The Erdős-Gallai differences of a degree sequence

Michael D. Barrus

Department of Mathematics
University of Rhode Island

New York Combinatorics Seminar October 8, 2021

Definitions

The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of a simple graph records the number of edges incident with each vertex. We write it in nonincreasing order.

$$
d=(2,2,2,1,1)
$$

Definitions

The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of a simple graph records the number of edges incident with each vertex. We write it in nonincreasing order.

$$
d=(2,2,2,1,1)
$$

the modified Durfee number $m(d)=\max \left\{i: d_{i} \geq i-1\right\}$.

Definitions

The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of a simple graph records the number of edges incident with each vertex. We write it in nonincreasing order.

$$
\begin{aligned}
& d=(2,2,2,1,1) \\
& m(d)=3
\end{aligned}
$$

the modified Durfee number $m(d)=\max \left\{i: d_{i} \geq i-1\right\}$.

Definitions

The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of a simple graph records the number of edges incident with each vertex. We write it in nonincreasing order.

$$
\begin{aligned}
& d=(2,2,2,1,1) \\
& m(d)=3
\end{aligned}
$$

The principal Erdős-Gallai differences are defined as

$$
\Delta_{k}(d)=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \quad \text { for } 1 \leq k \leq m(d)
$$

where the modified Durfee number $m(d)=\max \left\{i: d_{i} \geq i-1\right\}$.

Definitions

The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of a simple graph records the number of edges incident with each vertex. We write it in nonincreasing order.

$$
\begin{aligned}
& d=(2,2,2,1,1) \\
& m(d)=3 \\
& \Delta_{1}(d)=1 \cdot 0+(1+1+1+1)-2
\end{aligned}
$$

The principal Erdős-Gallai differences are defined as

$$
\Delta_{k}(d)=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \quad \text { for } 1 \leq k \leq m(d)
$$

where the modified Durfee number $m(d)=\max \left\{i: d_{i} \geq i-1\right\}$.

Definitions

The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of a simple graph records the number of edges incident with each vertex. We write it in nonincreasing order.

$$
\begin{aligned}
& d=(2,2,2,1,1) \\
& m(d)=3 \\
& \Delta_{1}(d)=1 \cdot 0+(1+1+1+1)-2
\end{aligned}
$$

The principal Erdős-Gallai differences are defined as

$$
\Delta_{k}(d)=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \quad \text { for } 1 \leq k \leq m(d)
$$

where the modified Durfee number $m(d)=\max \left\{i: d_{i} \geq i-1\right\}$.
We write $\Delta(d)=\left(\Delta_{1}(d), \ldots, \Delta_{m(d)}(d)\right)$.

Definitions

The degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ of a simple graph records the number of edges incident with each vertex. We write it in nonincreasing order.

$$
\begin{aligned}
& d=(2,2,2,1,1) \\
& m(d)=3 \\
& \Delta_{1}(d)=1 \cdot 0+(1+1+1+1)-2 \\
& \Delta(d)=(2,2,2)
\end{aligned}
$$

The principal Erdős-Gallai differences are defined as

$$
\Delta_{k}(d)=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \quad \text { for } 1 \leq k \leq m(d)
$$

where the modified Durfee number $m(d)=\max \left\{i: d_{i} \geq i-1\right\}$.
We write $\Delta(d)=\left(\Delta_{1}(d), \ldots, \Delta_{m(d)}(d)\right)$.

Where the definition comes from

Theorem [Erdős-Gallai '60; Li '75; Hammer-Ibaraki-Simeone '81]

A nonincreasing list of nonnegative numbers $\left(d_{1}, \ldots, d_{n}\right)$ with even sum is the degree sequence of a simple graph iff

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \in\{1, \ldots, m(d)\}$.

Where the definition comes from

Theorem [Erdős-Gallai '60; Li '75; Hammer-Ibaraki-Simeone '81]

A nonincreasing list of nonnegative numbers $\left(d_{1}, \ldots, d_{n}\right)$ with even sum is the degree sequence of a simple graph iff

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \in\{1, \ldots, m(d)\}$.

Corollary

For any degree sequence d and $k \in\{1, \ldots, m(d)\}$,

$$
\Delta_{k}(d)=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \geq 0
$$

Motivation/applications

First appearances
Erdős-Gallai differences appear in Koren '75 and (with an opposite sign) Li '75, used in simplifying degree sequence recognition and characterizing special graph classes.

Motivation/applications

First appearances
Erdős-Gallai differences appear in Koren '75 and (with an opposite sign) Li '75, used in simplifying degree sequence recognition and characterizing special graph classes.

The Erdős-Gallai criterion: $\Delta_{k}(d) \geq 0$ for all k

Lemma [Li '75]

Given a degree sequence d with n terms, let $m=m(d)$. Then

- The differences $\Delta_{m}(d), \Delta_{m+1}(d), \ldots, \Delta_{n}(d)$ form a strictly increasing sequence.
- If $d_{1}=\cdots=d_{q}>d_{q+1}$ and $\Delta_{q}(d)$ is nonnegative, then $\Delta_{i}(d) \geq 0$ for all $i \in\{1, \ldots, \min \{q, m\}\}$.

Later authors: even fewer Erdős-Gallai inequalities need to be checked!

Split graphs and the last EG difference

Erdős-Gallai differences show up in the splittance $s(G)$ of a graph (i.e., the edit distance to the class of split graphs).

Split graphs

Split graphs and the last EG difference

Erdős-Gallai differences show up in the splittance $s(G)$ of a graph (i.e., the edit distance to the class of split graphs).

Split graphs

independent set

Split graphs and the last EG difference

Erdős-Gallai differences show up in the splittance $s(G)$ of a graph (i.e., the edit distance to the class of split graphs).

Split graphs

$$
\Delta(d)=(2,4,4,4)
$$

independent set

Split graphs and the last EG difference

Erdős-Gallai differences show up in the splittance $s(G)$ of a graph (i.e., the edit distance to the class of split graphs).

Split graphs

$$
\Delta(d)=(2,4,4,4)
$$

Theorem [Hammer-Simeone '81], adapted

If d is the degree sequence of any graph G, then $\Delta_{m(d)}(d)=2 s(G)$.

Graph families

Other degree sequence characterizations can be restated in terms of Erdős-Gallai differences.

Split graphs

Theorem [Hammer-Simeone '81], adapted

A graph with degree sequence d is a split graph iff $\Delta_{m(d)}(d)=0$.

Example. $\Delta(d)=(2,1,0)$

Graph families

Other degree sequence characterizations can be restated in terms of Erdős-Gallai differences.

Threshold graphs

Example. $\Delta(d)=(0,0,0)$

Threshold: uniquely realizable from its degree sequence; also...

Theorem [Li '75, Hammer-Ibaraki-Simeone '81], adapted

A graph with degree sequence d is a threshold graph iff $\Delta_{k}(d)=0$ for all $k \in\{1, \ldots, m(d)\}$.

Graph families

Other degree sequence characterizations can be restated in terms of Erdős-Gallai differences.

Weakly threshold graphs

Definition [B '18]

A graph with degree sequence d is a weakly threshold graph iff
$\Delta_{k}(d) \leq 1$ for all
$k \in\{1, \ldots, m(d)\}$.

ExAMPLE. $\Delta(d)=(1,1,0)$

Further motivation/applications

When $\Delta_{k}(d)=0$

Forced adjacencies
(B '18, Cloteaux '19)

$$
d=(2,2,1,1)
$$

When $\Delta_{k}(d) \leq 1$

What more can (principal) EG differences tell us?

Principal Erdős-Gallai differences
$\Delta_{k}(d)=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i}$ for $k \in\{1, \ldots, m(d)\}$

$$
\begin{gathered}
d=(2,2,2,1,1) \\
\Delta(d)=(2,2,2)
\end{gathered}
$$

A common theme: complements

Proposition [Földes-Hammer '77, Chvátal-Hammer '77, B '18]

iff its complement is/does.

Today's questions, part 1

Can we "connect" the Erdős-Gallai differences of complementary graphs somehow?

$(2,4,4)$

(1, 3, 4, 4)

A common theme: majorization

$$
d \succeq e \quad \text { if } \quad \sum_{i \leq k} d_{i} \geq \sum_{i \leq k} e_{i} \text { for all } k
$$

A common theme: majorization

$$
d \succeq e \quad \text { if } \quad \sum_{i \leq k} d_{i} \geq \sum_{i \leq k} e_{i} \text { for all } k
$$

Degree sequences for the following classes are "upwards closed" in the poset:

- [Ruch-Gutman, 1979; Peled-Srinivasan, 1989] Threshold graphs
- [Merris, 2003] Split graphs
- [B, 2018] Weakly threshold graphs, decomposable graphs, graphs with forced (non-)adjacencies

A common theme: majorization

$$
d \succeq e \quad \text { if } \quad \sum_{i \leq k} d_{i} \geq \sum_{i \leq k} e_{i} \text { for all } k
$$

Degree sequences for the following classes are "upwards closed" in the poset:

- [Ruch-Gutman, 1979; Peled-Srinivasan, 1989] Threshold graphs
- [Merris, 2003] Split graphs
- [B, 2018] Weakly threshold graphs, decomposable graphs, graphs with forced (non-)adjacencies

Today's questions, part 2

What characteristics of the Erdős-Gallai differences are preserved as one moves upward/downward through a poset of degree sequences?

A useful tool

The corrected Ferrers diagram $F(d)$ of a degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ is a $(0,1)$-matrix with 0 's along the diagonal and, otherwise, d_{i} left-justified 1's in the ith row.

$F((3,2,2,2,2,1))$					
0	1	1	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	0	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0

$F(\bar{d})$

Rotated, toggled version of the original!

A useful tool

The corrected Ferrers diagram $F(d)$ of a degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ is a $(0,1)$-matrix with 0's along the diagonal and, otherwise, d_{i} left-justified 1's in the ith row.
$F((3,2,2,2,2,1))$

A helpful reformulation

Define the (new?) difference matrix $M(d)$ by

$$
\begin{aligned}
M(d) & =F(d)^{T}-F(d) . \\
M((3,2,2,2,2,1)) & =\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{r}
d=(3,2,2,2,2,1) \\
\Delta(d)=(2,4,4)
\end{array}
$$

A helpful reformulation

Define the (new?) difference matrix $M(d)$ by

$$
\begin{aligned}
M(d) & =F(d)^{T}-F(d) . \\
M((3,2,2,2,2,1)) & =\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] 2
\end{aligned}
$$

Observation [B, '21+]

For $k \in\{1, \ldots, m(d)\}$, the sum of the entries in the first k rows of $M(d)$ equals $\Delta_{k}(d)$.

$$
\begin{array}{r}
d=(3,2,2,2,2,1) \\
\Delta(d)=(2,4,4)
\end{array}
$$

Today's questions, part 1

Can we "connect" the Erdős-Gallai differences of complementary graphs somehow?

$(2,4,4)$

$(1,3,4,4)$

Today's questions, part 1

Can we "connect" the Erdős-Gallai differences of complementary graphs somehow?

$(2,4,4)$

$(1,3,4,4)$

Is this immediate?
If nonincreasing $d=\left(d_{1}, \ldots, d_{n}\right)$ is a degree sequence, then the complement of a realization has degree sequence $\bar{d}=\left(n-1-d_{n}, \ldots, n-1-d_{1}\right)$:

$$
\Delta_{k}(\bar{d})=k(k-1)+\sum_{i>k} \min \left\{k, n-1-d_{n+1-i}\right\}-\sum_{i \leq k}\left(n-1-d_{n+1-i}\right) .
$$

Today's questions, part 1

Can we "connect" the Erdős-Gallai differences of complementary graphs somehow?

$(2,4,4)$

$(1,3,4,4)$

Is this immediate?
If nonincreasing $d=\left(d_{1}, \ldots, d_{n}\right)$ is a degree sequence, then the complement of a realization has degree sequence $\bar{d}=\left(n-1-d_{n}, \ldots, n-1-d_{1}\right)$:

$$
\Delta_{k}(\bar{d})=k(k-1)+\sum_{i>k} \min \left\{k, n-1-d_{n+1-i}\right\}-\sum_{i \leq k}\left(n-1-d_{n+1-i}\right) .
$$

Maybe not?

Comparing complements

$$
\begin{aligned}
& d=(3,2,2,2,2,1) \\
& \Delta(d)=(2,4,4) \\
& \bar{d}=(4,3,3,3,3,2) \\
& \Delta(\bar{d})=(1,3,4,4) \\
& M(d)= \\
& {\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
0 \\
2 \\
4 \\
3 \\
3 \\
1
\end{array}} \\
& M(\bar{d})= \\
& {\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
0 \\
1 \\
3 \\
4 \\
4 \\
2
\end{array}}
\end{aligned}
$$

Comparing complements

$$
\begin{gathered}
\begin{array}{c}
d=(3,2,2,2,2,1) \\
\Delta(d)=(2,4,4)
\end{array} \\
{\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
\Delta(\bar{d})=(1,3,3,3,3,2)
\end{array}\right.} \\
-1 \\
-1
\end{gathered} 0
$$

Theorem [B, '21+]

For all degree sequences d,

- $M(\bar{d})=M(d)_{\perp}$, where A_{\perp} denotes the "transpose about the antidiagonal."
- The later sums of entries by rows give the terms of $\Delta(\bar{d})$ in reverse order.

Proof

Theorem [B, '21+]

For all degree sequences d,

- $M(\bar{d})=M(d)_{\perp}$, where A_{\perp} denotes the "transpose about the antidiagonal."
- The later sums of entries by rows give the terms of $\Delta(\bar{d})$ in reverse order.
$F(\bar{d})$ is obtained by rotating $F(d)$ by 180° and switching non-diagonal entries from 0 to 1 , and vice versa:

$$
F(\bar{d})=\left(J_{n}-I_{n}-F(d)\right)_{\perp}^{T},
$$

where I_{n} is the identity and J_{n} is the all-ones matrix.

0	1	1	1	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	0	0	0	0
1	1	0	0	0	0
1	0	0	0	0	0

| 0 | 1 | 1 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 |

Proof

Theorem [B, '21+]

For all degree sequences d,

- $M(\bar{d})=M(d)_{\perp}$, where A_{\perp} denotes the "transpose about the antidiagonal."
- The later sums of entries by rows give the terms of $\Delta(\bar{d})$ in reverse order.
$F(\bar{d})$ is obtained by rotating $F(d)$ by 180° and switching non-diagonal entries from 0 to 1 , and vice versa:

$$
F(\bar{d})=\left(J_{n}-I_{n}-F(d)\right)_{\perp}^{T},
$$

where I_{n} is the identity and J_{n} is the all-ones matrix. Then

$$
\begin{aligned}
M(\bar{d}) & =F(\bar{d})^{T}-F(\bar{d}) \\
& =\left[\left(J_{n}-I_{n}-F(d)\right)_{\perp}^{T}\right]^{T}-\left(J_{n}-I_{n}-F(d)\right)_{\perp}^{T} \\
& =\left(F(d)^{T}-F(d)\right)_{\perp} \\
& =M(d)_{\perp} .
\end{aligned}
$$

Comparing complements

$$
\begin{gathered}
\begin{array}{c}
d=(3,2,2,2,2,1) \\
\Delta(d)=(2,4,4)
\end{array} \\
{\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
\Delta(\bar{d})=(1,3,3,3,3,2)
\end{array}\right.} \\
-1 \\
-1
\end{gathered} 0
$$

Theorem [B, '21+]

For all degree sequences d,

- $M(\bar{d})=M(d)_{\perp}$, where A_{\perp} denotes the "transpose about the antidiagonal."
- The later sums of entries by rows give the terms of $\Delta(\bar{d})$ in reverse order.

Proof, continued

Theorem [B, '21+]

For all degree sequences d,

- $M(\bar{d})=M(d)_{\perp}$, where A_{\perp} denotes the "transpose about the antidiagonal."
- The later sums of entries by rows give the terms of $\Delta(\bar{d})$ in reverse order.

Letting

$$
h_{k}=[\underbrace{1}_{k \text { terms }} \cdots \cdots 1 \underbrace{0}_{n-k \text { terms }} \cdots,
$$

$$
\mathbf{1}^{T}=\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]
$$

consider the sum of entries in the first k rows of $M(\bar{d})$:

$$
\begin{aligned}
\Delta_{k}(\bar{d}) & =h_{k} M(\bar{d}) \mathbf{1} & & =\left(\mathbf{1}^{T}-h_{n-k}\right) M(d)^{T} \mathbf{1} \\
& =h_{k} M(d)_{\perp} \mathbf{1} & & =\mathbf{1}^{T} M(d)^{T} \mathbf{1}-h_{n-k} M(d)^{T} \mathbf{1} \\
& =\left(\mathbf{1}^{T}-h_{n-k}\right)_{\perp}^{T} M(d)_{\perp} \mathbf{1}_{\perp}^{T} & & =0-h_{n-k} M(d)^{T} \mathbf{1} \\
& =\left[\left(\mathbf{1}^{T}-h_{n-k}\right) M(d)^{T} \mathbf{1}\right]_{\perp}^{T} & & =h_{n-k} M(d) \mathbf{1} .
\end{aligned}
$$

Today's question

Can we "connect" the Erdős-Gallai differences of complementary graphs somehow?

$(2,4,4)$
$(1,3,4,4)$

\[

\]

Is there a connection between cumulative sums of the first rows and that of the all-but-last-few rows?

Collisions and islands in $M(d), M(\bar{d})$

$$
\begin{gathered}
M(d)= \\
{\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
4 \\
4 \\
4 \\
3 \\
0
\end{gathered}
$$

Note how the sequences of differences overlap at their ends...

$$
\begin{gathered}
M(\bar{d})= \\
{\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{c}
0 \\
1 \\
3 \\
4 \\
4 \\
2 \\
0
\end{array}}
\end{gathered}
$$

An "island" of nonzero entries has the same sum when "anti-transposed"...

An answer to the question

Theorem [B, '21+]

Some (though perhaps not all) of the Erdős-Gallai differences of \bar{d} match those of d.

In particular,

- $\Delta(d)$ and $\Delta(d)$ have the same final term, and
- $\Delta(d)$ and $\Delta(\bar{d})$ have the same maximum term.

An answer to the question

Theorem [B, '21+]

Some (though perhaps not all) of the Erdős-Gallai differences of \bar{d} match those of d.

In particular,

- $\Delta(d)$ and $\Delta(\bar{d})$ have the same final term, and
- $\Delta(d)$ and $\Delta(\bar{d})$ have the same maximum term.

Example. $\Delta(d)=(2,1,0)$

Weakly threshold graphs

EXAMPLE. $\Delta(d)=(1,1,0)$

Definition [B '18]
A graph with degree sequence d is a weakly threshold graph iff
$\Delta_{k}(d) \leq 1$ for all
$k \in\{1, \ldots, m(d)\}$.

An answer to the question

Theorem [B, '21+]

Some (though perhaps not all) of the Erdős-Gallai differences of \bar{d} match those of d.

In particular,

- $\Delta(d)$ and $\Delta(d)$ have the same final term, and
- $\Delta(d)$ and $\Delta(\bar{d})$ have the same maximum term.

Corollary

$$
\text { A graph is }\left\{\begin{array}{c}
\text { split } \\
\text { threshold } \\
\text { weakly threshold }
\end{array}\right\}
$$

iff its complement is.

More generally

Corollary [B '21+]

The following classes of graphs are closed under complementation for all $z \in \mathbb{N}_{0}$:

- Those graphs having final Erdős-Gallai difference equal to (or \leq) z (i.e., those with splittance (at most) $z / 2$);
- Those graphs having maximum Erdős-Gallai difference equal to (or \leq) z.

Today's questions, part 2

What characteristics of the Erdős-Gallai differences are preserved as one moves upward/downward through a poset of degree sequences?

In the majorization poset

Monotonicity under majorization

$$
d \succeq e \quad \text { if } \quad \sum_{i \leq k} d_{i} \geq \sum_{i \leq k} e_{i} \text { for all } k
$$

Degree sequences for the following classes are "upwards closed" in the poset:

- [Ruch-Gutman, 1979; Peled-Srinivasan, 1989] Threshold graphs
- [Merris, 2003] Split graphs
- [B, 2018] Weakly threshold graphs, decomposable graphs, graphs with forced (non-)adjacencies

Monotonicity under majorization

$$
d \succeq e \quad \text { if } \quad \sum_{i \leq k} d_{i} \geq \sum_{i \leq k} e_{i} \text { for all } k
$$

Degree sequences for the following classes are "upwards closed" in the poset:

- [Ruch-Gutman, 1979;

Peled-Srinivasan, 1989]
Threshold graphs

- [Merris, 2003] Split graphs
- [B, 2018] Weakly threshold graphs, decomposable graphs, graphs with forced (non-)adjacencies

The Rao poset on degree sequences

S.B. Rao (1980): $d \succcurlyeq e$ if
there exist realizations G, H of d, e, respectively, so that G contains H as an induced subgraph. We say that d Rao-contains e.

Rao's poset links degree sequences and induced subgraphs in (mostly) natural ways... forbidden subgraphs ~ "forbidden sequences"

The Rao poset and EG differences

Example
$d \succcurlyeq e$ if there exist realizations G, H of
d, e, respectively, so that G contains H as an induced subgraph.

$$
\begin{aligned}
& d=(4,3,3,2,2,2) \succcurlyeq e=(2,2,2,1,1) \\
& \Delta(d)=(1,3,2) \text { and } \Delta(e)=(2,2,2) \\
& e \succcurlyeq f=(2,1,1) \quad \Delta(f)=(0,0)
\end{aligned}
$$

The Rao poset and EG differences

Example

$$
\begin{aligned}
& d=(4,3,3,2,2,2) \succcurlyeq e=(2,2,2,1,1) \\
& \Delta(d)=(1,3,2) \text { and } \Delta(e)=(2,2,2) \\
& e \succcurlyeq f=(2,1,1) \quad \Delta(f)=(0,0)
\end{aligned}
$$

Theorem [B, 21+]

- If $d \succcurlyeq e$, then $m(d) \geq m(e)$.
- If $d \succcurlyeq e$, then
$\Delta_{m(d)}(d) \geq \Delta_{m(e)}(e)$.
- If $d \succcurlyeq e$, then $\max \Delta_{j}(d) \geq \max \Delta_{k}(e)$.

The Rao poset and EG differences

Example

$$
\begin{aligned}
& d=(4,3,3,2,2,2) \succcurlyeq e=(2,2,2,1,1) \\
& \Delta(d)=(1,3,2) \text { and } \Delta(e)=(2,2,2) \\
& e \succcurlyeq f=(2,1,1) \quad \Delta(f)=(0,0)
\end{aligned}
$$

Theorem [B, 21+]

- If $d \succcurlyeq e$, then $m(d) \geq m(e)$.
- If $d \succcurlyeq e$, then
$\Delta_{m(d)}(d) \geq \Delta_{m(e)}(e)$.
- If $d \succcurlyeq e$, then
$\max \Delta_{j}(d) \geq \max \Delta_{k}(e)$.

Corollary

The graphs whose degree sequences d have bounded (m or Δ_{m} or max Δ_{j}) form a hereditary class.

Questions for the future

- Iterative constructions of graphs G for which $\Delta(\operatorname{deg}(G))$ satisfies desired properties?
- A refinement of the Tyshkevich decomposition (where $\Delta_{k}(d)=0$ determines breaks) in terms of other values in $\Delta(d)$?

- Other applications of $\Delta(d)$?

Questions for the future

- Iterative constructions of graphs G for which $\Delta(\operatorname{deg}(G))$ satisfies desired properties?
- A refinement of the Tyshkevich decomposition (where $\Delta_{k}(d)=0$ determines breaks) in terms of other values in $\Delta(d)$?

- Other applications of $\Delta(d)$?

Thank you!

