The A_4 -structure of a graph

Michael D. Barrus

Department of Mathematics Brigham Young University

Graphs and Matrices Seminar September 24, 2012

The A₄-Structure

Alternating 4-cycle (A₄)

A_4 -structure H of a graph G

$$V(H) = V(G), \qquad E(H) = \{A \subseteq V(G) : G[A] \cong 2K_2 \text{ or } C_4 \text{ or } P_4\}$$

The A₄-Structure

The *P*₄-Structure of a Graph

Chvátal, 1984

Theorem (Reed, 1987)

Let G and H be two graphs with isomorphic P_4 -structures. Then G is perfect if and only if H is perfect.

P₄-Classes

Reprinted from A. Brandstädt and V. B. Le, Split-perfect graphs: characterization and algorithmic use, SIAM J. Discrete Math. 17(3), 341-360.

Motivation: Degree Sequences

2-switches

Theorem (Fulkerson–Hoffman–McAndrew, 1965)

deg(G) = deg(H) iff 2-switches transform G into H.

Are there any A₄-structure/degree sequence connections?

M. D. Barrus (BYU)

A₄-structure of a graph

- Threshold graphs $\{2K_2, C_4, P_4\}$ -free
- Matrogenic graphs
 Vertex sets of A₄'s are circuits of a matroid on V.

Matroidal graphs
 Edge sets of A₄'s are circuits of a matroid on E.

- Threshold graphs $\{2K_2, C_4, P_4\}$ -free The A_4 -structure has no edges.
- Matrogenic graphs
 Vertex sets of A₄'s are circuits of a matroid on V.

Matroidal graphs
 Edge sets of A₄'s are circuits of a matroid on E.

- Threshold graphs $\{2K_2, C_4, P_4\}$ -free The A_4 -structure has no edges.
- Matrogenic graphs
 Vertex sets of A₄'s are circuits of a matroid on V.
 No 5 vertices contain exactly 2 or 3 edges of the A₄-structure.
- Matroidal graphs
 Edge sets of A₄'s are circuits of a matroid on *E*.
 No 5 vertices contain more than 1 edge of the A₄-structure.

- Threshold graphs $\{2K_2, C_4, P_4\}$ -free The A_4 -structure has no edges.
- Matrogenic graphs
 Vertex sets of A₄'s are circuits of a matroid on V.
 No 5 vertices contain exactly 2 or 3 edges of the A₄-structure.
- Matroidal graphs
 Edge sets of A₄'s are circuits of a matroid on *E*.
 No 5 vertices contain more than 1 edge of the A₄-structure.

Can the A_4 -structure be used to characterize other interesting classes?

A Graph Operation

Definition (Tyshkevich–Chernyak, 1978).

Given a split graph *G* with stable set *A* and clique *B*, and an arbitrary graph *H*, define the *composition* $(G, A, B) \circ H$ to be graph formed by adding to G + H the edges in $\{uv : u \in B, v \in V(H)\}$.

Canonical Decomposition

Theorem (Tyshkevich–Chernyak, 1978; Tyshkevich, 2000)

Every graph F can be represented as a composition

$$F = (G_k, A_k, B_k) \circ \cdots \circ (G_1, A_1, B_1) \circ F_0$$

of indecomposable components. Here the (G_i, A_i, B_i) are indecomposable splitted graphs and F_0 is an indecomposable graph. This decomposition is unique up to isomorphism of components.

Definition.

Definition.

Definition.

Definition.

Definition.

Definition.

A *module* is a vertex subset *S* such that each vertex outside *S* either dominates *S* or is isolated from *S*.

Theorem

- An induced P₄ intersects a module in exactly 0, 1, or 4 vertices.
- (Seinsche, 1974) In a graph G every induced subgraph on at least 3 vertices contains a nontrivial module iff G is P₄-free.

Primeval Decomposition Theorem (Jamison–Olariu, 1995)

- (i) G is disconnected.
- (ii) \overline{G} is disconnected.
- (iii) The P_4 -structure of G is connected.
- (iv) There exists a P₄-component hooked up to the rest of G in a special way.

$$\rightarrow$$
 \square \ge

Primeval Decomposition Theorem (Jamison–Olariu, 1995)

- (i) G is disconnected.
- (ii) \overline{G} is disconnected.
- (iii) The P_4 -structure of G is connected.
- (iv) There exists a P₄-component hooked up to the rest of G in a special way.

Primeval Decomposition Theorem (Jamison–Olariu, 1995)

- (i) G is disconnected.
- (ii) \overline{G} is disconnected.
- (iii) The P_4 -structure of G is connected.
- (iv) There exists a P₄-component hooked up to the rest of G in a special way.

Primeval Decomposition Theorem (Jamison–Olariu, 1995)

- (i) G is disconnected.
- (ii) \overline{G} is disconnected.
- (iii) The P_4 -structure of G is connected.
- (iv) There exists a P₄-component hooked up to the rest of G in a special way.

Primeval Decomposition Theorem (Jamison–Olariu, 1995)

- (i) G is disconnected.
- (ii) \overline{G} is disconnected.
- (iii) The P_4 -structure of G is connected.
- (iv) There exists a P₄-component hooked up to the rest of G in a special way.

Primeval Decomposition Theorem (Jamison–Olariu, 1995)

- (i) G is disconnected.
- (ii) \overline{G} is disconnected.
- (iii) The P_4 -structure of G is connected.
- (iv) There exists a P₄-component hooked up to the rest of G in a special way.

A₄-Analogues

Definition.

A *module* S is a vertex subset such that no alternating path of length 2 begins and ends in S and has its midpoint outside S.

A₄-Analogues

Definition.

Define a *strict module* to be a vertex subset *S* such that no (**possibly closed**) alternating path of length 2 or 3 begins and ends in *S* and has its midpoints outside *S*.

This is equivalent to not having alternating paths of *any* length begin and end in *S*.

A₄-Analogues

Proposition

An A₄ intersects a strict module in exactly 0 or 4 vertices.

Proposition

In a graph G every induced subgraph on at least 2 vertices has a nontrivial strict module if and only if G is A_4 -free, i.e., threshold.

M. D. Barrus (BYU)

A₄-structure of a graph

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Proposition

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

"Strict modular decomposition" = canonical decomposition

M. D. Barrus (BYU)

Indecomposable Graphs

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_4 -structure is connected.

A Degree Sequence Connection

Theorem (Tyshkevich, 1980?, 2000)

An n-vertex graph with degree sequence d is decomposable if and only if there exists nonnegative integers p and q such that

$$0 $\sum_{i=1}^{p} d_i = p(n - q - 1) + \sum_{i=n-q+1}^{n} d_i.$$$

Corollary

If two graphs have the same degree sequence, then their A_4 -structures have the same number and orders of components.

Obtaining All Realizations

Given an A₄-structure, how do we generate all graphs realizing it?

Obtaining Other Realizations: Decomposable Graphs

Substitutions and transpositions preserve A₄-structure.

The rightmost A_4 -component may only be transposed if it has a split realization.

Which graphs have the same A_4 -structure as a split graph?

A₄-Separable Graphs

Observation

A graph G is A_4 -split, i.e., it has the same A_4 -structure as a split graph, iff each of its indecomposable component is A_4 -split.

A graph *G* is A_4 -separable if we can partition V(G) into two sets so that each A_4 can be drawn with both edges and both nonedges spanning the divide.

 A_4 -separable \implies A_4 -split

A graph *G* is A_4 -balanced if we can partition V(G) into two sets so that each set contains two vertices of each A_4 . An A_4 -balanced graph has the bipartite restriction property if for each *v*, the graph G_v is bipartite.

A graph *G* is A_4 -balanced if we can partition V(G) into two sets so that each set contains two vertices of each A_4 . An A_4 -balanced graph has the bipartite restriction property if for each *v*, the graph G_v is bipartite.

A graph *G* is A_4 -balanced if we can partition V(G) into two sets so that each set contains two vertices of each A_4 . An A_4 -balanced graph has the bipartite restriction property if for each *v*, the graph G_v is bipartite.

A graph *G* is A_4 -balanced if we can partition V(G) into two sets so that each set contains two vertices of each A_4 . An A_4 -balanced graph has the bipartite restriction property if for each *v*, the graph G_v is bipartite.

A graph *G* is A_4 -balanced if we can partition V(G) into two sets so that each set contains two vertices of each A_4 . An A_4 -balanced graph has the bipartite restriction property if for each *v*, the graph G_v is bipartite.

The following graphs are not A_4 -balanced or do not have the BRP:

Say G induces none of the forbidden graphs:

G disconnected \implies Each component is $\{K_3, C_4, P_4\}$ -free

Say G induces none of the forbidden graphs:

G disconnected \implies Each component is a star

Say G induces none of the forbidden graphs:

G connected, co-connected \implies G is split.

Say G induces none of the forbidden graphs:

 $G A_4$ -balanced, has BRP \implies G is \mathcal{F} -free \implies G is split, or G or \overline{G} is a forest of stars

Completing the chain

G split, or G or \overline{G} a forest of stars \implies G A₄-separable

A₄-Split Graphs

Theorem

For an indecomposable graph G with A_4 -structure H, the following are equivalent:

- (i) G is A₄-split.
- (ii) H is balanced and satisfies the bipartite restriction property.
- (iii) G is $\{C_5, P_5, house, K_2 + K_3, K_{2,3}, P, \overline{P}, K_2 + P_4, P_4 \lor 2K_1, K_2 + C_4, 2K_2 \lor 2K_1\}$ -free.
- (iv) G is split, or G or \overline{G} is a disjoint union of stars.
- (v) G is A_4 -separable.

Left to Do

- Graph classes, especially A₄- and P₄-balanced graphs, and the A₄-analogues of the (q, t) graphs (Threshold = (4,0), matroidal = (5,1), ...).
- Other *A*₄-structure characteristics dependent only on degree sequence.
- Complete list of operations which suffice to link all realizations of an A₄-structure.

Appendix

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_4 -structure is connected.

Beginnings

Lemma

The graphs $2K_2$, C_4 , and P_4 are all indecomposable. Therefore, connected A_4 -structure \implies indecomposable.

Lemma

In an indecomposable graph G with more than 1 vertex, every vertex belongs to an alternating 4-cycle.

Forbidden:

Lemma

More on Disjoint A₄s

Corollary

Any two vertices which both belong to induced $2K_2$'s or C_4 's have distance at most 3 in the A_4 -structure.

Lemma

The \rightarrow relation is consistent among pairs of A₄s from different components of the A₄-structure.

Putting It All Together

Lemma

The \rightarrow tournament on the A₄-components of a graph is acyclic.

Having a source implies the graph is decomposable.

 \therefore not A_4 -connected \implies decomposable.

Putting It All Together

Lemma

The \rightarrow tournament on the A₄-components of a graph is acyclic.

Having a source implies the graph is decomposable.

 \therefore A₄-connected \iff indecomposable.

