Degree Sequences, Forced Adjacency Relationships, and Weakly Threshold Graphs

Michael D. Barrus

Department of Mathematics, University of Rhode Island

Discrete Math Seminar November 20, 2015

Realizations and Properties

Realizations and Properties

Given a graph property \mathcal{P} , a degree sequence d is

- **potentially** \mathcal{P} -graphic if at least one realization of *d* has property \mathcal{P} .
- forcibly \mathcal{P} -graphic if every realization of d has property \mathcal{P} .

 \mathcal{P}_{ij} : *ij* is an edge (non-edge)

Are there any forcible edges/non-edges?

M. D. Barrus (URI)

 \mathcal{P}_{ij} : *ij* is an edge (non-edge)

Are there any forcible edges/non-edges?

M. D. Barrus (URI)

 \mathcal{P}_{ij} : *ij* is an edge (non-edge)

Are there any forcible edges/non-edges?

M. D. Barrus (URI)

 \mathcal{P}_{ij} : *ij* is an edge (non-edge)

Are there any forcible edges/non-edges?

M. D. Barrus (URI)

 \mathcal{P}_{ij} : *ij* is an edge (non-edge)

Are there any forcible edges/non-edges?

M. D. Barrus (URI)

$$d = (2, 2, 2, 1, 1)$$

$$d = (2, 2, 2, 1, 1)$$

Intersection envelope graph I_d $E(I_d) = \bigcap_{d(G)=d} E(G)$

$$d = (2, 2, 2, 1, 1)$$

Intersection envelope graph I_d $E(I_d) = \bigcap_{d(G)=d} E(G)$

Union envelope graph U_d $E(U_d) = \bigcup_{d(G)=d} E(G)$

Chvátal-Hammer, 1973; many others

Many equivalent characterizations...

threshold sequence: a degree sequence having exactly one (labeled) realization.

Chvátal-Hammer, 1973; many others

Many equivalent characterizations...

threshold sequence: a degree sequence having exactly one (labeled) realization.

$$d = (4,3,2,2,1)$$

Chvátal-Hammer, 1973; many others

Many equivalent characterizations...

threshold sequence: a degree sequence having exactly one (labeled) realization.

$$d = (4, 3, 2, 2, 1)$$

Chvátal-Hammer, 1973; many others

Many equivalent characterizations...

threshold sequence: a degree sequence having exactly one (labeled) realization.

$$d = (4, 3, 2, 2, 1)$$

Chvátal-Hammer, 1973; many others

Many equivalent characterizations...

threshold sequence: a degree sequence having exactly one (labeled) realization.

threshold graph: a realization of a threshold sequence.

$$d = (4, 3, 2, 2, 1)$$

<u>All</u> edges and non-edges are forced by the degree sequence.

M. D. Barrus (URI)

No edges or non-edges are forced by the degree sequence.

<u>All</u> edges and non-edges are forced by the degree sequence.

$$d = (2, 2, 1, 1)$$

No edges or non-edges are forced by the degree sequence.

<u>All</u> edges and non-edges are forced by the degree sequence.

$$d = (2, 2, 1, 1)$$

Questions

• How can we recognize forcible adjacency relationships from a degree sequence?

d = (5, 4, 3, 3, 3, 1, 1)

How can we recognize forcible adjacency relationships from a graph?

What connections are there to interesting graph classes?

How can we recognize forcible adjacency relationships from a degree sequence?

$$d^+(i,j) = (d_1, \dots, d_{i-1}, d_i + 1, d_{i+1}, \dots, d_{j-1}, d_j + 1, d_{j+1}, \dots, d_n)$$
 and
 $d^-(i,j) = (d_1, \dots, d_{i-1}, d_i - 1, d_{i+1}, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n).$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

$$d^{+}(i,j) = (d_{1}, \dots, d_{i-1}, d_{i}+1, d_{i+1}, \dots, d_{j-1}, d_{j}+1, d_{j+1}, \dots, d_{n}) \text{ and } d^{-}(i,j) = (d_{1}, \dots, d_{i-1}, d_{i}-1, d_{i+1}, \dots, d_{j-1}, d_{j}-1, d_{j+1}, \dots, d_{n}).$$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

$$d^{+}(i,j) = (d_{1}, \dots, d_{i-1}, d_{i}+1, d_{i+1}, \dots, d_{j-1}, d_{j}+1, d_{j+1}, \dots, d_{n}) \text{ and } d^{-}(i,j) = (d_{1}, \dots, d_{i-1}, d_{i}-1, d_{i+1}, \dots, d_{j-1}, d_{j}-1, d_{j+1}, \dots, d_{n}).$$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

Lemma
The pair *i*, *j* is a forcible
$$\begin{cases} edge \\ non-edge \end{cases}$$
 for *d* iff $\begin{cases} d^+(i,j) \\ d^-(i,j) \end{cases}$ is not graphic.

$$d^{+}(i,j) = (d_{1}, \dots, d_{i-1}, d_{i}+1, d_{i+1}, \dots, d_{j-1}, d_{j}+1, d_{j+1}, \dots, d_{n}) \text{ and } d^{-}(i,j) = (d_{1}, \dots, d_{i-1}, d_{i}-1, d_{i+1}, \dots, d_{j-1}, d_{j}-1, d_{j+1}, \dots, d_{n}).$$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

Lemma
The pair *i*, *j* is a forcible
$$\begin{cases} edge \\ non-edge \end{cases}$$
 for *d* iff $\begin{cases} d^+(i,j) \\ d^-(i,j) \end{cases}$ is not graphic.

Erdős–Gallai inequalities

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\underbrace{\sum_{i \leq k} d_i}_{\mathsf{LHS}_k(d)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\mathsf{RHS}_k(d)}$$

for all $k \leq m = \max\{i : d_i \geq i - 1\}$.

Erdős–Gallai inequalities

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\underbrace{\sum_{i \leq k} d_i}_{\mathsf{LHS}_k(d)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\mathsf{RHS}_k(d)}$$

for all $k \leq m = \max\{i : d_i \geq i - 1\}$.

Theorem (Hammer–Ibaraki–Simeone, 1978)

d is a threshold sequence if and only if $LHS_k(d) = RHS_k(d)$ for all $k \in \{1, ..., m\}$.

Erdős–Gallai differences

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{\substack{i \leq k \\ \mathsf{LHS}_{k}(d)}} d_{i} \leq k(k-1) + \sum_{i > k} \min\{k, d_{i}\}$$

for all $k \leq m = \max\{i : d_{i} \geq i-1\}.$

 $\Delta_k(d) = \mathsf{RHS}_k(d) - \mathsf{LHS}_k(d)$

Theorem

Given $1 \le i < j \le n$, $\{i, j\}$ is a forced edge iff $\exists k \in \{1, ..., n\}$ such that either $\Delta_k(d) = 0, i \le k < j$, and $k \le d_j$; Or $\Delta_k(d) \le 1$ and $j \le k$.

 $\{i, j\}$ is a **forced non-edge** iff $\exists k \in \{1, ..., n\}$ such that either $\Delta_k(d) = 0$, k < i, and $d_j < k \le d_i$; Or $\Delta_k(d) \le 1$ and $d_i < k < i$.

How can we recognize forcible adjacency relationships from a graph?

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for d(G) if and only if $\{i, j\}$ belongs to no alternating circuit in G.

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for d(G) if and only if $\{i, j\}$ belongs to no alternating circuit in G.

Lots to check...

A structural characterization

A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

A structural characterization

A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is **weakly demanding** if changing one neighbor of a single vertex outside the clique makes the clique demanding.

A structural characterization

A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is **weakly demanding** if changing one neighbor of a single vertex outside the clique makes the clique demanding.

Theorem

A realization edge is forced for d iff it lies in a demanding or weakly demanding clique or it joins a demanding clique vertex to an external vertex that dominates the clique.

Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.

M. D. Barrus (URI)

Canonical decomposition [Tyshkevich et al., 1980's, 2000]: Indecomposable split components hooked to each other and an indecomposable "core" following the rightwards dominating/isolated rule; every graph has a unique decomposition, up to isomorphism of canonical components.

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

- $LHS_k(d) = RHS_k(d);$
- Vertices 1,..., k comprise a demanding clique;
- Vertices 1,..., k comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

M. D. Barrus (URI)

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

- $LHS_k(d) = RHS_k(d);$
- Vertices 1,..., k comprise a demanding clique;
- Vertices 1,..., k comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

M. D. Barrus (URI)

Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.

Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.

Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.

Composing the appropriate envelopes of the individual canonical components, we obtain I_d and U_d .

M. D. Barrus (URI)

Forced adjacencies, weakly threshold graphs

Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.

Composing the appropriate envelopes of the individual canonical components, we obtain I_d and U_d .

M. D. Barrus (URI)

Forced adjacencies, weakly threshold graphs

What connections are there to interesting graph classes?

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

• Equality in the first *m*(*d*) Erdős–Gallai inequalities.

 $\sum_{i\leq k} d_i = k(k-1) + \sum_{i>k} \min\{k, d_i\}$

 Iterative construction via dominating/isolated vertices

• There are exactly 2^{*n*-1} threshold graphs on *n* vertices.

• Unique realization of degree sequence

$$\{2K_2, P_4, C_4\}$$
-free

. . .

 Threshold sequences majorize all other degree sequences

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Canonical decomposition

There are exactly 2^{n-1} threshold graphs with *n* vertices.

(Chvátal, Hammer, others, 1973+)

Forbidden subgraphs

G is a threshold graph if and only if *G* has no induced subgraph isomorphic to $2K_2$, P_4 , or C_4 :

(Chvátal, Hammer, others, 1973+)

Forbidden subgraphs

G is a threshold graph if and only if *G* has no induced subgraph isomorphic to $2K_2$, P_4 , or C_4 :

(Chvátal, Hammer, others, 1973+)

• Equality in the first *m*(*d*) Erdős–Gallai inequalities.

 $\sum_{i\leq k} d_i = k(k-1) + \sum_{i>k} \min\{k, d_i\}$

 Iterative construction via dominating/isolated vertices

• There are exactly 2^{*n*-1} threshold graphs on *n* vertices.

• Unique realization of degree sequence

$$\{2K_2, P_4, C_4\}$$
-free

. . .

Erdős–Gallai differences

Which adjacency relationships are forced by d?

$$\underbrace{\sum_{i \leq k} d_i}_{\mathsf{LHS}_k(d)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\mathsf{RHS}_k(d)}$$

 $\Delta_k(d) = \mathsf{RHS}_k(d) - \mathsf{LHS}_k(d)$

Erdős–Gallai differences

Which adjacency relationships are forced by d?

$$\underbrace{\sum_{i \leq k} d_i}_{\mathsf{LHS}_k(d)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\mathsf{RHS}_k(d)}$$

 $\Delta_k(d) = \mathsf{RHS}_k(d) - \mathsf{LHS}_k(d)$

Theorem

Given $1 \le i < j \le n$, $\{i, j\}$ is a **forced edge** iff $\exists k \in \{1, ..., n\}$ such that either $\Delta_k(d) = 0$, $i \le k < j$, and $k \le d_j$; or $\Delta_k(d) \le 1$ and $j \le k$. $\{i, j\}$ is a **forced non-edge** iff $\exists k \in \{1, ..., n\}$ such that either $\Delta_k(d) = 0$, k < i, and $d_j < k \le d_i$; or $\Delta_k(d) \le 1$ and $d_i < k < i$.

Forcible edges can be determined by examining when $\Delta_k(d) \leq 1$.

M. D. Barrus (URI)

Forced adjacencies, weakly threshold graphs

(Chvátal, Hammer, others, 1973+)

- The first *m*(*d*) Erdős–Gallai differences equal 0.
- Iterative construction via dominating/isolated vertices

• Unique realization of degree sequence

● {2*K*₂, *P*₄, *C*₄}-free

• There are exactly 2^{*n*-1} threshold graphs on *n* vertices.

(Chvátal, Hammer, others, 1973+)

- The first *m*(*d*) Erdős–Gallai differences equal 0.
- Iterative construction via dominating/isolated vertices

• Unique realization of degree sequence

● {2*K*₂, *P*₄, *C*₄}-free

 There are exactly 2ⁿ⁻¹ threshold graphs on n vertices.

 Threshold sequences majorize all other degree sequences

What if $\Delta_k(d) \leq 1$?

Weakly threshold graphs

A weakly threshold sequence is a graphic list $d = (d_1, ..., d_n)$ of nonnegative integers in descending order having even sum and satisfying $0 \le \Delta_k(d) \le 1$ for all $k \le \max\{i : d_i \ge i - 1\}$.

A **weakly threshold graph** is a graph having a weakly threshold sequence as its degree sequence.

Weakly threshold graphs

A weakly threshold sequence is a graphic list $d = (d_1, ..., d_n)$ of nonnegative integers in descending order having even sum and satisfying $0 \le \Delta_k(d) \le 1$ for all $k \le \max\{i : d_i \ge i - 1\}$.

A **weakly threshold graph** is a graph having a weakly threshold sequence as its degree sequence.

Threshold sequences majorize all other degree sequences

WT sequences are upwards-closed, continue to majorize.

M. D. Barrus (URI)

Forced adjacencies, weakly threshold graphs

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

The class of weakly threshold graphs is **hereditary** (i.e., closed under taking induced subgraphs).

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

The class of weakly threshold graphs is **hereditary** (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

The class of weakly threshold graphs is **hereditary** (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.

The class is closed under complementation. Weakly threshold graphs are all **split** graphs.

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

The class of weakly threshold graphs is **hereditary** (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.

They form a large subclass of interval \cap co-interval.

(This class's forbidden induced subgraphs:)

Forced adjacencies, weakly threshold graphs

Threshold iff constructed from K_1 via dominating/ isolated vertices.

Exactly 2^{n-1} threshold graphs on *n* vertices.

Threshold iff constructed from K_1 via dominating/ isolated vertices.

Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where

Threshold iff constructed from K_1 via dominating/ isolated vertices.

Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where

Threshold iff constructed from K_1 via dominating/ isolated vertices.

Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where

Threshold iff constructed from K_1 via dominating/ isolated vertices.

Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where

Threshold iff constructed from K_1 via dominating/ isolated vertices.

Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed by canonically composing special graphs, where

Iterative construction

Threshold iff constructed from K_1 via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_1 or P_4 by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,

- an isolated vertex,
- a weakly isolated vertex, or
- a P₄ with its midpoints dominating all previous vertices.

Threshold iff constructed from K_1 via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_1 or P_4 by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,

- an isolated vertex,
- a weakly isolated vertex, or
- a P₄ with its midpoints dominating all previous vertices.

Threshold iff constructed from K_1 via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on *n* vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_1 or P_4 by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,
 - a P₄ with its midpoints dominating all previous vertices.

Subtleties in direct counting.

Difference between counting degree sequences / isomorphism classes.

- an isolated vertex,
- a weakly isolated vertex, or

Exactly 2^{n-1} threshold graphs on *n* vertices.

 a_n = number of weakly threshold **sequences** of length n

 $(1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots$

Exactly 2^{n-1} threshold graphs on *n* vertices.

 a_n = number of weakly threshold **sequences** of length n

 $(1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots$

OEIS.org sequences A024537, A171842

Theorem

 $\{a_n\}_n$ satisfies the following recurrences:

- For all $n \ge 4$, $a_n = 2a_{n-1} + \sum_{k=0}^{n-4} 2^k a_{n-4-k}$.
- For all $n \ge 3$, $a_n = 3a_{n-1} - a_{n-2} - a_{n-3}$.

• For all $n \ge 4$, $a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}$.

• For all
$$n \ge 2$$
,
 $a_n = 2a_{n-1} + a_{n-2} - 1$.

Exactly 2^{n-1} threshold graphs on *n* vertices.

 a_n = number of weakly threshold **sequences** of length *n*

$$a_n = rac{2 + (1 + \sqrt{2})^n + (1 - \sqrt{2})^n}{4} pprox rac{1}{4} \cdot 2.4^n$$
Enumeration

Exactly 2^{n-1} threshold graphs on *n* vertices.

 a_n = number of weakly threshold **sequences** of length n

$$a_n = rac{2 + (1 + \sqrt{2})^n + (1 - \sqrt{2})^n}{4} pprox rac{1}{4} \cdot 2.4^n$$

From OEIS.org:

- Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, ...
- Number of nonisomorphic n-element interval orders with no 3-element antichain.
- Top left entry of the *n*th power of $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ or of $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- Number of $(1, s_1, ..., s_{n-1}, 1)$ such that $s_i \in \{1, 2, 3\}$ and $|s_i s_{i-1}| \le 1$.
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an (n 1)-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- Lower bound of the order of the set of equivalent resistances of (n 1) equal resistors combined in series and in parallel.

Properties of weakly threshold graphs

- The first m(d) Erdős–Gallai differences equal 0 or 1.
- Iterative construction via (weakly) dominating vertices/(weakly) isolated vertices/half-dominating P₄s.
- There are exactly

$$\frac{2+(1+\sqrt{2})^n+(1-\sqrt{2})^n}{4}$$

weakly threshold sequences of length *n*.

- Constrained realizations of degree sequences
- $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free
- Weakly threshold sequences at the top of the majorization poset

?