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Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of steps needed to delete all
of G, where in each step at most one vertex is deleted from each
connected component.
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Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of steps needed to delete all
of G, where in each step at most one vertex is deleted from each
connected component. (Here, td(G) = 4)
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Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of steps needed to delete all
of G, where in each step at most one vertex is deleted from each
connected component. (Here, td(G) = 4)

Equivalently, the smallest number of labels needed in a labeling
where every path with equal endpoints also has a higher label.
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Tree-depth and criticality (with respect to minors)

Theorem
If G contains H as a minor, then td(G) ≥ td(H).
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Tree-depth and criticality (with respect to minors)

Theorem
If G contains H as a minor, then td(G) ≥ td(H).

Idea: A graph is critical if every proper minor has lower tree-depth.

Critical minors determine the tree-depth.
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New concept: 1-uniqueness

A graph is 1-unique if for every vertex v there exists an optimal
ranking where v is the only vertex assigned the label 1.
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Why 1-uniqueness? It’s plausible!
Critical graphs with small tree-depth: Dvořák–Giannopoulou–Thilikos, ’09, ’12

1: 2: 3:

4:
5: 136 trees,

plus...

(Ultimately hasty) conjecture: (B, Sinkovic, 2016)
All critical graphs are 1-unique!
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Why 1-uniqueness? It’s plausible!

Just like critical graphs, 1-unique graphs are tree-depth-critical with
respect to

vertex deletions,
edge contractions, and
deletions of edge cuts.
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Why 1-uniqueness? It’s useful!

Hang k -minor-critical “appendages” off every vertex of an
`-minor-critical graph...

Theorem (B, Sinkovic, 2016)
Graphs constructed in this way are (k + `− 1)-minor-critical if the
appendages are 1-unique.
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Why 1-uniqueness? It’s useful!

1: 2: 3:

4:
5: 136 trees,

plus...

B, Sinkovic, 2016
Conjecture: If G is k -critical, then ∆(G) ≤ k − 1

Proposition: If G is 1-unique and td(G) = k , then ∆(G) ≤ k − 1.
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Back to that conjecture
(B, Sinkovic, 2016, 2017+)

Is every critical graph 1-unique?

Yes for
every k -critical graph for k ∈ {1,2,3,4},
every critical tree,
every critical cycle,
every Andrasfai graph,
...

Theorem
If G is an n-vertex critical graph and td(G) ≥ n− 1, then G is 1-unique.
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Resolution

Conjecture
For any k , if G is k -critical, then G is 1-unique.

Known true for
k = 1,2,3,4,

5,6, . . . ,n − 2,

n − 1,n

False for
k =

1,2,3,4,

5,6, . . . ,n − 2

,n − 1,n
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Finding counterexamples

3

3

3

2

Computer search using SageMath’s graph database and functions

Iterate through proper colorings of a graph.
Identify colorings with a unique lowest label; identify 1-unique (or
nearly 1-unique) graphs.
Use 1-uniqueness to produce candidates for criticality testing.
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Counterexample

A 7-vertex critical graph G with td(G) = 5 = n(G)− 2 that is not
1-unique!
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Counterexamples

For t ≥ 2, form Ht by subdividing all edges
incident with a vertex of Kt+2.

Here, td(Ht ) = n(Ht )− t .

The graph Ht is critical, but in no optimal ranking can the vertex at the
subdivided edges’ center receive the unique 1.
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Remaining questions

3

3

3

2

Empirically, it appears that when a k -critical non-1-unique graph
has a unique “problem vertex,” deleting it yields a (k − 1)-critical
graph. Is this always the case?

What fraction of critical graphs are 1-unique?

How else, instead, can we prove/disprove that critical graphs
satisfy ∆(G) ≤ td(G)− 1?
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Remaining questions

3

3

3

2

Thank you!
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