable graph G with more than 1 vertex, every vertex belongs to an alternating 4-cycle.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~S}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

More on Disjoint $A_{4} \mathrm{~S}$

Corollary

Any two vertices which both belong to induced $2 K_{2}$'s or C_{4} 's have distance at most 3 in the A_{4}-structure.

Lemma

The \rightarrow relation is consistent among pairs of $A_{4} s$ from different components of the A_{4}-structure.

Putting It All Together

Lemma

The \rightarrow tournament on the A_{4}-components of a graph is acyclic.

Having a source implies the graph is decomposable.
\therefore not A_{4}-connected \Longrightarrow decomposable.

Putting It All Together

Lemma

The \rightarrow tournament on the A_{4}-components of a graph is acyclic.

Having a source implies the graph is decomposable.
$\therefore A_{4}$-connected \Longleftrightarrow indecomposable.

