The Reconstruction Conjecture and Decks with Marked Cards

Michael D. Barrus

Department of Mathematics
Brigham Young University

Graphs and Matrices Seminar September 5, 2012

The Graph Reconstruction Conjecture

 aka Ulam's Conjecture, The Kelly-Ulam Conjecture
The Graph Reconstruction Conjecture aka Ulam's Conjecture, The Kelly-Ulam Conjecture

- P. J. Kelly, On isometric transformations. Ph.D. Thesis, University of Wisconsin (1942).
- Kelly, P. J., A congruence theorem for trees, Pacific J. Math. 7 (1957), 961-968.
- Ulam, S. M., A collection of mathematical problems, Wiley, New York, 1960.

The Graph Reconstruction Conjecture aka Ulam's Conjecture, The Kelly-Ulam Conjecture

> It is natural to wonder if any two graphs must be isomorphic when they have the same composition in terms of ($n-1$)-point subgraphs.

- P. J. Kelly
- P. J. Kelly, On isometric transformations. Ph.D. Thesis, University of Wisconsin (1942).
- Kelly, P. J., A congruence theorem for trees, Pacific J. Math. 7 (1957), 961-968.
- Ulam, S. M., A collection of mathematical problems, Wiley, New York, 1960.

Graphs, cards, and decks

The cards

Graphs, cards, and decks

The cards

The deck

Graphs, cards, and decks

The cards

The deck

Graph Reconstruction Conjecture

No two (different) graphs on at least 3 vertices have the same deck.
Given a deck, there is only one reconstruction.

Examples

Examples

Examples

Examples

Plausibility — types of results

Classes of reconstructible graphs:

Trees, disconnected graphs, maximal planar graphs, ...

Plausibility — types of results

Classes of reconstructible graphs:
Trees, disconnected graphs, maximal planar graphs, ...

What we can reconstruct about any graph:

Number of vertices and edges, characteristic polynomial, number of copies of a fixed subgraph, ...

Example

Card

Number of edges

$G-v_{1}$
$G-v_{n}$
$e\left(G-v_{1}\right)=e(G)-d_{G}\left(v_{1}\right)$

$$
\begin{aligned}
e\left(G-v_{n}\right) & =e(G)-d_{G}\left(v_{n}\right) \\
\hline \sum e\left(G-v_{i}\right) & =(n-2) e(G)
\end{aligned}
$$

Example

Card
$G-v_{1}$
$G-v_{n}$

Number of edges

$e\left(G-v_{1}\right)=e(G)-d_{G}\left(v_{1}\right)$
$\therefore d_{G}\left(v_{1}\right)=\ldots$

$$
\begin{aligned}
e\left(G-v_{n}\right) & =e(G)-d_{G}\left(v_{n}\right) \\
\sum e\left(G-v_{i}\right) & =(n-2) e(G)
\end{aligned}
$$

$$
\therefore d_{G}\left(v_{n}\right)=\ldots
$$

We can reconstruct the degree sequence.

Example

Card
$G-v_{1}$
$G-v_{n}$

Number of edges

$$
\therefore d_{G}\left(v_{1}\right)=\ldots
$$

$$
\begin{aligned}
e\left(G-v_{n}\right) & =e(G)-d_{G}\left(v_{n}\right) \\
\sum e\left(G-v_{i}\right) & =(n-2) e(G)
\end{aligned}
$$

$$
\therefore d_{G}\left(v_{n}\right)=\ldots
$$

We can reconstruct the degree sequence.

We can reconstruct regular graphs.

Example

Card
$G-v_{1}$
$G-v_{n}$

Number of edges

$$
\therefore d_{G}\left(v_{1}\right)=\ldots
$$

$$
\begin{aligned}
e\left(G-v_{n}\right) & =e(G)-d_{G}\left(v_{n}\right) \\
\sum e\left(G-v_{i}\right) & =(n-2) e(G)
\end{aligned}
$$

$$
\therefore d_{G}\left(v_{n}\right)=\ldots
$$

We can reconstruct the degree sequence.

We can reconstruct regular graphs.

Digraph reconstruction

Conjecture (Harary)

For large enough n, no two nonisomorphic n-vertex digraphs have the same deck.

Digraph reconstruction

Conjecture (Harary)

For large enough n, no two nonisomorphic n-vertex digraphs have the same deck.

Digraph reconstruction

Conjecture (Harary)

For large enough n, no two nonisomorphic n-vertex digraphs have the same deck.

Theorem (Manvel, 1973)

The (indegree, outdegree)-pair sequence of any digraph on ≥ 5 vertices can be determined from the deck.

Bad news

Theorem (Stockmeyer, 1977, 1981, 1988)

There are infinitely many pairs of non-reconstructible digraphs.

Bad news

Theorem (Stockmeyer, 1977, 1981, 1988)

There are infinitely many pairs of non-reconstructible digraphs.

Other non-reconstructible objects:

- Graph orientiations, eg. tournaments
- Hypergraphs (even 3-uniform hypergraphs)
- Infinite graphs (even locally-finite countable forests)

Still open

- The Graph Reconstruction Conjecture has been verified for graphs on ≤ 11 vertices.

Still open

- The Graph Reconstruction Conjecture has been verified for graphs on ≤ 11 vertices.
- (Bollobás, 1990) The conjecture is true for almost every graph.

Still open

- The Graph Reconstruction Conjecture has been verified for graphs on ≤ 11 vertices.
- (Bollobás, 1990) The conjecture is true for almost every graph.

The conjecture has spurred many flawed "proofs," but errors have led to fruitful study.

Still open

- The Graph Reconstruction Conjecture has been verified for graphs on ≤ 11 vertices.
- (Bollobás, 1990) The conjecture is true for almost every graph.

The conjecture has spurred many flawed "proofs," but errors have led to fruitful study.

Similar vs. pseudosimilar vertices

Still open

- The Graph Reconstruction Conjecture has been verified for graphs on ≤ 11 vertices.
- (Bollobás, 1990) The conjecture is true for almost every graph.

The conjecture has spurred many flawed "proofs," but errors have led to fruitful study.

Similar vs. pseudosimilar vertices

Differences between graphs and digraphs

Card
$G-v_{1}$

$$
e\left(G-\bar{v}_{1}\right)=e(G)-d_{G}\left(v_{1}\right)
$$

$$
\therefore d_{G}\left(v_{1}\right)=\ldots
$$

$G-v_{n}$

$$
\begin{aligned}
e\left(G-v_{n}\right) & =e(G)-d_{G}\left(v_{n}\right) \\
\sum e\left(G-v_{i}\right) & =(n-2) e(G)
\end{aligned}
$$

We can determine the degree sequence of the graph and which degree goes with which deleted vertex.

Differences between graphs and digraphs

Theorem (Manvel, 1973)

The (indegree, outdegree)-pair sequence of any digraph on ≥ 5 vertices can be determined from the deck.

We can determine the degree pairs, but not the vertices to which they belong.

Degree-associated reconstruction

Each card is presented with the degree of the deleted vertex.

degree-associated cards, deck (dacards, dadeck)

Degree-associated reconstruction

Each card is presented with the degree of the deleted vertex.

degree-associated cards, deck (dacards, dadeck)

Degree-associated reconstruction

Each card is presented with the degree of the deleted vertex.

degree-associated cards, deck (dacards, dadeck)

Conjecture (Ramachandran, 1979)

No two nonisomorphic graphs or digraphs (on any number of vertices) have the same dadeck.

Operating without a full deck

Operating without a full deck

Operating without a full deck

Reconstruction number $\mathrm{rn}(\mathrm{G})$: Size of a smallest "subdeck" that uniquely determines G.
(Harary-Plantholt, 1985)

Operating without a full deck

Reconstruction number $\mathrm{rn}(\mathrm{G})$: Size of a smallest "subdeck" that uniquely determines G.
(Harary-Plantholt, 1985)

The degree-associated version (B, West 2010)

The degree-associated version (B, West 2010)

Degree-associated reconstruction number drn(G): Size of a smallest subdadeck that uniquely determines G.
(Ramachandran, 2006)

$$
\operatorname{drn}(\overbrace{0}^{\bullet})=1 \quad(\overbrace{\bullet}^{\bullet}, 3) \Rightarrow
$$

Typical reconstruction number values

Observation

For all $G, \operatorname{drn}(G) \leq r n(G)$

Typical reconstruction number values

Observation

For all $G, \operatorname{drn}(G) \leq r n(G)$

Theorem (Bollobás, 1990)

Almost every graph is uniquely determined by 3 cards. Furthermore, for almost every graph, any two cards in the deck determine everything about the graph except whether there is an edge joining the two deleted vertices.

Typical reconstruction number values

Observation

For all $G, \operatorname{drn}(G) \leq r n(G)$

Theorem (Bollobás, 1990)

Almost every graph is uniquely determined by 3 cards. Furthermore, for almost every graph, any two cards in the deck determine everything about the graph except whether there is an edge joining the two deleted vertices.

Corollary

- For almost every graph $G, \mathrm{rn}(G)=3$.

Typical reconstruction number values

Observation

For all $G, \operatorname{drn}(G) \leq r n(G)$

Theorem (Bollobás, 1990)

Almost every graph is uniquely determined by 3 cards. Furthermore, for almost every graph, any two cards in the deck determine everything about the graph except whether there is an edge joining the two deleted vertices.

Corollary

- For almost every graph $G, \mathrm{rn}(G)=3$.
- Almost every graph G satisfies $\operatorname{drn}(G) \leq 2$.

The smallest drn possible

$(\square, 1)$

The smallest drn possible

Theorem

$\operatorname{drn}(G)=1$ if and only if one of the the following holds:
(1) G has a vertex of degree d, where $d \in\{0,|V(G)|-1\}$;
(2) G has a vertex v of degree d, where $d \in\{1,|V(G)|-2\}$, such that $G-v$ is a vertex-transitive graph.

Trees

Corollary
$\operatorname{drn}(T)=1$ if and only if T is a star.

Trees

Corollary

$\operatorname{drn}(T)=1$ if and only if T is a star.

Theorem

With the exception of stars and the graph highlighted above, every caterpillar C satisfies $\mathrm{drn}(C)=2$.

Trees

Corollary

$\operatorname{drn}(T)=1$ if and only if T is a star.

Theorem

With the exception of stars and the graph highlighted above, every caterpillar C satisfies $\mathrm{drn}(C)=2$.

Theorem (Myrvold, 1990)

For any tree T on at least 5 vertices, there exist 3 cards that uniquely determine T.

Trees

$\Lambda \wedge$

Corollary

$\operatorname{drn}(T)=1$ if and only if T is a star.

Theorem

With the exception of stars and the graph highlighted above, every caterpillar C satisfies $\mathrm{drn}(C)=2$.

Theorem (Myrvold, 1990)

For any tree T on at least 5 vertices, there exist 3 cards that uniquely determine T.

Conjecture

For all but finitely many trees $T, \operatorname{drn}(T) \leq 2$.

Larger drn values: vertex-transitive graphs

Proposition

If G is vertex-transitive but not complete or edgeless, then $\operatorname{drn}(G) \geq 3$.

Larger drn values: vertex-transitive graphs

Proposition

If G is vertex-transitive but not complete or edgeless, then $\operatorname{drn}(G) \geq 3$.

Proposition

If G is r-regular, then $\operatorname{drn}(G) \leq \min \{r+2, n-r+1\}$.

Vertex-transitive graphs

Theorem (Ramachandran, 2000, 2006)

- $\operatorname{drn}\left(K_{n}\right)=1$ for all $n \geq 1$
- $\operatorname{drn}\left(C_{n}\right)=3$ for $n \geq 4$
- $\operatorname{drn}\left(K_{m, m}\right)=3$ for $m \geq 2$
- $\operatorname{drn}\left(t K_{n}\right)=3$ for $t, n \geq 2$
- $\operatorname{drn}\left(t K_{m, m}\right)=m+2$ for $t, m \geq 2$

A construction

For non-complete, vertex-transitive G without "twins," replace each vertex by m pairwise nonadjacent vertices, where $m \geq 2$, and replace each edge of the original graph with a copy of $K_{m, m}$.

Theorem

With G as above, $\operatorname{drn}\left(G^{(m)}\right)=m+2$.

Coherence

A vertex-transitive graph G is coherent if whenever we delete two vertices from it, the only way to add a vertex back to get a card of G is to "put one of the missing vertices back."

Not coherent:

Coherent:

$$
111
$$

Coherence

A vertex-transitive graph G is coherent if whenever we delete two vertices from it, the only way to add a vertex back to get a card of G is to "put one of the missing vertices back."

Not coherent:

Coherent:

Coherence

A vertex-transitive graph G is coherent if whenever we delete two vertices from it, the only way to add a vertex back to get a card of G is to "put one of the missing vertices back."

Not coherent:

Coherent:

$$
111
$$

Coherence

A vertex-transitive graph G is coherent if whenever we delete two vertices from it, the only way to add a vertex back to get a card of G is to "put one of the missing vertices back."

Not coherent:

Coherent:

$10 \quad \vdots$

Coherence

A vertex-transitive graph G is coherent if whenever we delete two vertices from it, the only way to add a vertex back to get a card of G is to "put one of the missing vertices back."

Not coherent:

Coherent:

Coherence

A vertex-transitive graph G is coherent if whenever we delete two vertices from it, the only way to add a vertex back to get a card of G is to "put one of the missing vertices back."

Not coherent:

Coherent:

Coherence

A vertex-transitive graph G is coherent if whenever we delete two vertices from it, the only way to add a vertex back to get a card of G is to "put one of the missing vertices back."

Not coherent:

Coherent:

Coherence and drn 3

Theorem

If G is a coherent vertex-transitive graph such that G has no twins, then $\operatorname{drn}(G)=3$.

Coherence and drn 3

Theorem

If G is a coherent vertex-transitive graph such that G has no twins, then $\operatorname{drn}(G)=3$.

Theorem

The following graphs are all coherent and have $\mathrm{drn}=3$.

- the d-dimensional hypercube Q_{d};
- the Petersen graph;
- $K_{n} \square K_{2}$.

Questions and conjectures

Questions and conjectures

- Are there infinitely many trees T with $\operatorname{drn}(T)=3$?

Questions and conjectures

- Are there infinitely many trees T with $\operatorname{drn}(T)=3$?
- Are "most" vertex-transitive graphs coherent or not? Do "most" have drn equal to 3 ?

Questions and conjectures

- Are there infinitely many trees T with $\operatorname{drn}(T)=3$?
- Are "most" vertex-transitive graphs coherent or not? Do "most" have drn equal to 3 ?
- Are there infinitely many (vertex-transitive) graphs G with $\operatorname{drn}(G) \geq \alpha n(G)$ for $0<\alpha \leq 1$?

Questions and conjectures

Conjecture (Manvel, 1988)

A digraph is reconstructible from dacards if the underlying graph is reconstructible.

Questions and conjectures

Conjecture (Manvel, 1988)

A digraph is reconstructible from dacards if the underlying graph is reconstructible.

Conjecture (Hartke, ~2010)

Every graph is reconstructible from a deck of "narrowed-down" cards.

Questions and conjectures

Conjecture (Manvel, 1988)

A digraph is reconstructible from dacards if the underlying graph is reconstructible.

Conjecture (Hartke, ~2010)

Every graph is reconstructible from a deck of "narrowed-down" cards.

Questions and conjectures

Conjecture (Manvel, 1988)

A digraph is reconstructible from dacards if the underlying graph is reconstructible.

Conjecture (Hartke, ~2010)

Every graph is reconstructible from a deck of "narrowed-down" cards.

Conjecture (Stockmeyer, 1988)

The Reconstruction Conjecture is not true, but the smallest counterexample is on 87 vertices and will never be found.

