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Realizations and Properties

(2,2,2,1,1)

1

2 3

4 5

1

2

2

2

1

b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b

Given a graph property P, a degree sequence d is

potentially P-graphic if at least one realization of d has property
P.
forcibly P-graphic if every realization of d has property P.
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Forcible adjacency relationships

Pij : ij is an edge (non-edge)

d(G) = (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)

Are there any forcible edges/non-edges?
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Forcible adjacency relationships: Envelope graphs

d = (2,2,2,1,1)
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Intersection envelope graph Id
E(Id ) =

⋂
d(G)=d
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E(Ud ) =
⋃
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E(G)

Ud :

b

b

b

b

b

M. D. Barrus (URI) Forced adjacencies, weakly threshold graphs November 20, 2015 4 / 36



Forcible adjacency relationships: Envelope graphs

d = (2,2,2,1,1)

b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b

Intersection envelope graph Id
E(Id ) =

⋂
d(G)=d

E(G)

Id :

b

b

b

b

b

Union envelope graph Ud

E(Ud ) =
⋃

d(G)=d

E(G)

Ud :

b

b

b

b

b

M. D. Barrus (URI) Forced adjacencies, weakly threshold graphs November 20, 2015 4 / 36



Forcible adjacency relationships: Envelope graphs

d = (2,2,2,1,1)

b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b

Intersection envelope graph Id
E(Id ) =

⋂
d(G)=d

E(G)

Id :

b

b

b

b

b

Union envelope graph Ud

E(Ud ) =
⋃

d(G)=d

E(G)

Ud :

b

b

b

b

b

M. D. Barrus (URI) Forced adjacencies, weakly threshold graphs November 20, 2015 4 / 36



A key graph class: Threshold graphs
Chvátal–Hammer, 1973; many others

Many equivalent characterizations...

threshold sequence: a degree sequence having exactly one
(labeled) realization.

threshold graph: a realization of a threshold sequence.
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All edges and non-edges are forced by the degree sequence.
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Forcible adjacency relationships: Envelope graphs
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Questions

How can we recognize forcible adjacency relationships from
a degree sequence?

d = (5,4,3,3,3,1,1)

How can we recognize forcible adjacency relationships from
a graph?

b

b

b

b

b

b

b

What connections are there to interesting graph classes?

M. D. Barrus (URI) Forced adjacencies, weakly threshold graphs November 20, 2015 7 / 36



How can we recognize forcible adjacency relationships from a
degree sequence?
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A beginning

For graphic d and 1 ≤ i < j ≤ n, define

d+(i , j) = (d1, . . . ,di−1,di + 1,di+1, . . . ,dj−1,dj + 1,dj+1, . . . ,dn) and
d−(i , j) = (d1, . . . ,di−1,di − 1,di+1, . . . ,dj−1,dj − 1,dj+1, . . . ,dn).

d = (2,2,1,1)

b

b b

b b

b b

b

d+(1,3) = (3,2,2,1) d+(1,2) = (3,3,1,1)

Lemma

The pair i , j is a forcible
{

edge
non-edge

}
for d iff

{
d+(i , j)
d−(i , j)

}
is not graphic.
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Erdős–Gallai inequalities

A list (d1, . . . ,dn) of nonnegative integers in descending order with
even sum is a degree sequence if and only if∑

i≤k

di︸ ︷︷ ︸
LHSk (d)

≤ k(k − 1) +
∑
i>k

min{k ,di}︸ ︷︷ ︸
RHSk (d)

for all k ≤ m = max{i : di ≥ i − 1}.

Theorem (Hammer–Ibaraki–Simeone, 1978)
d is a threshold sequence if and only if LHSk (d) = RHSk (d) for all
k ∈ {1, . . . ,m}.
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Erdős–Gallai differences

A list (d1, . . . ,dn) of nonnegative integers in descending order with
even sum is a degree sequence if and only if∑
i≤k

di︸ ︷︷ ︸
LHSk (d)

≤ k(k − 1) +
∑
i>k

min{k ,di}︸ ︷︷ ︸
RHSk (d)

∆k (d) = RHSk (d)− LHSk (d)

for all k ≤ m = max{i : di ≥ i − 1}.

Theorem
Given 1 ≤ i < j ≤ n,
{i , j} is a forced edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, i ≤ k < j , and k ≤ dj ; or ∆k (d) ≤ 1 and j ≤ k.

{i , j} is a forced non-edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, k < i , and dj < k ≤ di ; or ∆k (d) ≤ 1 and di < k < i.

(7, 6, 3, 3, 3, 3, 1, 1, 1)
(4, 4, 3, 3, 3, 1)
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How can we recognize forcible adjacency relationships from a
graph?
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A switching result?

Proposition
The pair {i , j} in G is a forcible edge or non-edge for d(G) if and only if
{i , j} belongs to no alternating circuit in G.

Lots to check...
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A structural characterization

A clique is demanding if every vertex outside the clique
has as many neighbors as possible in the clique. b bb

b

b

b

b

b

b

b bb

b

b

b A clique is weakly demanding if changing one neighbor
of a single vertex outside the clique makes the clique
demanding.

Theorem
A realization edge is forced for d iff it lies in a demanding
or weakly demanding clique or it joins a demanding
clique vertex to an external vertex that dominates the
clique.

b bb

b

b

b

b

b

b

M. D. Barrus (URI) Forced adjacencies, weakly threshold graphs November 20, 2015 14 / 36



A structural characterization

A clique is demanding if every vertex outside the clique
has as many neighbors as possible in the clique. b bb

b

b

b

b

b

b

b bb

b

b

b A clique is weakly demanding if changing one neighbor
of a single vertex outside the clique makes the clique
demanding.

Theorem
A realization edge is forced for d iff it lies in a demanding
or weakly demanding clique or it joins a demanding
clique vertex to an external vertex that dominates the
clique.

b bb

b

b

b

b

b

b

M. D. Barrus (URI) Forced adjacencies, weakly threshold graphs November 20, 2015 14 / 36



A structural characterization

A clique is demanding if every vertex outside the clique
has as many neighbors as possible in the clique. b bb

b

b

b

b

b

b

b bb

b

b

b A clique is weakly demanding if changing one neighbor
of a single vertex outside the clique makes the clique
demanding.

Theorem
A realization edge is forced for d iff it lies in a demanding
or weakly demanding clique or it joins a demanding
clique vertex to an external vertex that dominates the
clique.

b bb

b

b

b

b

b

b

M. D. Barrus (URI) Forced adjacencies, weakly threshold graphs November 20, 2015 14 / 36



Overall structure of forced relationships

d Id G Ud

(2,2,2,1,1)
b

b

b

b

b b

b

b

b

b

(4,3,2,2,1)
b

b

b

b

b b

b

b

b

b b

b

b

b

b

(2,2,1,1)
b

b b

b b

b b

b

Theorem
For any degree sequence d, both Id and Ud are threshold graphs.
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Threshold graphs and canonical decomposition
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Threshold graphs and canonical decomposition
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Canonical decomposition [Tyshkevich et al., 1980’s, 2000]: Indecomposable split
components hooked to each other and an indecomposable “core”
following the rightwards dominating/isolated rule; every graph has a
unique decomposition, up to isomorphism of canonical components.
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Canonical decomposition and forced adjacency
relationships
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b bb

b
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b

Theorem
For k ≤ m, the following are equivalent:

LHSk (d) = RHSk (d);
Vertices 1, . . . , k comprise a demanding clique;
Vertices 1, . . . , k comprise an initial segment of upper cells in a
canonical decomposition.

Hence all adjacency relationships between vertices in distinct
canonical components are forced.
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Overall structure of forced relationships

Theorem
For any degree sequence d, both Id and Ud are threshold graphs.
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Composing the appropriate envelopes of the individual canonical
components, we obtain Id and Ud .
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What connections are there to interesting graph classes?
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Forced relationships and the dominance order

600000

510000

420000

411000 330000

321000

311100 222000

221100

211110

111111

Nonnegative partitions of 2m of a fixed length,
under the dominance order

Threshold sequences: maximal graphic elements

Theorem
If vertices i and j have a forcible adjacency
relationship in realizations of d, then i and j have
the same adjacency relationship for all degree
sequences that majorize d.
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Majorization-closed classes

(110)

(2, 18)

(22, 16)

(23, 14) (3, 17)

(24, 12) (3, 2, 15)

(25) (3, 22, 13) (4, 16)

(3, 23, 1) (32, 14)

(32, 2, 12) (4, 2, 14)

(32, 22) (4, 22, 12)

(5, 15)

Corollary
Degree sequences for the following
classes are “upwards closed” in the
poset:

[Merris, 2003] Split graphs
Canonically decomposable
graphs
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Equality in the first m(d)
Erdős–Gallai inequalities.∑

i≤k di = k(k − 1) +
∑

i>k min{k, di}

Iterative construction via
dominating/isolated vertices

b

b

b

b

b

There are exactly 2n−1

threshold graphs on n vertices.
b

b

b

b
b

Unique realization of degree
sequence

b

b

b

b

b

1

4

3

2

2

{2K2,P4,C4}-free

b

b

b

b

b

b

b

b

b

b

b

b

Threshold sequences majorize
all other degree sequences

...
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

b

b

b

b

b

Canonical decomposition

b

b

b

b
b

There are exactly 2n−1 threshold graphs with n vertices.
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Forbidden subgraphs

G is a threshold graph if and only if G has no induced subgraph
isomorphic to 2K2, P4, or C4:
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Erdős–Gallai differences
Which adjacency relationships are forced by d?

∑
i≤k

di︸ ︷︷ ︸
LHSk (d)

≤ k(k − 1) +
∑
i>k

min{k ,di}︸ ︷︷ ︸
RHSk (d)

∆k (d) = RHSk (d)− LHSk (d)

Theorem
Given 1 ≤ i < j ≤ n,
{i , j} is a forced edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, i ≤ k < j , and k ≤ dj ; or ∆k (d) ≤ 1 and j ≤ k .

{i , j} is a forced non-edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, k < i , and dj < k ≤ di ; or ∆k (d) ≤ 1 and
di < k < i .

Forcible edges can be determined by examining when ∆k (d) ≤ 1.
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

The first m(d) Erdős–Gallai
differences equal 0.

Iterative construction via
dominating/isolated vertices

b

b

b

b

b

There are exactly 2n−1 threshold graphs
on n vertices.

b

b

b

b
b

Unique realization of degree sequence

b

b

b

b

b

1

4

3

2

2

{2K2,P4,C4}-free

b

b

b

b

b

b

b

b

b

b

b

b

Threshold sequences majorize all other

degree sequences

What if ∆k (d) ≤ 1?
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Weakly threshold graphs

A weakly threshold sequence is a graphic list d = (d1, . . . ,dn) of
nonnegative integers in descending order having even sum and
satisfying 0 ≤ ∆k (d) ≤ 1 for all k ≤ max{i : di ≥ i − 1}.

A weakly threshold graph is a graph having a weakly threshold
sequence as its degree sequence.

... ...
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Near the threshold

Threshold sequences majorize all other degree sequences

600000

510000

420000

411000 330000

321000

311100 222000

221100

211110

111111

WT sequences are upwards-closed, continue to majorize.
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A forbidden subgraph characterization

G is a threshold graph iff G is {2K2,P4,C4}-free
b

b

b

b

b

b

b

b

b

b

b

b

The class of weakly threshold graphs is hereditary (i.e., closed under
taking induced subgraphs).

Theorem
A graph G is weakly threshold if and only if it is
{2K2,C4,C5,H,H,S3,S3}-free.

b b

b

b b

bH

b
b

b

b

b
b

bH b
b

b

b b b

S3 b
b

b

b b b

S3

The class is closed under complementation.
Weakly threshold graphs are all split graphs.
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S3

They form a large subclass of interval ∩ co-interval.
(This class’s forbidden induced subgraphs:)
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Structural characterization

Threshold iff constructed from K1 via dominating/
isolated vertices.

Exactly 2n−1 threshold graphs on n vertices.

b

b

b

b
b

Theorem
A graph is weakly threshold iff it is constructed by canonically
composing special graphs, where
a graph is special iff it is isomorphic to K1 or is obtained by starting
with P4 and iteratively adding either weakly dominating or weakly
isolated vertices.

b
b

b

b b b

b b b

b b b
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Iterative construction

Threshold iff constructed from K1 via dominating/isolated vertices.
Exactly 2n−1 threshold graphs on n vertices.

b
b

b

b b b

b b b

b b b

Theorem
A graph is weakly threshold iff it is constructed from K1 or P4 by
iteratively adding one of

a dominating vertex,
a weakly dominating vertex,

an isolated vertex,
a weakly isolated vertex, or

a P4 with its midpoints dominating all previous vertices.
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Enumeration

Threshold iff constructed from K1 via dominating/isolated vertices.
Exactly 2n−1 threshold graphs on n vertices.

Theorem
A graph is weakly threshold iff it is constructed from K1 or P4 by
iteratively adding one of

a dominating vertex,
a weakly dominating vertex,

an isolated vertex,
a weakly isolated vertex, or

a P4 with its midpoints dominating all previous vertices.

Subtleties in direct counting.

Difference between counting degree sequences /
isomorphism classes.
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Enumeration

Exactly 2n−1 threshold graphs on n vertices.

an = number of weakly threshold sequences of length n

(1, )1,2,4,9,21,50,120,289,697,1682,4060, . . .

OEIS.org sequences A024537, A171842

Theorem
{an}n satisfies the following recurrences:

For all n ≥ 4,
an = 2an−1 +

∑n−4
k=0 2kan−4−k .

For all n ≥ 3,
an = 3an−1 − an−2 − an−3.

For all n ≥ 4,
an = 4an−1 − 4an−2 + an−4.

For all n ≥ 2,
an = 2an−1 + an−2 − 1.
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Enumeration

Exactly 2n−1 threshold graphs on n vertices.

an = number of weakly threshold sequences of length n

an =
2 + (1 +

√
2)n + (1−

√
2)n

4
≈ 1

4
· 2.4n

From OEIS.org:
Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, . . .

Number of nonisomorphic n-element interval orders with no 3-element antichain.

Top left entry of the nth power of

1 1 0
1 1 1
0 1 1

 or of

1 0 1
0 1 1
1 1 1

.

Number of (1, s1, ..., sn−1, 1) such that si ∈ {1, 2, 3} and |si − si−1| ≤ 1.

Partial sums of the Pell numbers prefaced with a 1.

The number of ways to write an (n − 1)-bit binary sequence and then give runs of ones weakly incrementing labels
starting with 1, e.g., 0011010011022203003330044040055555.

Lower bound of the order of the set of equivalent resistances of (n− 1) equal resistors combined in series and in parallel.
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Properties of weakly threshold graphs

The first m(d) Erdős–Gallai
differences equal 0 or 1.

Iterative construction via
(weakly) dominating
vertices/(weakly) isolated
vertices/half-dominating P4s.

There are exactly

2 + (1 +
√

2)n + (1−
√

2)n

4

weakly threshold sequences of
length n.

Constrained realizations of
degree sequences

{2K2,C4,C5,H,H,S3,S3}-free

Weakly threshold sequences
at the top of the majorization
poset

?
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