Erdős-Gallai near-equalities and the graphs that exhibit them

Michael D. Barrus

Department of Mathematics
University of Rhode Island

VCU Discrete Mathematics Seminar April 5, 2017

Degree sequences(?)

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

Degree sequences(?)

$$
\begin{array}{r}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{array}
$$

Degree sequences(?)

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

Degree sequences(?)

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

$(4,3,1,1,1)$
(3,2,2,2,1)

A key criterion

The Erdős-Gallai inequalities (1960)

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all k.

$$
(4,3,1,1,1)
$$

(3,2,2,2,1)

A key criterion

The Erdős-Gallai inequalities (1960) See also Hammer-Ibaraki-Simeone (1978)

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

$$
(4,3,1,1,1)
$$

(3,2,2,2,1)

A key criterion

The Erdős-Gallai inequalities (1960) See also Hammer-Ibaraki-Simeone (1978)

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

$$
\begin{gathered}
(4,3,1,1,1) \\
4<1 \cdot 0+1+1+1+1 \\
7>2 \cdot 1+1+1+1
\end{gathered}
$$

$$
(3,2,2,2,1)
$$

A key criterion

The Erdős-Gallai inequalities (1960) See also Hammer-Ibaraki-Simeone (1978)

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

$$
\begin{array}{cc}
(4,3,1,1,1) & (3,2,2,2,1) \\
4<1 \cdot 0+1+1+1+1 & 3<1 \cdot 0+1+1+1+1 \\
7>2 \cdot 1+1+1+1 & 5<2 \cdot 1+2+2+1 \\
7 & 7<3 \cdot 2+2+1
\end{array}
$$

Chapter 1: Spotting Erdős-Gallai Equalities

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

Why $\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}$

Why $\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}$

$$
\begin{array}{r}
\sum_{i \leq k} d_{i}-k(k-1): \text { Lower bound on number of } \\
\text { edges between } A \text { and } B
\end{array}
$$

$\sum_{i>k} \min \left\{k, d_{i}\right\}:$ Upper bound on number of edges
between A and B

What if equality holds?

Assuming $k \leq \max \left\{i: d_{i} \geq i-1\right\}$

$$
\sum_{i \leq k} d_{i}-k(k-1)=\# \text { edges leaving } A=\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

What if equality holds?

Assuming $k \leq \max \left\{i: d_{i} \geq i-1\right\}$

$$
\sum_{i \leq k} d_{i}-k(k-1)=\# \text { edges leaving } A=\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

What if equality holds?

Assuming $k \leq \max \left\{i: d_{i} \geq i-1\right\}$

$$
\sum_{i \leq k} d_{i}-k(k-1)=\# \text { edges leaving } A=\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

Clique

What if equality holds?

Assuming $k \leq \max \left\{i: d_{i} \geq i-1\right\}$

$$
\sum_{i \leq k} d_{i}-k(k-1)=\# \text { edges leaving } A=\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

Clique

What if equality holds?

Assuming $k \leq \max \left\{i: d_{i} \geq i-1\right\}$

$$
\sum_{i \leq k} d_{i}-k(k-1)=\# \text { edges leaving } A=\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

Clique

First sightings

Split graphs (Hammer-Simeone, 1981)

$$
\sum_{i=1}^{m} d_{i}=m(m-1)+\sum_{i=m+1}^{n} d_{i}
$$

where $m=\max \left\{i: d_{i} \geq i-1\right\}$.

Pseudo-split graphs (Blázsik et al., 1993; Maffray-Preissmann, 1994)

$$
\begin{gathered}
\sum_{i=1}^{m} d_{i}=m(m-1)+5 m+\sum_{i=m+6}^{n} d_{i} \quad \text { and } \\
d_{m+1}=d_{m+2}=d_{m+3}=d_{m+4}=d_{m+5}=m+2,
\end{gathered}
$$

where $m=\max \left\{i: d_{i} \geq i-1\right\}$.

What if more than one equality holds?

Iterated partitioning

For $d=(9,9,7,7,6,6,6,3,3,1,1)$,

$$
\begin{aligned}
& 9+9=2 \cdot 1+2+2+2+2+2+2+2+1+1 \\
& 9+9+7+7=4 \cdot 3+4+4+4+3+3+1+1
\end{aligned}
$$

What if more than one equality holds?

Iterated partitioning

For $d=(9,9,7,7,6,6,6,3,3,1,1)$,

$$
\begin{aligned}
& 9+9=2 \cdot 1+2+2+2+2+2+2+2+1+1 \\
& 9+9+7+7=4 \cdot 3+4+4+4+3+3+1+1
\end{aligned}
$$

Classes with multiple equalities

Matrogenic/matroidal graphs (Tyshkevich, 1984; see also B, 2013)
For each consecutive pair k, k^{\prime} of indices with EG-equality with $k \geq k+2$,

- terms d_{i} with $k<i \leq k^{\prime}$ all equal, in $\left\{d_{k^{\prime}}^{*}, d_{k}^{*}-\delta_{k}-2\right\}$
- terms d_{i} with $k<d_{i}<k^{\prime}$ all equal, in $\left\{k+1, k^{\prime}-1\right\}$

Terms past the last index t of EG-equality, with $d_{i}>t$, collectively form one of

$$
\left((t+1)^{2 r}\right),\left((t+2 r-2)^{2 r}\right),\left((t+2)^{5}\right)
$$

Threshold graphs

(Hammer-lbaraki-Simeone, 1978)

$$
\sum_{i=1}^{k} d_{i}=k(k-1)+\sum_{i=k+1}^{n} \min \left\{k, d_{i}\right\}
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

Tyshkevich’s "canonical decomposition" (~ 1980, 2000)

Theorem

Every graph F can be represented uniquely as a composition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

of indecomposable components.
$\left(G_{i}, A_{i}, B_{i}\right)$: indecomposable splitted graphs F_{0} : indecomposable graph
($B, 2013$) Partition can be recognized via Erdős-Gallai equalities.

Other graph families with EG-equality connections

 via the canonical decompositionUnigraphs (Tyshkevich-Chernyak, 1978-1979, 2000)
Box-threshold graphs (Tyshkevich-Chernyak, 1985)
Hereditary unigraphs (B, 2013)
Decisive graphs (B, 2014)

Most interesting families with characterizations purely in terms of a degree sequence?

The bottom line

A number of interesting graph classes
have degree sequence characterizations that can be rephrased as having one or more Erdős-Gallai inequalities hold with equality.

Chapter 2: Why are we studying Erdős-Gallai equalities?

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

A question

Are there any edges or non-edges forced by the degree sequence?

A question

Are there any edges or non-edges forced by the degree sequence?

Forcible edges and/or non-edges?

$$
d=(2,2,2,1,1)
$$

$d=(4,3,2,2,1)$

$d=(2,2,1,1)$

Forcible edges and/or non-edges?

$d=(4,3,2,2,1)$

(Hammer-Ibaraki-Simeone, 1978) Threshold graphs are the unique labeled realizations of their degree sequences-every edge, non-edge is forced by the degree sequence
$d=(2,2,1,1)$

Forcible edges and non-edges: results

Theorem (B, 2017+)

Given $1 \leq i<j \leq n$,
$v_{i} v_{j}$ is a forced edge iff $\exists k \in\{1, \ldots, n\}$ such that
either $\mathrm{LHS}_{k}(d)=\mathrm{RHS}_{k}(d), \quad i \leq k<j$, and $k \leq d_{j}$,

$$
\text { or } \operatorname{LHS}_{k}(d)+1=\operatorname{RHS}_{k}(d) \text { and } j \leq k
$$

$v_{i} v_{j}$ is a forced non-edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\operatorname{LHS}_{k}(d)=\mathrm{RHS}_{\mathrm{k}}(\mathrm{d}), \quad k<i$, and $d_{j}<k \leq d_{i}$,
or $\quad \operatorname{LHS}_{k}(d)+1=\operatorname{RHS}_{k}(d)$ and $d_{i}<k<i$.

Forcible edges and non-edges: results

Theorem (B, 2017+)

Given $1 \leq i<j \leq n$,
$v_{i} v_{j}$ is a forced edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\mathrm{LHS}_{k}(d)=\mathrm{RHS}_{k}(d), \quad i \leq k<j$, and $k \leq d_{j}$,

$$
\text { or } \operatorname{LHS}_{k}(d)+1=\operatorname{RHS}_{k}(d) \quad \text { and } j \leq k
$$

$v_{i} v_{j}$ is a forced non-edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\operatorname{LHS}_{k}(d)=\mathrm{RHS}_{k}(\mathrm{~d}), \quad k<i$, and $d_{j}<k \leq d_{i}$, or $\quad \operatorname{LHS}_{k}(d)+1=\operatorname{RHS}_{k}(d)$ and $d_{i}<k<i$.

$(4,4,3,3,3$,

Blatant foreshadowing

Looking beyond equality, some interesting things can happen when $\operatorname{LHS}_{k}(d) \approx \operatorname{RHS}_{k}(d)$.

Chapter 3: Pushing the Boundaries on Threshold Graphs

$$
\sum_{i \leq k} d_{i} \approx k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

Threshold graphs

Two definitions

Hammer-Ibaraki-Simeone, 1978:
$\sum_{i=1}^{k} d_{i}=k(k-1)+\sum_{i=k+1}^{n} \min \left\{k, d_{i}\right\}$ for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

Chvátal-Hammer, 1973:
Weights on vertices, threshold for adjacency

Threshold: 4.5

Other properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.
- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences

Threshold graph building

Threshold graph building

Isolated vertex

Threshold graph building

Options for adding

Dominating vertex

Isolated vertex

Threshold graph building

Options for adding

Dominating vertex

G is a threshold graph if and only if G can be constructed from a single vertex via these operations.
Isolated vertex

Threshold graph building

Options for adding
Dominating vertex

G is a threshold graph if and only if G can be constructed from a single vertex via these operations.

Consequently, up to isomorphism there are exactly 2^{n-1} threshold graphs on n vertices.

Equality everywhere: properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities. $\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}$
- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.
- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences

A forbidden subgraph characterization

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges

Theorem (Chvátal-Hammer, 1973)

Any induced subgraph of a threshold graph is a threshold graph. In fact, G is a threshold graph iff G has no induced subgraph isomorphic to one of the following:

(We say that G is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free.)

Threshold sequences and majorization

Majorization:
Given $d=\left(d_{1}, \ldots, d_{n}\right)$ and
$e=\left(e_{1}, \ldots, e_{m}\right)$,
$d \succeq e$ if $\sum d_{i}=\sum e_{i}$
and
$\sum_{i=1}^{k} d_{i} \geq \sum_{i=1}^{k} e_{i}$ for all k.

Theorem (Ruch-Gutman, 1979; Peled-Srinivasan, 1989)

d is a threshold sequence if and only if d is a maximal element in the poset of all degree sequences with the same sum, ordered by majorization.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.
- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences

What if we required Erdős-Gallai near-equality?

Define a weakly threshold sequence to be list $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order having even sum and satisfying

$$
\operatorname{RHS}_{k}(d)-1 \leq \operatorname{LHS}_{k}(d) \leq \operatorname{RHS}_{k}(d)
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

What if we required Erdős-Gallai near-equality?

Define a weakly threshold sequence to be list $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order having even sum and satisfying

$$
\operatorname{RHS}_{k}(d)-1 \leq \operatorname{LHS}_{k}(d) \leq \operatorname{RHS}_{k}(d)
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.
A weakly threshold graph will be a graph having a weakly threshold sequence as its degree sequence.

Weakly threshold sequences and graphs (B, 2017+)

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

- Forbidden subgraph characterization?
Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.
- Unique realizations of degree sequences?
- Majorization result?
- Iterative construction? sequences/graphs on n vertices?
characterızatıon?

Near the threshold $(B, 2017+)$

Threshold sequences majorize all other degree sequences.

Near the threshold $(B, 2017+)$

Threshold sequences majorize all other degree sequences.

WT sequences (and all diff $\leq b$) are upwards-closed, continue to majorize.

Weakly threshold sequences and graphs

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

- Forbidden subgraph characterization?
Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.
- Unique realizations of degree sequences?
- Majorization result $\quad \checkmark$
- Iterative construction? sequences/graphs on n vertices?

Iterative construction

Theorem

G is a
threshold graph if and only if G can be constructed by beginning with a single vertex and iteratively adding

- a dominating vertex, or
- an isolated vertex

Iterative construction

Theorem

G is a weakly threshold graph if and only if G can be constructed by beginning with a single vertex or P_{4} and iteratively adding

- a dominating vertex, or
- an isolated vertex, or
- a weakly dominating vertex, or
- a weakly isolated vertex, or
- a semi-joined P_{4}.

Non-threshold, weakly threshold graphs

Weakly threshold sequences and graphs

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

- Forbidden subgraph characterization?
Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.
- Unique realizations of degree sequences?
- Majorization result \checkmark
- Iterative construction \downarrow sequences/graphs on n vertices?

A forbidden subgraph characterization

G is a threshold graph iff G is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

A forbidden subgraph characterization

G is a threshold graph iff G is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.
In fact, a graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

A forbidden subgraph characterization

G is a threshold graph iff G is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs. In fact, a graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

Weakly threshold graphs form a large subclass of interval \cap co-interval.
(The latter class's forbidden induced subgraphs:)

Weakly threshold sequences and graphs

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Unique realizations of degree sequences?
- Forbidden subgraph characterization \checkmark
ouquatucu.
sequences/graphs on n vertices?
- Iterative construction \downarrow
- Majorization result \checkmark

Enumeration: more subtle

Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly 2^{n-1} threshold graphs on n vertices.

A graph is weakly threshold iff it is constructed from a single vertex or P_{4} by iteratively adding one of ...

Enumeration: more subtle

Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly 2^{n-1} threshold graphs on n vertices.

A graph is weakly threshold iff it is constructed from a single vertex or P_{4} by iteratively adding one of ...

One wrinkle (of many): there is a difference between counting weakly threshold sequences / weakly threshold graphs (isomorphism classes).

Unlike threshold sequences, some weakly threshold sequences have multiple realizations!

Enumeration: sequences

$a_{n}=$ number of weakly threshold sequences of length n
Proposition: For all $n \geq 4, a_{n}=4 a_{n-1}-4 a_{n-2}+a_{n-4}$.
$(1) 1,2,4,9,21,50,120,289,697,1682,4060,, \ldots$

Enumeration: sequences

$a_{n}=$ number of weakly threshold sequences of length n
Proposition: For all $n \geq 4, a_{n}=4 a_{n-1}-4 a_{n-2}+a_{n-4}$.

$$
(1,) 1,2,4,9,21,50,120,289,697,1682,4060, \ldots
$$

It's in OEIS.org! Sequences A024537, A171842

- Binomial transform of $1,0,1,0,2,0,4,0,8,0,16, \ldots$
- Number of nonisomorphic n-element interval orders with no 3-element antichain.
- Top left entry of the nth power of $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ or of $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
- Number of $\left(1, s_{1}, \ldots, s_{n-1}, 1\right)$ such that $s_{i} \in\{1,2,3\}$ and $\left|s_{i}-s_{i-1}\right| \leq 1$.
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an $(n-1)$-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- Lower bound of the order of the set of equivalent resistances of $(n-1)$ equal resistors combined in series and in parallel.

Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with n vertices

Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with n vertices

Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}}
$$

Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with n vertices

Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}}
$$

$h_{n}=$ \# indecomposable WT on n vertices

$$
h_{n}=3 h_{n-1}-h_{n-2}
$$

$$
H(x)=2 x+\sum_{k=4}^{\infty} h_{n}(x)=\frac{2 x-6 x^{2}+2 x^{3}+x^{4}-x^{5}+x^{6}}{1-3 x+x^{2}}
$$

Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with n vertices

Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}}
$$

\# WT graphs with exactly k canonical components: $H(x)^{k-1}(H(x)-x)$

Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with n vertices

Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}}
$$

\# WT graphs with exactly k canonical components: $H(x)^{k-1}(H(x)-x)$

$$
\sum_{n=0}^{\infty} b_{n}(x)=\sum_{k=1}^{\infty} H(x)^{k-1}(H(x)-x)=\frac{H(x)-x}{1-H(x)}
$$

Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with n vertices

Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}}
$$

Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with n vertices

Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}} \\
b_{n}= & c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& +c_{3}\left(\frac{6-(1+i \sqrt{3})(27-3 \sqrt{57})^{1 / 3}-(1-i \sqrt{3})(27+3 \sqrt{57})^{1 / 3}}{6}\right)^{n} \\
& +c_{4}\left(\frac{6-(1-i \sqrt{3})(27-3 \sqrt{57})^{1 / 3}-(1+i \sqrt{3})(27+3 \sqrt{57})^{1 / 3}}{6}\right)^{n} \\
& +c_{5}\left(\frac{3+(27-3 \sqrt{57})^{1 / 3}+(27+3 \sqrt{57})^{1 / 3}}{3}\right)^{n}
\end{aligned}
$$

Enumeration

There are exactly $\frac{1}{2} \cdot 2^{n}$ threshold graphs on n vertices.

$$
a_{n} \sim \frac{1}{4}(1+\sqrt{2})^{n}
$$

and

$$
b_{n} \sim c_{5}\left(\frac{3+(27-3 \sqrt{57})^{1 / 3}+(27+3 \sqrt{57})^{1 / 3}}{3}\right)^{n}
$$

so for large n,

$$
a_{n} \geq \frac{1}{4} \cdot 2.4^{n} \quad \text { and } \quad b_{n} \geq 0.096 \cdot 2.7^{n}
$$

Weakly threshold sequences and graphs

- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Unique realizations of degree sequences?
- Majorization result \checkmark
- Iterative construction \downarrow
- How many weakly threshold sequences/graphs on n vertices? \downarrow
- Forbidden subgraph characterization \checkmark

Further questions

Many of the results for weakly threshold graphs appear to generalize to graphs with $\mathrm{RHS}_{k}(d)-\mathrm{LHS}_{k}(d)$ bounded by b. Do they all?

What else can be said about graphs with near-equality in the Erdős-Gallai inequalities?

Thank you!

barrus@uri.edu

