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The A4-Structure

Alternating 4-cycle (A4)

A4-structure H of a graph G

V (H) = V (G), E(H) = {A ⊆ V (G) : G[A] ∼= 2K2 or C4 or P4}

M. D. Barrus (BYU) A4-structure of a graph Sept. 24, 2012 2 / 1



The A4-Structure
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The P4-Structure of a Graph

Chvátal, 1984

V (H) = V (G), E(H) = {A ⊆ V (G) : G[A] ∼= P4}

1

6

2

5

3

4

2

5

1

4

6

3

Theorem (Reed, 1987)
Let G and H be two graphs with isomorphic P4-structures. Then G is
perfect if and only if H is perfect.
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P4-Classes

Reprinted from A. Brandstädt and V. B. Le, Split-perfect graphs: characterization and algorithmic use, SIAM J. Discrete Math.
17(3), 341-360.
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Motivation: Degree Sequences

2-switches

Theorem (Fulkerson–Hoffman–McAndrew, 1965)

deg(G) = deg(H) iff 2-switches transform G into H.

Are there any A4-structure/degree sequence connections?
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Motivation: Graph Classes

Threshold graphs
{2K2,C4,P4}-free

Matrogenic graphs
Vertex sets of A4’s are circuits of a matroid on V .

Matroidal graphs
Edge sets of A4’s are circuits of a matroid on E .
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Motivation: Graph Classes

Threshold graphs
{2K2,C4,P4}-free
The A4-structure has no edges.

Matrogenic graphs
Vertex sets of A4’s are circuits of a matroid on V .
No 5 vertices contain exactly 2 or 3 edges of the A4-structure.

Matroidal graphs
Edge sets of A4’s are circuits of a matroid on E .
No 5 vertices contain more than 1 edge of the A4-structure.

Can the A4-structure be used to characterize other interesting classes?
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A Graph Operation

Definition (Tyshkevich–Chernyak, 1978).
Given a split graph G with stable set A and clique B, and an arbitrary
graph H, define the composition (G,A,B) ◦ H to be graph formed by
adding to G + H the edges in {uv : u ∈ B, v ∈ V (H)}.

A

B
◦ =
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Canonical Decomposition

Theorem (Tyshkevich–Chernyak, 1978; Tyshkevich, 2000)
Every graph F can be represented as a composition

F = (Gk ,Ak ,Bk ) ◦ · · · ◦ (G1,A1,B1) ◦ F0

of indecomposable components. Here the (Gi ,Ai ,Bi) are
indecomposable splitted graphs and F0 is an indecomposable graph.
This decomposition is unique up to isomorphism of components.
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Modules and P4s

Definition.
A module is a vertex subset S such that each vertex outside S either
dominates S or is isolated from S.

S
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Modules and P4s

Definition.
A module is a vertex subset S such that each vertex outside S either
dominates S or is isolated from S.

S

Theorem
An induced P4 intersects a module in exactly 0, 1, or 4 vertices.

(Seinsche, 1974) In a graph G every induced subgraph on at least
3 vertices contains a nontrivial module iff G is P4-free.
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P4-Structures and Decomposition

Primeval Decomposition Theorem (Jamison–Olariu, 1995)
For any graph G = (V ,E) precisely one of the following conditions
holds:

(i) G is disconnected.

(ii) G is disconnected.

(iii) The P4-structure of G is connected.

(iv) There exists a P4-component hooked up to the rest of G in a
special way.
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A4-Analogues

Definition.
A module S is a vertex subset such that no alternating path of length 2
begins and ends in S and has its midpoint outside S.

S
Forbidden:
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A4-Analogues

Definition.
Define a strict module to be a vertex subset S such that no (possibly
closed) alternating path of length 2 or 3 begins and ends in S and has
its midpoints outside S.

S
Forbidden:

This is equivalent to not having alternating paths of any length begin
and end in S.
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A4-Analogues

Proposition
An A4 intersects a strict module in exactly 0 or 4 vertices.

Forbidden:

Proposition
In a graph G every induced subgraph on at least 2 vertices has a
nontrivial strict module if and only if G is A4-free, i.e., threshold.
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Strict Modules and Graph Structure

Proposition
The vertices which dominate a strict module form a clique, and those
which are nonadjacent to the strict module form an independent set.

Forbidden:
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Strict Modules and Graph Structure

Proposition
The vertices which dominate a strict module form a clique, and those
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clique

independent set

strict module
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Strict Modules and Graph Structure

Proposition
The vertices which dominate a strict module form a clique, and those
which are nonadjacent to the strict module form an independent set.

clique

independent set

strict module

“Strict modular decomposition” = canonical decomposition
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Indecomposable Graphs

Theorem
A graph is indecomposable in the canonical decomposition if and only
if its A4-structure is connected.

Proof later?
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A Degree Sequence Connection

Theorem (Tyshkevich, 1980?, 2000)
An n-vertex graph with degree sequence d is decomposable if and
only if there exists nonnegative integers p and q such that

0 < p + q < n,
p∑

i=1

di = p(n − q − 1) +
n∑

i=n−q+1

di .

Corollary
If two graphs have the same degree sequence, then their A4-structures
have the same number and orders of components.
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Obtaining All Realizations

Given an A4-structure, how do we generate all graphs realizing it?
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Obtaining Other Realizations: Decomposable Graphs

Substitutions and transpositions preserve A4-structure.

The rightmost A4-component may only be transposed if it has a split
realization.

Which graphs have the same A4-structure as a split graph?
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A4-Separable Graphs

Observation
A graph G is A4-split, i.e., it has the same A4-structure as a split graph,
iff each of its indecomposable component is A4-split.

A graph G is A4-separable if we can partition V (G) into two sets so
that each A4 can be drawn with both edges and both nonedges
spanning the divide.

A4-separable =⇒ A4-split
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A4-Balanced Graphs with the BRP

A graph G is A4-balanced if we can partition V (G) into two sets so that
each set contains two vertices of each A4. An A4-balanced graph has
the bipartite restriction property if for each v , the graph Gv is bipartite.

a b

c
Ga Gb Gc

A4-split =⇒ A4-balanced with the bipartite restriction property
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Forbidden subgraphs

The following graphs are not A4-balanced or do not have the BRP:
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Forbidden subgraphs

Say G induces none of the forbidden graphs:

G disconnected =⇒ Each component is {K3,C4,P4}-free
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Forbidden subgraphs

Say G induces none of the forbidden graphs:

G disconnected =⇒ Each component is a star
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Forbidden subgraphs

Say G induces none of the forbidden graphs:

G connected, co-connected =⇒ G is split.
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Forbidden subgraphs

Say G induces none of the forbidden graphs:

F

G A4-balanced, has BRP =⇒ G is F-free =⇒ G is split, or G or G is
a forest of stars
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Completing the chain

G split, or G or G a forest of stars =⇒ G A4-separable
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A4-Split Graphs

Theorem
For an indecomposable graph G with A4-structure H, the following are
equivalent:

(i) G is A4-split.

(ii) H is balanced and satisfies the bipartite restriction property.

(iii) G is {C5,P5,house,K2 + K3,K2,3,P,P,K2 + P4,P4 ∨ 2K1,K2 +
C4,2K2 ∨ 2K1}-free.

(iv) G is split, or G or G is a disjoint union of stars.

(v) G is A4-separable.
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Left to Do

Graph classes, especially A4- and P4-balanced graphs, and the
A4-analogues of the (q, t) graphs (Threshold = (4,0),
matroidal = (5,1), ...).

Other A4-structure characteristics dependent only on degree
sequence.

Complete list of operations which suffice to link all realizations of
an A4-structure.
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Appendix

Theorem
A graph is indecomposable in the canonical decomposition if and only
if its A4-structure is connected.
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Beginnings

Lemma
The graphs 2K2, C4, and P4 are all indecomposable. Therefore,
connected A4-structure =⇒ indecomposable.

Forbidden:

Lemma
In an indecomposable graph G with more than 1 vertex, every vertex
belongs to an alternating 4-cycle.
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Disjoint A4s

Lemma
If A and B are disjoint alternating 4-cycles in G such that no third
alternating cycle in G intersects each, then either A induces P4, with its
interior vertices dominating B and the endpoints isolated from B
(denote this by A → B), or vice versa.

A B

A

B
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More on Disjoint A4s

Corollary
Any two vertices which both belong to induced 2K2’s or C4’s have
distance at most 3 in the A4-structure.

Lemma
The → relation is consistent among pairs of A4s from different
components of the A4-structure.
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Putting It All Together

Lemma
The → tournament on the A4-components of a graph is acyclic.

Having a source implies the graph is decomposable.

∴ not A4-connected =⇒ decomposable.

Return to talk
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