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The Graph Reconstruction Conjecture
aka Ulam’s Conjecture, The Kelly–Ulam Conjecture
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The Graph Reconstruction Conjecture
aka Ulam’s Conjecture, The Kelly–Ulam Conjecture

It is natural to wonder if any two graphs must be
isomorphic when they have the same composition in
terms of (n − 1)-point subgraphs.

— P. J. Kelly

P. J. Kelly, On isometric transformations. Ph.D. Thesis, University of Wisconsin (1942).

Kelly, P. J., A congruence theorem for trees, Pacific J. Math. 7 (1957), 961-968.

Ulam, S. M., A collection of mathematical problems, Wiley, New York, 1960.
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Graphs, cards, and decks

The cards The deck

Graph Reconstruction Conjecture
No two (different) graphs on at least 3 vertices have the same deck.

Given a deck, there is only one reconstruction.
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Plausibility — types of results

Classes of reconstructible graphs:
Trees, disconnected graphs, maximal planar graphs, ...
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Plausibility — types of results

Classes of reconstructible graphs:
Trees, disconnected graphs, maximal planar graphs, ...

What we can reconstruct about any graph:
Number of vertices and edges, characteristic polynomial, number of
copies of a fixed subgraph, ...
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Example

G − v
v

Card Number of edges
G − v1 e(G − v1) = e(G)− dG(v1)

...
...

G − vn e(G − vn) = e(G)− dG(vn)
∑

e(G − vi) = (n − 2)e(G)
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Example

G − v
v

Card Number of edges
G − v1 e(G − v1) = e(G)− dG(v1) ∴ dG(v1) = . . .

...
...

...
G − vn e(G − vn) = e(G)− dG(vn) ∴ dG(vn) = . . .

∑

e(G − vi) = (n − 2)e(G)

We can reconstruct the degree sequence.
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Digraph reconstruction

Conjecture (Harary)
For large enough n, no two nonisomorphic n-vertex digraphs have the
same deck.

4 3

1 2
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Digraph reconstruction

Conjecture (Harary)
For large enough n, no two nonisomorphic n-vertex digraphs have the
same deck.

4 3

1 2

3 2

1 4
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Digraph reconstruction

Conjecture (Harary)
For large enough n, no two nonisomorphic n-vertex digraphs have the
same deck.

Theorem (Manvel, 1973)
The (indegree, outdegree)-pair sequence of any digraph on ≥ 5
vertices can be determined from the deck.

4 3

1 2

3 2

1 4

(2,1)

(1,2)

(2,1)

(1,2)

(1,2)

(2,1)

(2,1)

(1,2)

M. D. Barrus (BYU) Reconstruction with Marked Cards 9/5/12 7 / 1



Bad news

Theorem (Stockmeyer, 1977, 1981, 1988)
There are infinitely many pairs of non-reconstructible digraphs.
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Bad news

Theorem (Stockmeyer, 1977, 1981, 1988)
There are infinitely many pairs of non-reconstructible digraphs.

Other non-reconstructible objects:

Graph orientiations, eg. tournaments

Hypergraphs (even 3-uniform hypergraphs)

Infinite graphs (even locally-finite countable forests)
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Still open

The Graph Reconstruction Conjecture has been verified for
graphs on ≤ 11 vertices.
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The Graph Reconstruction Conjecture has been verified for
graphs on ≤ 11 vertices.

(Bollobás, 1990) The conjecture is true for almost every graph.
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Still open

The Graph Reconstruction Conjecture has been verified for
graphs on ≤ 11 vertices.

(Bollobás, 1990) The conjecture is true for almost every graph.

The conjecture has spurred many flawed “proofs,” but errors have led
to fruitful study.
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Still open

The Graph Reconstruction Conjecture has been verified for
graphs on ≤ 11 vertices.

(Bollobás, 1990) The conjecture is true for almost every graph.

The conjecture has spurred many flawed “proofs,” but errors have led
to fruitful study.

Similar vs. pseudosimilar vertices
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Differences between graphs and digraphs

G − v
v

Card Number of edges
G − v1 e(G − v1) = e(G)− dG(v1) ∴ dG(v1) = . . .

...
...

...
G − vn e(G − vn) = e(G)− dG(vn) ∴ dG(vn) = . . .

∑

e(G − vi) = (n − 2)e(G)

We can determine the degree sequence of the graph and which
degree goes with which deleted vertex.
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Differences between graphs and digraphs

Theorem (Manvel, 1973)
The (indegree, outdegree)-pair sequence of any digraph on ≥ 5
vertices can be determined from the deck.

4 3

1 2

3 2

1 4

(2,1)

(1,2)

(2,1)

(1,2)

(1,2)

(2,1)

(2,1)

(1,2)

We can determine the degree pairs, but not the vertices to which
they belong.

M. D. Barrus (BYU) Reconstruction with Marked Cards 9/5/12 11 / 1



Degree-associated reconstruction

Each card is presented with the degree of the deleted vertex.

degree-associated cards, deck (dacards, dadeck)
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Degree-associated reconstruction

Each card is presented with the degree of the deleted vertex.

degree-associated cards, deck (dacards, dadeck)

Conjecture (Ramachandran, 1979)
No two nonisomorphic graphs or digraphs (on any number of vertices)
have the same dadeck.
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Operating without a full deck
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Operating without a full deck

Reconstruction number rn(G): Size of a smallest “subdeck” that
uniquely determines G.
(Harary–Plantholt, 1985)

M. D. Barrus (BYU) Reconstruction with Marked Cards 9/5/12 13 / 1



Operating without a full deck

Reconstruction number rn(G): Size of a smallest “subdeck” that
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(Harary–Plantholt, 1985)
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The degree-associated version (B, West 2010)
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The degree-associated version (B, West 2010)

Degree-associated reconstruction number drn(G): Size of a smallest
subdadeck that uniquely determines G.
(Ramachandran, 2006)

drn
( )

= 1 ( , 3) ⇒

drn
( )

= 2 ( , 1), ( , 2) ⇒

> 1
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Typical reconstruction number values

Observation
For all G, drn(G) ≤ rn(G)
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Typical reconstruction number values

Observation
For all G, drn(G) ≤ rn(G)

Theorem (Bollobás, 1990)
Almost every graph is uniquely determined by 3 cards. Furthermore,
for almost every graph, any two cards in the deck determine everything
about the graph except whether there is an edge joining the two
deleted vertices.

b b?
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Typical reconstruction number values

Observation
For all G, drn(G) ≤ rn(G)

Theorem (Bollobás, 1990)
Almost every graph is uniquely determined by 3 cards. Furthermore,
for almost every graph, any two cards in the deck determine everything
about the graph except whether there is an edge joining the two
deleted vertices.

b b?

Corollary
For almost every graph G, rn(G) = 3.
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Typical reconstruction number values

Observation
For all G, drn(G) ≤ rn(G)

Theorem (Bollobás, 1990)
Almost every graph is uniquely determined by 3 cards. Furthermore,
for almost every graph, any two cards in the deck determine everything
about the graph except whether there is an edge joining the two
deleted vertices.

b b?

Corollary
For almost every graph G, rn(G) = 3.

Almost every graph G satisfies drn(G) ≤ 2.
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The smallest drn possible

( , 3) ( , 1)
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The smallest drn possible

Theorem
drn(G) = 1 if and only if one of the the following holds:

(1) G has a vertex of degree d, where d ∈ {0, |V (G)| − 1};

(2) G has a vertex v of degree d, where d ∈ {1, |V (G)| − 2}, such
that G − v is a vertex-transitive graph.

( , 3) ( , 1)
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Trees

Corollary
drn(T ) = 1 if and only if T is a star.
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Trees

Corollary
drn(T ) = 1 if and only if T is a star.

Theorem
With the exception of stars and the graph highlighted above, every
caterpillar C satisfies drn(C) = 2.
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Trees

Corollary
drn(T ) = 1 if and only if T is a star.

Theorem
With the exception of stars and the graph highlighted above, every
caterpillar C satisfies drn(C) = 2.

Theorem (Myrvold, 1990)
For any tree T on at least 5 vertices, there exist 3 cards that uniquely
determine T .
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Trees

Corollary
drn(T ) = 1 if and only if T is a star.

Theorem
With the exception of stars and the graph highlighted above, every
caterpillar C satisfies drn(C) = 2.

Theorem (Myrvold, 1990)
For any tree T on at least 5 vertices, there exist 3 cards that uniquely
determine T .

Conjecture
For all but finitely many trees T , drn(T ) ≤ 2.
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Larger drn values: vertex-transitive graphs
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Larger drn values: vertex-transitive graphs

Proposition
If G is vertex-transitive but not complete or edgeless, then drn(G) ≥ 3.
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Larger drn values: vertex-transitive graphs

Proposition
If G is vertex-transitive but not complete or edgeless, then drn(G) ≥ 3.

Proposition
If G is r-regular, then drn(G) ≤ min{r + 2,n − r + 1}.
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Vertex-transitive graphs

Theorem (Ramachandran, 2000, 2006)
drn(Kn) = 1 for all n ≥ 1

drn(Cn) = 3 for n ≥ 4

drn(Km,m) = 3 for m ≥ 2

drn(tKn) = 3 for t ,n ≥ 2

drn(tKm,m) = m + 2 for t ,m ≥ 2
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A construction

For non-complete, vertex-transitive G without “twins,” replace each
vertex by m pairwise nonadjacent vertices, where m ≥ 2, and replace
each edge of the original graph with a copy of Km,m.

G G(3)

G G(2)

Theorem

With G as above, drn(G(m)) = m + 2.
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Coherence

A vertex-transitive graph G is coherent if whenever we delete two
vertices from it, the only way to add a vertex back to get a card of G is
to “put one of the missing vertices back.”

Not coherent:

G
card

Coherent:

G card
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Coherence and drn 3

Theorem
If G is a coherent vertex-transitive graph such that G has no twins,
then drn(G) = 3.
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Coherence and drn 3

Theorem
If G is a coherent vertex-transitive graph such that G has no twins,
then drn(G) = 3.

Theorem
The following graphs are all coherent and have drn = 3.

the d-dimensional hypercube Qd ;

the Petersen graph;

Kn�K2.
b b

b b

b

b

b

b b b

b

b

b b

b

b

bb

b

b

b

b

b b

b b
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Questions and conjectures

Are there infinitely many trees T with drn(T ) = 3?
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Questions and conjectures

Are there infinitely many trees T with drn(T ) = 3?

Are “most” vertex-transitive graphs coherent or not? Do “most”
have drn equal to 3?
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Questions and conjectures

Are there infinitely many trees T with drn(T ) = 3?

Are “most” vertex-transitive graphs coherent or not? Do “most”
have drn equal to 3?

Are there infinitely many (vertex-transitive) graphs G with
drn(G) ≥ αn(G) for 0 < α ≤ 1?
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Questions and conjectures

Conjecture (Manvel, 1988)
A digraph is reconstructible from dacards if the underlying graph is
reconstructible.
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Questions and conjectures

Conjecture (Manvel, 1988)
A digraph is reconstructible from dacards if the underlying graph is
reconstructible.

Conjecture (Hartke, ∼2010)
Every graph is reconstructible from a deck of “narrowed-down” cards.

Conjecture (Stockmeyer, 1988)
The Reconstruction Conjecture is not true, but the smallest
counterexample is on 87 vertices and will never be found.
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