Uniqueness in labelings of tree-depth-critical graphs

Michael D. Barrus

Department of Mathematics
University of Rhode Island

MAA General Contributed Paper Session on Graph Theory Joint Mathematics Meetings 2017 • January 6, 2017

Joint work with John Sinkovic (University of Waterloo)

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component. $\quad(\operatorname{Here}, \operatorname{td}(G)=4)$

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component. $\quad($ Here, $\operatorname{td}(G)=4)$

Equivalently, the smallest number of labels needed in a labeling where every path with equal endpoints also has a higher label.

Tree-depth and criticality (with respect to minors)

Theorem

If G contains H as a minor, then $\operatorname{td}(G) \geq \operatorname{td}(H)$.

Tree-depth and criticality (with respect to minors)

Theorem

If G contains H as a minor, then $\operatorname{td}(G) \geq \operatorname{td}(H)$.

Idea: A graph is critical if every proper minor has lower tree-depth.
Critical minors determine the tree-depth.

New concept: 1-uniqueness

A graph is 1-unique if for every vertex v there exists an optimal ranking where v is the only vertex assigned the label 1.

Why 1-uniqueness? It's plausible!

Critical graphs with small tree-depth: Dvořák-Giannopoulou-Thilikos, '09, '12

Why 1-uniqueness? It's plausible!

Critical graphs with small tree-depth: Dvořák-Giannopoulou-Thilikos, '09, '12

(Ultimately hasty) conjecture: (B, Sinkovic, 2016)
All critical graphs are 1-unique!

Why 1-uniqueness? It's plausible!

Just like critical graphs, 1-unique graphs are tree-depth-critical with respect to

- vertex deletions,
- edge contractions, and
- deletions of edge cuts.

Why 1-uniqueness? It's useful!

Hang k-minor-critical "appendages" off every vertex of an ℓ-minor-critical graph...

Theorem (B, Sinkovic, 2016)

Graphs constructed in this way are $(k+\ell-1)$-minor-critical if the appendages are 1-unique.

Why 1-uniqueness? It's useful!

5: 136 trees, plus...

B, Sinkovic, 2016

Conjecture: If G is k-critical, then $\Delta(G) \leq k-1$
Proposition: If G is 1 -unique and $\operatorname{td}(G)=k$, then $\Delta(G) \leq k-1$.

Back to that conjecture

(B, Sinkovic, 2016, 2017+)

Is every critical graph 1-unique?

Yes for

- every k-critical graph for $k \in\{1,2,3,4\}$,
- every critical tree,
- every critical cycle,
- every Andrasfai graph,

Back to that conjecture

(B, Sinkovic, 2016, 2017+)

Is every critical graph 1-unique?

Yes for

- every k-critical graph for $k \in\{1,2,3,4\}$,
- every critical tree,
- every critical cycle,
- every Andrasfai graph,
- ...

Theorem

If G is an n-vertex critical graph and $\operatorname{td}(G) \geq n-1$, then G is 1-unique.

Resolution

Conjecture

For any k, if G is k-critical, then G is 1 -unique.

Known true for

$$
k=1,2,3,4, \quad n-1, n
$$

Resolution

Conjecture

For any k, if G is k-critical, then G is 1 -unique.

Known true for

$$
k=1,2,3,4, \quad n-1, n
$$

False for

$$
k=\quad 5,6, \ldots, n-2
$$

Finding counterexamples

Computer search using SageMath's graph database and functions

- Iterate through proper colorings of a graph.
- Identify colorings with a unique lowest label; identify 1-unique (or nearly 1-unique) graphs.
- Use 1-uniqueness to produce candidates for criticality testing.

Counterexample

A 7-vertex critical graph G with $\operatorname{td}(G)=5=n(G)-2$ that is not 1-unique!

Counterexamples

For $t \geq 2$, form H_{t} by subdividing all edges incident with a vertex of K_{t+2}.
Here, $\operatorname{td}\left(H_{t}\right)=n\left(H_{t}\right)-t$.

The graph H_{t} is critical, but in no optimal ranking can the vertex at the subdivided edges' center receive the unique 1.

Resolution

Conjecture

For any k, if G is k-critical, then G is 1 -unique.

Known true for

$$
k=1,2,3,4, \quad n-1, n
$$

Resolution

Conjecture

For any k, if G is k-critical, then G is 1 -unique.

Known true for

$$
k=1,2,3,4, \quad n-1, n
$$

False for

$$
k=\quad 5,6, \ldots, n-2
$$

Remaining questions

- Empirically, it appears that when a k-critical non-1-unique graph has a unique "problem vertex," deleting it yields a $(k-1)$-critical graph. Is this always the case?

Remaining questions

- Empirically, it appears that when a k-critical non-1-unique graph has a unique "problem vertex," deleting it yields a $(k-1)$-critical graph. Is this always the case?
- What fraction of critical graphs are 1-unique?

Remaining questions

- Empirically, it appears that when a k-critical non-1-unique graph has a unique "problem vertex," deleting it yields a $(k-1)$-critical graph. Is this always the case?
- What fraction of critical graphs are 1-unique?
- How else, instead, can we prove/disprove that critical graphs satisfy

$$
\Delta(G) \leq \operatorname{td}(G)-1 ?
$$

Remaining questions

Thank you!

