Degree Sequences, Forced Adjacency Relationships, and Weakly Threshold Graphs

Michael D. Barrus

Department of Mathematics, University of Rhode Island

Discrete Math Seminar
November 20, 2015

Realizations and Properties

$\underset{\sim}{(2,2,2,1,1)}$
2 (2) (3) 2
${ }_{1}(4){ }^{(5)}$

Realizations and Properties

Given a graph property \mathcal{P}, a degree sequence d is

- potentially \mathcal{P}-graphic if at least one realization of d has property \mathcal{P}.
- forcibly \mathcal{P}-graphic if every realization of d has property \mathcal{P}.

Forcible adjacency relationships

Forcible adjacency relationships

$\mathcal{P}_{i j}: i j$ is an edge (non-edge)

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}$: ij is an edge (non-edge)

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}: i j$ is an edge (non-edge)

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}$: ij is an edge (non-edge)

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}$: ij is an edge (non-edge)

Are there any forcible edges/non-edges?

Forcible adjacency relationships: Envelope graphs

$$
d=(2,2,2,1,1)
$$

Forcible adjacency relationships: Envelope graphs

$$
d=(2,2,2,1,1)
$$

Intersection envelope graph I_{d}

$$
E\left(I_{d}\right)=\bigcap_{d(G)=d} E(G)
$$

$$
I_{d}:
$$

Forcible adjacency relationships: Envelope graphs

$$
d=(2,2,2,1,1)
$$

Intersection envelope graph l_{d}

$$
E\left(I_{d}\right)=\bigcap_{d(G)=d} E(G)
$$

Union envelope graph U_{d}

$$
E\left(U_{d}\right)=\bigcup_{d(G)=d} E(G)
$$

A key graph class: Threshold graphs

Chvátal-Hammer, 1973; many others
Many equivalent characterizations...
threshold sequence: a degree sequence having exactly one (labeled) realization.
threshold graph: a realization of a threshold sequence.

A key graph class: Threshold graphs

Chvátal-Hammer, 1973; many others
Many equivalent characterizations...
threshold sequence: a degree sequence having exactly one (labeled) realization.
threshold graph: a realization of a threshold sequence.

$$
d=(4,3,2,2,1)
$$

A key graph class: Threshold graphs

Chvátal-Hammer, 1973; many others
Many equivalent characterizations...
threshold sequence: a degree sequence having exactly one (labeled) realization.
threshold graph: a realization of a threshold sequence.

$$
d=(4,3,2,2,1)
$$

A key graph class: Threshold graphs

Chvátal-Hammer, 1973; many others
Many equivalent characterizations...
threshold sequence: a degree sequence having exactly one (labeled) realization.
threshold graph: a realization of a threshold sequence.

$$
d=(4,3,2,2,1)
$$

A key graph class: Threshold graphs

Chvátal-Hammer, 1973; many others
Many equivalent characterizations...
threshold sequence: a degree sequence having exactly one (labeled) realization.
threshold graph: a realization of a threshold sequence.

$$
d=(4,3,2,2,1)
$$

All edges and non-edges are forced by the degree sequence.

Forcible adjacency relationships: Envelope graphs

$(4,3,2,2,1)$

No edges or non-edges are forced by the degree sequence.
$d=(2,2,1,1)$

Forcible adjacency relationships: Envelope graphs

$(4,3,2,2,1)$

No edges or non-edges are forced by the degree sequence.

All edges and non-edges are forced by the degree sequence.

$$
d=(2,2,1,1)
$$

Questions

- How can we recognize forcible adjacency relationships from a degree sequence?

$$
d=(5,4,3,3,3,1,1)
$$

- How can we recognize forcible adjacency relationships from a graph?

- What connections are there to interesting graph classes?

How can we recognize forcible adjacency relationships from a degree sequence?

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
d^{+}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
d^{-}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1)
$$

$$
d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
d^{+}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
d^{-}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1)
$$

$$
d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
& d^{+}(i, j)=\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
& d^{-}(i, j)=\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1) \quad d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

Lemma

The pair i, j is a forcible $\left\{\begin{array}{c}\text { edge } \\ \text { non-edge }\end{array}\right\}$ ford iff $\left\{\begin{array}{c}d^{+}(i, j) \\ d^{-}(i, j)\end{array}\right\}$ is not graphic.

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
d^{+}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
d^{-}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1)
$$

$$
d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

Lemma

The pair i, j is a forcible $\left\{\begin{array}{c}\text { edge } \\ \text { non-edge }\end{array}\right\}$ ford iff $\left\{\begin{array}{c}d^{+}(i, j) \\ d^{-}(i, j)\end{array}\right\}$ is not graphic.

Erdős-Gallai inequalities

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\underbrace{\sum_{i \leq k} d_{i}}_{\mathrm{LHS}_{k}(d)} \leq \underbrace{k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}}_{\mathrm{RHS}_{k}(d)}
$$

for all $k \leq m=\max \left\{i: d_{i} \geq i-1\right\}$.

Erdős-Gallai inequalities

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\underbrace{\sum_{i \leq k} d_{i}}_{\mathrm{LHS}_{k}(d)} \leq \underbrace{k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}}_{\mathrm{RHS}_{k}(d)}
$$

for all $k \leq m=\max \left\{i: d_{i} \geq i-1\right\}$.

Theorem (Hammer-Ibaraki-Simeone, 1978)

d is a threshold sequence if and only if $\mathrm{LHS}_{k}(d)=\mathrm{RHS}_{k}(d)$ for all $k \in\{1, \ldots, m\}$.

Erdős-Gallai differences

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\Delta_{k}(d)=\mathrm{RHS}_{k}(d)-\operatorname{LHS}_{k}(d)
$$

for all $k \leq m=\max \left\{i: d_{i} \geq i-1\right\}$.

Theorem

Given $1 \leq i<j \leq n$,
$\{i, j\}$ is a forced edge iff $\exists k \in\{1, \ldots, n\}$ such that either
$\Delta_{k}(d)=0, \quad i \leq k<j$, and $k \leq d_{j} ; \quad$ or $\quad \Delta_{k}(d) \leq 1$ and $j \leq k$.
$\{i, j\}$ is a forced non-edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\Delta_{k}(d)=0, k<i$, and $d_{j}<k \leq d_{i} ;$ or $\Delta_{k}(d) \leq 1$ and $d_{i}<k<i$.

$$
(7,6, \quad \underline{3}, \underline{3}, \quad \underline{3}, \underline{3}, 1,1,1)
$$

$$
(4, \quad 4, \quad 3, \quad 3, \quad 3, \quad 1)
$$

How can we recognize forcible adjacency relationships from a graph?

A switching result?

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for $d(G)$ if and only if $\{i, j\}$ belongs to no alternating circuit in G.

A switching result?

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for $d(G)$ if and only if $\{i, j\}$ belongs to no alternating circuit in G.

Lots to check...

A structural characterization

A clique is demanding if every vertex outside the clique has as many neighbors as possible in the clique.

A structural characterization

A clique is demanding if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is weakly demanding if changing one neighbor of a single vertex outside the clique makes the clique demanding.

A structural characterization

A clique is demanding if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is weakly demanding if changing one neighbor of a single vertex outside the clique makes the clique demanding.

Theorem

A realization edge is forced for d iff it lies in a demanding or weakly demanding clique or it joins a demanding clique vertex to an external vertex that dominates the
 clique.

Overall structure of forced relationships

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Canonical decomposition [Tyshkevich et al., 1980's, 2000]: Indecomposable split components hooked to each other and an indecomposable "core" following the rightwards dominating/isolated rule; every graph has a unique decomposition, up to isomorphism of canonical components.

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

- $\operatorname{LHS}_{k}(d)=\mathrm{RHS}_{k}(d)$;
- Vertices $1, \ldots, k$ comprise a demanding clique;
- Vertices $1, \ldots, k$ comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

- $\operatorname{LHS}_{k}(d)=\mathrm{RHS}_{k}(d)$;
- Vertices $1, \ldots, k$ comprise a demanding clique;
- Vertices $1, \ldots, k$ comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Composing the appropriate envelopes of the individual canonical components, we obtain I_{d} and U_{d}.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Composing the appropriate envelopes of the individual canonical components, we obtain I_{d} and U_{d}.

What connections are there to interesting graph classes?

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Threshold sequences: maximal graphic elements

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Threshold sequences: maximal graphic elements

Theorem

If vertices i and j have a forcible adjacency relationship in realizations of d, then i and j have the same adjacency relationship for all degree sequences that majorize d.

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Threshold sequences: maximal graphic elements

Theorem

If vertices i and j have a forcible adjacency relationship in realizations of d, then i and j have the same adjacency relationship for all degree sequences that majorize d.

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.

- Unique realization of degree sequence

- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Threshold sequences majorize all other degree sequences

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

There are exactly 2^{n-1} threshold graphs with n vertices.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Forbidden subgraphs

G is a threshold graph if and only if G has no induced subgraph isomorphic to $2 K_{2}, P_{4}$, or C_{4} :

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Forbidden subgraphs

G is a threshold graph if and only if G has no induced subgraph isomorphic to $2 K_{2}, P_{4}$, or C_{4} :

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.

- Unique realization of degree sequence

- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Threshold sequences majorize all other degree sequences

Erdős-Gallai differences

Which adjacency relationships are forced by d ?

$$
\underbrace{\sum_{i \leq k} d_{i}}_{\mathrm{LHS}_{k}(d)} \leq \underbrace{k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}}_{\mathrm{RHS}_{k}(d)}
$$

$$
\Delta_{k}(d)=\mathrm{RHS}_{k}(d)-\mathrm{LHS}_{k}(d)
$$

Erdős-Gallai differences

Which adjacency relationships are forced by d ?

$$
\underbrace{\sum_{i \leq k} d_{i}}_{\operatorname{LHS}_{k}(d)} \leq \underbrace{k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}}_{\mathrm{RHS}_{k}(d)} \quad \Delta_{k}(d)=\mathrm{RHS}_{k}(d)-\mathrm{LHS}_{k}(d)
$$

Theorem

Given $1 \leq i<j \leq n$,
$\{i, j\}$ is a forced edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\Delta_{k}(d)=0, \quad i \leq k<j$, and $k \leq d_{j} ; \quad$ or $\quad \Delta_{k}(d) \leq 1 \quad$ and $j \leq k$.
$\{i, j\}$ is a forced non-edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\Delta_{k}(d)=0, \quad k<i, \quad$ and $d_{j}<k \leq d_{i} ; \quad$ or $\quad \Delta_{k}(d) \leq 1 \quad$ and $d_{i}<k<i$.

Forcible edges can be determined by examining when $\Delta_{k}(d) \leq 1$.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- The first $m(d)$ Erdős-Gallai differences equal 0.
- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- The first $m(d)$ Erdős-Gallai differences equal 0.
- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences

What if $\Delta_{k}(d) \leq 1$?

Weakly threshold graphs

A weakly threshold sequence is a graphic list $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order having even sum and satisfying $0 \leq \Delta_{k}(d) \leq 1$ for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

A weakly threshold graph is a graph having a weakly threshold sequence as its degree sequence.

Weakly threshold graphs

A weakly threshold sequence is a graphic list $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order having even sum and satisfying $0 \leq \Delta_{k}(d) \leq 1$ for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

A weakly threshold graph is a graph having a weakly threshold sequence as its degree sequence.

Near the threshold

Threshold sequences majorize all other degree sequences

Near the threshold

Threshold sequences majorize all other degree sequences

Near the threshold

Threshold sequences majorize all other degree sequences

Near the threshold

Threshold sequences majorize all other degree sequences

Near the threshold

Threshold sequences majorize all other degree sequences

WT sequences are upwards-closed, continue to majorize.

A forbidden subgraph characterization

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

The class is closed under complementation. Weakly threshold graphs are all split graphs.

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

They form a large subclass of interval \cap co-interval.
(This class's forbidden induced subgraphs:)

Structural characterization

Threshold iff constructed from K_{1} via dominating/

 isolated vertices.Exactly 2^{n-1} threshold graphs on n vertices.

Structural characterization

```
Threshold iff constructed from K}\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where
a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from }\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where
a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from }\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where
a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from }\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where
a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from K}\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly 2 2-1 threshold graphs on n vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where
a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Iterative construction

Threshold iff constructed from K_{1} via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on n vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_{1} or P_{4} by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,
- an isolated vertex,
- a weakly isolated vertex, or
- a P_{4} with its midpoints dominating all previous vertices.

Enumeration

Threshold iff constructed from K_{1} via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on n vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_{1} or P_{4} by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,
- a P_{4} with its midpoints dominating all previous vertices.

Enumeration

Threshold iff constructed from K_{1} via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on n vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_{1} or P_{4} by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,
- a P_{4} with its midpoints dominating all previous vertices.

Subtleties in direct counting.
Difference between counting degree sequences / isomorphism classes.

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
(1,) 1,2,4,9,21,50,120,289,697,1682,4060, \ldots
$$

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
(1,) 1,2,4,9,21,50,120,289,697,1682,4060, \ldots
$$

OEIS.org sequences A024537, A171842

Theorem

$\left\{a_{n}\right\}_{n}$ satisfies the following recurrences:

- For all $n \geq 4$,

$$
a_{n}=2 a_{n-1}+\sum_{k=0}^{n-4} 2^{k} a_{n-4-k}
$$

- For all $n \geq 3$,

$$
a_{n}=3 a_{n-1}-a_{n-2}-a_{n-3} .
$$

- For all $n \geq 4$,

$$
a_{n}=4 a_{n-1}-4 a_{n-2}+a_{n-4}
$$

- For all $n \geq 2$,

$$
a_{n}=2 a_{n-1}+a_{n-2}-1
$$

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
a_{n}=\frac{2+(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{4} \approx \frac{1}{4} \cdot 2.4^{n}
$$

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
a_{n}=\frac{2+(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{4} \approx \frac{1}{4} \cdot 2.4^{n}
$$

From OEIS.org:

- Binomial transform of $1,0,1,0,2,0,4,0,8,0,16, \ldots$
- Number of nonisomorphic n-element interval orders with no 3 -element antichain.
- Top left entry of the nth power of $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ or of $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
- Number of $\left(1, s_{1}, \ldots, s_{n-1}, 1\right)$ such that $s_{i} \in\{1,2,3\}$ and $\left|s_{i}-s_{i-1}\right| \leq 1$.
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an $(n-1)$-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- Lower bound of the order of the set of equivalent resistances of $(n-1)$ equal resistors combined in series and in parallel.

Properties of weakly threshold graphs

- The first $m(d)$ Erdős-Gallai differences equal 0 or 1.
- Iterative construction via (weakly) dominating vertices/(weakly) isolated vertices/half-dominating P_{4} s.
- There are exactly

$$
\frac{2+(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{4}
$$

- Constrained realizations of degree sequences
- $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free
- Weakly threshold sequences at the top of the majorization poset
weakly threshold sequences of length n.

