Uniqueness in labelings of tree-depth-critical graphs

Michael D. Barrus

Department of Mathematics University of Rhode Island

MAA General Contributed Paper Session on Graph Theory Joint Mathematics Meetings 2017 • January 6, 2017

Joint work with John Sinkovic (University of Waterloo)

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of steps needed to delete all of *G*, where in each step at most one vertex is deleted from each connected component. (Here, td(G) = 4)

Equivalently, the smallest number of labels needed in a labeling where every path with equal endpoints also has a higher label.

Theorem

If G contains H as a minor, then $td(G) \ge td(H)$.

Theorem

If G contains H as a minor, then $td(G) \ge td(H)$.

Idea: A graph is **critical** if every proper minor has lower tree-depth. Critical minors determine the tree-depth.

New concept: 1-uniqueness

A graph is **1-unique** if for every vertex v there exists an optimal ranking where v is the only vertex assigned the label 1.

Why 1-uniqueness? It's plausible!

Critical graphs with small tree-depth: Dvořák-Giannopoulou-Thilikos, '09, '12

Why 1-uniqueness? It's plausible!

Critical graphs with small tree-depth: Dvořák-Giannopoulou-Thilikos, '09, '12

(Ultimately hasty) conjecture: (B, Sinkovic, 2016)

All critical graphs are 1-unique!

M. D. Barrus (URI)

Uniqueness and tree-depth

Why 1-uniqueness? It's plausible!

Just like critical graphs, 1-unique graphs are tree-depth-critical with respect to

- vertex deletions,
- edge contractions, and
- deletions of edge cuts.

Why 1-uniqueness? It's useful!

Hang *k*-minor-critical "appendages" off every vertex of an ℓ -minor-critical graph...

Theorem (B, Sinkovic, 2016)

Graphs constructed in this way are $(k + \ell - 1)$ -minor-critical if the appendages are 1-unique.

M. D. Barrus (URI)

Uniqueness and tree-depth

Why 1-uniqueness? It's useful!

B, Sinkovic, 2016

Conjecture: If *G* is *k*-critical, then $\Delta(G) \leq k - 1$

Proposition: If G is 1-unique and td(G) = k, then $\Delta(G) \le k - 1$.

M. D. Barrus (URI)

Uniqueness and tree-depth

Back to that conjecture (B, Sinkovic, 2016, 2017+)

Is every critical graph 1-unique?

Yes for

- every *k*-critical graph for $k \in \{1, 2, 3, 4\}$,
- every critical tree,
- every critical cycle,
- every Andrasfai graph,

…

Back to that conjecture (B, Sinkovic, 2016, 2017+)

Is every critical graph 1-unique?

Yes for

- every *k*-critical graph for $k \in \{1, 2, 3, 4\}$,
- every critical tree,
- every critical cycle,
- every Andrasfai graph,

• ...

Theorem

If G is an n-vertex critical graph and $td(G) \ge n - 1$, then G is 1-unique.

Resolution

Conjecture

For any *k*, if *G* is *k*-critical, then *G* is 1-unique.

Known true for

$$k = 1, 2, 3, 4,$$
 $n - 1, n$

Resolution

Conjecture

For any *k*, if *G* is *k*-critical, then *G* is 1-unique.

Known true for

$$k = 1, 2, 3, 4,$$
 $n - 1, n$

False for

$$k = 5, 6, \dots, n-2$$

Finding counterexamples

Computer search using SageMath's graph database and functions

- Iterate through proper colorings of a graph.
- Identify colorings with a unique lowest label; identify 1-unique (or nearly 1-unique) graphs.
- Use 1-uniqueness to produce candidates for criticality testing.

Counterexample

A 7-vertex critical graph G with td(G) = 5 = n(G) - 2 that is not 1-unique!

Counterexamples

For $t \ge 2$, form H_t by subdividing all edges incident with a vertex of K_{t+2} .

Here,
$$td(H_t) = n(H_t) - t$$
.

The graph H_t is critical, but in <u>no</u> optimal ranking can the vertex at the subdivided edges' center receive the unique 1.

Resolution

Conjecture

For any *k*, if *G* is *k*-critical, then *G* is 1-unique.

Known true for

$$k = 1, 2, 3, 4,$$
 $n - 1, n$

Resolution

Conjecture

For any *k*, if *G* is *k*-critical, then *G* is 1-unique.

Known true for

$$k = 1, 2, 3, 4,$$
 $n - 1, n$

False for

$$k = 5, 6, \dots, n-2$$

 Empirically, it appears that when a k-critical non-1-unique graph has a unique "problem vertex," deleting it yields a (k – 1)-critical graph. Is this always the case?

- Empirically, it appears that when a k-critical non-1-unique graph has a unique "problem vertex," deleting it yields a (k – 1)-critical graph. Is this always the case?
- What fraction of critical graphs are 1-unique?

- Empirically, it appears that when a k-critical non-1-unique graph has a unique "problem vertex," deleting it yields a (k – 1)-critical graph. Is this always the case?
- What fraction of critical graphs are 1-unique?
- How else, instead, can we prove/disprove that critical graphs satisfy Δ(G) ≤ td(G) − 1?

M. D. Barrus (URI)

Thank you!