Perfect graphs I: Origins, a theorem, and a conjecture

Michael D. Barrus

Department of Mathematics Brigham Young University

Graphs and Matrices Seminar October 3, 2012

Definitions

- - χ -perfect: Every induced subgraph satisfies $\chi = \omega$. α -perfect: Every induced subgraph satisfies $\alpha = \theta$.
 - CLASS 1: Graphs for which $\Theta = \alpha$ for every induced subgraph. CLASS 2: Graphs for which $\alpha = \theta$ for every induced subgraph. CLASS 3: Graphs for which $\chi = \omega$ for every induced subgraph. CLASS 4: Graphs containing no induced odd cycles of length \geq 5 or their complements.

Graphs where every cycle of length at least 4 has a chord (i.e., graphs with no induced cycles of length at least 4).

Graphs where every cycle of length at least 4 has a chord (i.e., graphs with no induced cycles of length at least 4).

Chordal graphs are α -perfect [Hajnal, Suranyi, 1959].

Graphs where every cycle of length at least 4 has a chord (i.e., graphs with no induced cycles of length at least 4).

Chordal graphs are α -perfect [Hajnal, Suranyi, 1959].

Chordal graphs are χ -perfect [Berge, 1960].

Graphs where every cycle of length at least 4 has a chord (i.e., graphs with no induced cycles of length at least 4).

Chordal graphs are α -perfect [Hajnal, Suranyi, 1959].

Chordal graphs are χ -perfect [Berge, 1960].

Chordal graphs have simplicial orderings.

Graphs with $\chi \leq$ 2. (Equivalently, graphs with no odd cycles.)

Graphs with $\chi \leq$ 2. (Equivalently, graphs with no odd cycles.)

Bipartite graphs are χ -perfect.

Graphs with $\chi \leq$ 2. (Equivalently, graphs with no odd cycles.)

Bipartite graphs are χ -perfect. They are also α -perfect [König, 1916].

Graphs with $\chi \leq$ 2. (Equivalently, graphs with no odd cycles.)

Bipartite graphs are χ -perfect. They are also α -perfect [König, 1916].

Line graphs of bipartite graphs

Graphs with $\chi \leq$ 2. (Equivalently, graphs with no odd cycles.)

Bipartite graphs are χ -perfect. They are also α -perfect [König, 1916].

Line graphs of bipartite graphs

Line graphs of bipartite graphs are α -perfect [König, Egerváry, 1931].

Graphs with $\chi \leq$ 2. (Equivalently, graphs with no odd cycles.)

Bipartite graphs are χ -perfect. They are also α -perfect [König, 1916].

Line graphs of bipartite graphs

Line graphs of bipartite graphs are α -perfect [König, Egerváry, 1931].

They are also χ -perfect [König, 1916].

Comparability graphs

Graphs modeling relationships in a poset.

Comparability graphs

Graphs modeling relationships in a poset.

Comparability graphs are χ -perfect [Mirsky, 1971].

Comparability graphs

Graphs modeling relationships in a poset.

Comparability graphs are χ -perfect [Mirsky, 1971].

Comparability graphs are α -perfect [Dilworth, 1950].

Berge's conjectures (early 1960's)

The Weak Perfect Graph Conjecture

Class 2 = Class 3.

In other words, a graph is χ -perfect [α -perfect] if and only if its complement is.

The Strong Perfect Graph Conjecture

Classes 2 and 3 are the same as Class 4.

In other words, the χ -perfect [α -perfect] graphs are exactly those graphs having no induced **odd hole** or **odd antihole**.

Berge also conjectured that Class $4 \subseteq$ Class 1.

The (Weak) Perfect Graph Theorem

Theorem (Lovász, 1972)

A graph is perfect if and only if $\omega(H)\alpha(H) \ge |V(H)|$ for every induced subgraph H.

Corollary (Perfect Graph Theorem)

A graph G is perfect if and only if \overline{G} is perfect.

Proof sketch (Gasparyan, 1996)

Note that $\omega(H)\alpha(H) \ge |V(H)|$ for induced subgraphs of χ -perfect graphs.

Proof sketch (Gasparyan, 1996)

Note that $\omega(H)\alpha(H) \ge |V(H)|$ for induced subgraphs of χ -perfect graphs.

Approach: Show that $\omega(H)\alpha(H) < |V(H)|$ for some *H* in every imperfect graph.

Proof sketch (Gasparyan, 1996)

Note that $\omega(H)\alpha(H) \ge |V(H)|$ for induced subgraphs of χ -perfect graphs.

Approach: Show that $\omega(H)\alpha(H) < |V(H)|$ for some *H* in every imperfect graph.

It suffices to consider **p-critical** subgraphs (minimal imperfect subgraphs.)

$$a = 2, w = 3$$

Let $a = \alpha(G)$ and $w = \omega(G)$. Let $S_0 = \{x_1, \dots, x_a\}$ be a maximum independent set in *G*.

$$a = 2, w = 3$$

Let $a = \alpha(G)$ and $w = \omega(G)$. Let $S_0 = \{x_1, \ldots, x_a\}$ be a maximum independent set in *G*.

Lemma: Deleting any independent set in a p-critical graph leaves the clique number unchanged.

Hence $G - x_r$ is *w*-colorable, and the color classes partition the rest of the vertices into sets S_i

$$a = 2, w = 3$$

Let $a = \alpha(G)$ and $w = \omega(G)$. Let $S_0 = \{x_1, \dots, x_a\}$ be a maximum independent set in *G*.

Lemma: Deleting any independent set in a p-critical graph leaves the clique number unchanged.

Hence $G - x_r$ is *w*-colorable, and the color classes partition the rest of the vertices into sets S_i

 $S_0 = \{x_1, x_2\}, S_1 = \{a, d\}, S_2 = \{b, e\}, S_3 = \{x_2, f\}$

$$a = 2, w = 3$$

Let $a = \alpha(G)$ and $w = \omega(G)$. Let $S_0 = \{x_1, \dots, x_a\}$ be a maximum independent set in *G*.

Lemma: Deleting any independent set in a p-critical graph leaves the clique number unchanged.

Hence $G - x_r$ is *w*-colorable, and the color classes partition the rest of the vertices into sets S_i

$$\begin{split} S_0 &= \{x_1, x_2\}, \ S_1 &= \{a, d\}, \ S_2 &= \{b, e\}, \ S_3 &= \{x_2, f\}, \\ S_4 &= \{a, e\}, \ S_5 &= \{b, f\}, \ S_6 &= \{x_1, d\} \end{split}$$

aw + 1 (overlapping) sets in all

$$S_1 = \{a, d\}, Q_1 = \{x_1, e, f\}$$

Each S_i is an independent set.

Lemma: Deleting any independent set in a p-critical graph leaves the clique number unchanged.

Hence $G - S_i$ contains a maximum clique Q_i that is maximum in G.

$$S_1 = \{a, d\}, Q_1 = \{x_1, e, f\}$$

Each S_i is an independent set.

Lemma: Deleting any independent set in a p-critical graph leaves the clique number unchanged.

Hence $G - S_i$ contains a maximum clique Q_i that is maximum in G.

Lemma: Each Q_i intersects S_j when $i \neq j$.

Proof sketch, concluded

Let A and B be |V(G)|-by-(aw + 1) incidence matrices for the families S_i and Q_j .

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Proof sketch, concluded

Let A and B be |V(G)|-by-(aw + 1) incidence matrices for the families S_i and Q_j .

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Since $|S_i \cap Q_j| = 1$ when $i \neq j$, and $|S_i \cap Q_i| = 0$, we have $A^T B = J - I$.

Proof sketch, concluded

Let A and B be |V(G)|-by-(aw + 1) incidence matrices for the families S_i and Q_i .

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Since $|S_i \cap Q_j| = 1$ when $i \neq j$, and $|S_i \cap Q_i| = 0$, we have $A^T B = J - I$.

Rank J - I = aw + 1, so A and B have rank at least aw + 1. Thus $|V(G)| \ge aw + 1$ and hence aw < |V(G)|. \Box

Berge's conjectures (early 1960's)

The (Weak) Perfect Graph Theorem

Class 2 = Class 3.

In other words, a graph is χ -perfect [α -perfect] if and only if its complement is.

The Strong Perfect Graph Conjecture

Classes 2 and 3 are the same as Class 4.

In other words, the χ -perfect [α -perfect] graphs are exactly those graphs having no induced **odd hole** or **odd antihole**.