Erdős–Gallai near-equalities and the graphs that exhibit them

Michael D. Barrus

Department of Mathematics
University of Rhode Island

VCU Discrete Mathematics Seminar
April 5, 2017
Degree sequences

\[d(G) = (4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2) \]
Degree sequences

\[d(G) = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2) \]
Degree sequences

\[d(G) = (4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2) \]
Degree sequences (?)

\[d(G) = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2) \]
A key criterion

The Erdős–Gallai inequalities (1960)

A list \((d_1, \ldots, d_n)\) of nonnegative integers in descending order with even sum is a degree sequence if and only if

\[
\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\}
\]

for all \(k\).

\((4,3,1,1,1)\) \quad (3,2,2,2,1)
A key criterion

The Erdős–Gallai inequalities (1960) See also Hammer–Ibaraki–Simeone (1978)

A list \((d_1, \ldots, d_n)\) of nonnegative integers in descending order with even sum is a degree sequence if and only if

\[
\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\}
\]

for all \(k \leq \max\{i : d_i \geq i - 1\}\).

\((4,3,1,1,1)\) \hspace{2cm} (3,2,2,2,1)
A key criterion

The Erdős–Gallai inequalities (1960) See also Hammer–Ibaraki–Simeone (1978)

A list \((d_1, \ldots, d_n)\) of nonnegative integers in descending order with even sum is a degree sequence if and only if

\[
\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\}
\]

for all \(k \leq \max\{i : d_i \geq i - 1\}\).

\((4,3,1,1,1)\) \hspace{1cm} (3,2,2,2,1)

\[4 < 1 \cdot 0 + 1 + 1 + 1 + 1\]

\[7 > 2 \cdot 1 + 1 + 1 + 1\]
A key criterion

The Erdős–Gallai inequalities (1960) See also Hammer–Ibaraki–Simeone (1978)

A list \((d_1, \ldots, d_n)\) of nonnegative integers in descending order with even sum is a degree sequence if and only if

\[
\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\}
\]

for all \(k \leq \max\{i : d_i \geq i - 1\}\).

\[(4,3,1,1,1)\]

\[
4 < 1 \cdot 0 + 1 + 1 + 1 + 1
\]

\[
7 > 2 \cdot 1 + 1 + 1 + 1
\]

\[(3,2,2,2,1)\]

\[
3 < 1 \cdot 0 + 1 + 1 + 1 + 1
\]

\[
5 < 2 \cdot 1 + 2 + 2 + 1
\]

\[
7 < 3 \cdot 2 + 2 + 1
\]
Chapter 1: Spotting Erdős–Gallai *Equalities*

\[
\sum_{i \leq k} d_i = k(k - 1) + \sum_{i > k} \min\{k, d_i\}
\]
Why \[\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\} \]
Why \(\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\} \)

\[\sum_{i \leq k} d_i - k(k - 1) \text{: Lower bound on number of edges between } A \text{ and } B \]

\[\sum_{i > k} \min\{k, d_i\} \text{: Upper bound on number of edges between } A \text{ and } B \]
What if equality holds?

Assuming $k \leq \max\{i : d_i \geq i - 1\}$

$$\sum_{i \leq k} d_i - k(k - 1) = \# \text{ edges leaving } A = \sum_{i > k} \min\{k, d_i\}$$
What if equality holds?
Assuming \(k \leq \max\{i : d_i \geq i - 1\} \)

\[
\sum_{i \leq k} d_i - k(k - 1) = \text{# edges leaving } A = \sum_{i > k} \min\{k, d_i\}
\]
What if equality holds?
Assuming $k \leq \max\{i : d_i \geq i - 1\}$

$$\sum_{i \leq k} d_i - k(k - 1) = \# \text{ edges leaving } A = \sum_{i > k} \min\{k, d_i\}$$

Clique

v_1, \ldots, v_k

A

degrees less than k

B

degrees at least k

C

M. D. Barrus (URI)

Erdős–Gallai near-equalities

April 5, 2017
What if equality holds?
Assuming $k \leq \max\{i : d_i \geq i - 1\}$

$$\sum_{i \leq k} d_i - k(k-1) = \# \text{ edges leaving } A = \sum_{i > k} \min\{k, d_i\}$$

Clique

v_1, \ldots, v_k

A

degrees at least k

No edges from B to C

B

degrees less than k

Independent set
What if equality holds?

Assuming \(k \leq \max\{i : d_i \geq i - 1\} \)

\[
\sum_{i \leq k} d_i - k(k - 1) = \text{# edges leaving } A = \sum_{i > k} \min\{k, d_i\}
\]

Clique

\(v_1, \ldots, v_k \)

\(A \)

All edges from \(A \) to \(C \)

degrees at least \(k \)

\(B \)

No edges from \(B \) to \(C \)

degrees less than \(k \)

Independent set
First sightings

Split graphs (Hammer–Simeone, 1981)

\[
\sum_{i=1}^{m} d_i = m(m - 1) + \sum_{i=m+1}^{n} d_i,
\]

where \(m = \max\{i : d_i \geq i - 1\} \).

Pseudo-split graphs (Blázsik et al., 1993; Maffray–Preissmann, 1994)

\[
\sum_{i=1}^{m} d_i = m(m - 1) + 5m + \sum_{i=m+1}^{n} d_i \quad \text{and} \quad d_{m+1} = d_{m+2} = d_{m+3} = d_{m+4} = d_{m+5} = m + 2,
\]

where \(m = \max\{i : d_i \geq i - 1\} \).
What if more than one equality holds?

Iterated partitioning

For $d = (9, 9, 7, 7, 6, 6, 6, 3, 3, 1, 1)$,

\[
9 + 9 = 2 \cdot 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 1 + 1
\]

\[
9 + 9 + 7 + 7 = 4 \cdot 3 + 4 + 4 + 4 + 3 + 3 + 1 + 1
\]
What if more than one equality holds?

Iterated partitioning

For \(d = (9, 9, 7, 7, 6, 6, 6, 3, 3, 1, 1) \),

\[
9 + 9 = 2 \cdot 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 1 + 1
\]

\[
9 + 9 + 7 + 7 = 4 \cdot 3 + 4 + 4 + 4 + 3 + 3 + 1 + 1
\]
Classes with multiple equalities

Matrogenic/matroidal graphs (Tyshkevich, 1984; see also B, 2013)

For each consecutive pair k, k' of indices with EG-equality with $k \geq k + 2$,

- terms d_i with $k < i \leq k'$ all equal, in $\{d_{k'}^*, d_{k}^* - \delta_k - 2\}$
- terms d_i with $k < d_i < k'$ all equal, in $\{k + 1, k' - 1\}$

Terms past the last index t of EG-equality, with $d_i > t$, collectively form one of $((t + 1)^{2r}), ((t + 2r - 2)^{2r}), ((t + 2)^{5r})$.

Threshold graphs
(Hammer–Ibaraki–Simeone, 1978)

$$\sum_{i=1}^{k} d_i = k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}$$

for all $k \leq \max\{i : d_i \geq i - 1\}$.
Tyshkevich’s “canonical decomposition” (∼ 1980, 2000)

Theorem

Every graph F can be represented uniquely as a composition

$$F = (G_k, A_k, B_k) \circ \cdots \circ (G_1, A_1, B_1) \circ F_0$$

of indecomposable components.

(G_i, A_i, B_i): indecomposable splitted graphs
F_0: indecomposable graph

(B, 2013) Partition can be recognized via Erdős–Gallai equalities.
Other graph families with EG-equality connections
via the canonical decomposition

Box-threshold graphs (Tyshkevich–Chernyak, 1985)

Hereditary unigraphs (B, 2013)

Decisive graphs (B, 2014)

Most interesting families with characterizations purely in terms of a degree sequence?
A number of interesting graph classes have degree sequence characterizations that can be rephrased as having one or more Erdős–Gallai inequalities hold with equality.
Chapter 2: Why are we studying Erdős–Gallai equalities?

\[\sum_{i \leq k} d_i = k(k - 1) + \sum_{i > k} \min\{k, d_i\} \]
A question

Are there any edges or non-edges *forced* by the degree sequence?

A question

Are there any edges or non-edges \textit{forced} by the degree sequence?

\[d(G) = (4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 0) \]
Forcible edges and/or non-edges?

\[d = (2, 2, 2, 1, 1) \]

\(d = (4, 3, 2, 2, 1) \)

\(d = (2, 2, 1, 1) \)
Forcible edges and/or non-edges?

\[d = (2, 2, 2, 1, 1) \]

(Hammer–Ibaraki–Simeone, 1978) Threshold graphs are the unique labeled realizations of their degree sequences—every edge, non-edge is forced by the degree sequence

\[d = (4, 3, 2, 2, 1) \]

\[d = (2, 2, 1, 1) \]
Forcible edges and non-edges: results

Notation: \[\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\} \]

LHS\(_k\)(\(d\)) \[\leq \] \(k\) \((k - 1) + \sum_{i > k} \min\{k, d_i\} \]

RHS\(_k\)(\(d\))

Theorem (B, 2017+)

Given 1 \(\leq\) \(i\) < \(j\) \(\leq\) \(n\),

\(v_i v_j\) is a **forced edge** iff \(\exists k \in \{1, \ldots, n\}\) such that

either \(\text{LHS}_k(d) = \text{RHS}_k(d)\), \(i \leq k < j\), and \(k \leq d_j\),

or \(\text{LHS}_k(d) + 1 = \text{RHS}_k(d)\) and \(j \leq k\).

\(v_i v_j\) is a **forced non-edge** iff \(\exists k \in \{1, \ldots, n\}\) such that

either \(\text{LHS}_k(d) = \text{RHS}_k(d)\), \(k < i\), and \(d_j < k \leq d_i\),

or \(\text{LHS}_k(d) + 1 = \text{RHS}_k(d)\) and \(d_i < k < i\).
Forcible edges and non-edges: results

Notation: \(\sum_{i \leq k} d_i \leq k(k - 1) + \sum_{i > k} \min\{k, d_i\} \)

Theorem (B, 2017+)

Given \(1 \leq i < j \leq n \),

\(v_i v_j \) is a **forced edge** iff \(\exists k \in \{1, \ldots, n\} \) such that

- either \(\text{LHS}_k(d) = \text{RHS}_k(d) \), \(i \leq k < j \), and \(k \leq d_j \),
- or \(\text{LHS}_k(d) + 1 = \text{RHS}_k(d) \) and \(j \leq k \).

\(v_i v_j \) is a **forced non-edge** iff \(\exists k \in \{1, \ldots, n\} \) such that

- either \(\text{LHS}_k(d) = \text{RHS}_k(d) \), \(k < i \), and \(d_j < k \leq d_i \),
- or \(\text{LHS}_k(d) + 1 = \text{RHS}_k(d) \) and \(d_i < k < i \).
Looking beyond equality, some interesting things can happen when $\text{LHS}_k(d) \approx \text{RHS}_k(d)$.
Chapter 3: Pushing the Boundaries on Threshold Graphs

\[\sum_{i \leq k} d_i \approx k(k - 1) + \sum_{i > k} \min\{k, d_i\} \]
Threshold graphs

Two definitions

Hammer–Ibaraki–Simeone, 1978:

\[\sum_{i=1}^{k} d_i = k(k - 1) + \sum_{i=k+1}^{n} \min\{k, d_i\} \]

for all \(k \leq \max\{i : d_i \geq i - 1\} \).

Chvátal–Hammer, 1973:

Weights on vertices, threshold for adjacency

Threshold: 4.5

\[\begin{array}{cccccc}
\text{1} & \text{2} & \text{3} & \text{4} \\
\text{1} & \text{2} & \text{3} & \text{4} \\
\end{array} \]
Other properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

- Equality in the first \(m(d) \) Erdős–Gallai inequalities.
 \[
 \sum_{i \leq k} d_i = k(k - 1) + \sum_{i > k} \min\{k, d_i\}
 \]

- Iterative construction via dominating/isolated vertices

- There are exactly \(2^{n-1} \) threshold graphs on \(n \) vertices.

- \(\{2K_2, P_4, C_4\} \)-free

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences
Threshold graph building

G is a threshold graph if and only if G can be constructed from a single vertex via these operations. Consequently, up to isomorphism there are exactly $2^n - 1$ threshold graphs on n vertices.
Threshold graph building

Options for adding

- Dominating vertex
- Isolated vertex

G is a threshold graph if and only if G can be constructed from a single vertex via these operations. Consequently, up to isomorphism there are exactly $2^n - 1$ threshold graphs on n vertices.
Threshold graph building

Options for adding

- Dominating vertex

Isolated vertex

G is a threshold graph if and only if G can be constructed from a single vertex via these operations. Consequently, up to isomorphism there are exactly 2^{n-1} threshold graphs on n vertices.
Threshold graph building

Options for adding

- Dominating vertex
- Isolated vertex

\[G \text{ is a threshold graph if and only if } G \text{ can be constructed from a single vertex via these operations.} \]

Consequently, up to isomorphism there are exactly \(2^n - 1 \) threshold graphs on \(n \) vertices.
Threshold graph building

Options for adding

- Dominating vertex
- Isolated vertex

G is a threshold graph if and only if G can be constructed from a single vertex via these operations. Consequently, up to isomorphism there are exactly $2^n - 1$ threshold graphs on n vertices.
Threshold graph building

Options for adding

- Dominating vertex
- Isolated vertex

\(G \) is a threshold graph if and only if \(G \) can be constructed from a single vertex via these operations. Consequently, up to isomorphism there are exactly \(2^n - 1 \) threshold graphs on \(n \) vertices.
Threshold graph building

Options for adding

Dominating vertex

Isolated vertex

G is a threshold graph if and only if G can be constructed from a single vertex via these operations.
Threshold graph building

Options for adding

- Dominating vertex
- Isolated vertex

G is a threshold graph if and only if G can be constructed from a single vertex via these operations.

Consequently, up to isomorphism there are exactly 2^{n-1} threshold graphs on n vertices.
Equality everywhere: properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

- Equality in the first \(m(d) \) Erdős–Gallai inequalities.
 \[\sum_{i \leq k} d_i = k(k - 1) + \sum_{i > k} \min\{k, d_i\} \]

- Iterative construction via dominating/isolated vertices.

- There are exactly \(2^{n-1} \) threshold graphs on \(n \) vertices.

- \(\{2K_2, P_4, C_4\} \)-free

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences...
A forbidden subgraph characterization

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges

![Graphs](image)

Theorem (Chvátal–Hammer, 1973)

Any induced subgraph of a threshold graph is a threshold graph. In fact, G is a threshold graph iff G has no induced subgraph isomorphic to one of the following:

![Graphs](image)

(We say that G is $\{2K_2, P_4, C_4\}$-free.)
Threshold sequences and majorization

Majorization:
Given \(d = (d_1, \ldots, d_n)\) and \(e = (e_1, \ldots, e_m)\),
\(d \succeq e\) if \(\sum d_i = \sum e_i\)
and
\[
\sum_{i=1}^k d_i \geq \sum_{i=1}^k e_i \text{ for all } k.
\]

Theorem (Ruch–Gutman, 1979; Peled–Srinivasan, 1989)
\(d\) is a threshold sequence if and only if \(d\) is a maximal element in the poset of all degree sequences with the same sum, ordered by majorization.
Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős–Gallai inequalities.
 \[\sum_{i \leq k} d_i = k(k - 1) + \sum_{i > k} \min\{k, d_i\} \]
- Iterative construction via dominating/isolated vertices
- There are exactly 2^{n-1} threshold graphs on n vertices.

\{2K_2, P_4, C_4\}-free

Unique realization of degree sequence

Threshold sequences majorize all other degree sequences

...
What if we required Erdős–Gallai near-equality?

Define a **weakly threshold sequence** to be list \(d = (d_1, \ldots, d_n) \) of nonnegative integers in descending order having even sum and satisfying

\[
RHS_k(d) - 1 \leq LHS_k(d) \leq RHS_k(d)
\]

for all \(k \leq \max\{i : d_i \geq i - 1\} \).
What if we required Erdős–Gallai near-equality?

Define a **weakly threshold sequence** to be list \(d = (d_1, \ldots, d_n) \) of nonnegative integers in descending order having even sum and satisfying

\[
\text{RHS}_k(d) - 1 \leq \text{LHS}_k(d) \leq \text{RHS}_k(d)
\]

for all \(k \leq \max\{i : d_i \geq i - 1\} \).

A **weakly threshold graph** will be a graph having a weakly threshold sequence as its degree sequence.
Weakly threshold sequences and graphs
(B, 2017+)

- Equality or a difference of 1 in each of the first $m(d)$ Erdős–Gallai inequalities.
 \[k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \leq k} d_i \leq 1 \]

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result?
 ...?...
Near the threshold \((B, 2017+)\)

Threshold sequences majorize all other degree sequences.
Near the threshold \((B, 2017+)\)

Threshold sequences majorize all other degree sequences.

WT sequences (and all diff \(\leq b\)) are upwards-closed, continue to majorize.
Weakly threshold sequences and graphs

- Equality or a difference of 1 in each of the first $m(d)$ Erdős–Gallai inequalities.

\[k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \leq k} d_i \leq 1 \]

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

- Iterative construction?

- How many weakly threshold sequences/graphs on n vertices?

- Forbidden subgraph characterization?

- Unique realizations of degree sequences?

- **Majorization result**

...?...
Theorem

A graph G is a threshold graph if and only if G can be constructed by beginning with a single vertex and iteratively adding:

- a dominating vertex, or
- an isolated vertex.
Theorem

G is a **weakly** threshold graph if and only if G can be constructed by beginning with a single vertex **or** P_4 and iteratively adding

- a dominating vertex, **or**
- an isolated vertex, **or**
- a weakly dominating vertex, **or**
- a weakly isolated vertex, **or**
- a semi-joined P_4.

M. D. Barrus (URI)
Erdős–Gallai near-equalities
April 5, 2017
Non-threshold, weakly threshold graphs
Weakly threshold sequences and graphs

Equality or a difference of 1 in each of the first $m(d)$ Erdős–Gallai inequalities.

\[k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \leq k} d_i \leq 1 \]

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result

...?...
A forbidden subgraph characterization

G is a threshold graph iff G is $\{2K_2, P_4, C_4\}$-free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs. In fact, a graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, H, S_3, S_3\}$-free.
A forbidden subgraph characterization

G is a threshold graph iff G is \{2K_2, P_4, C_4\}-free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is \{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}-free.
A forbidden subgraph characterization

G is a threshold graph iff G is $\{2K_2, P_4, C_4\}$-free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$-free.

Weakly threshold graphs form a large subclass of interval \cap co-interval.

(The latter class's forbidden induced subgraphs:)

M. D. Barrus (URI) Erdős–Gallai near-equalities April 5, 2017
Weakly threshold sequences and graphs

- Equality or a difference of 1 in each of the first $m(d)$ Erdős–Gallai inequalities.
 \[k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \leq k} d_i \leq 1 \]

 Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

- Iterative construction

- How many weakly threshold sequences/graphs on n vertices?

- **Forbidden subgraph characterization**

- Unique realizations of degree sequences?

- **Majorization result**

...?...
Enumeration: more subtle

Threshold iff constructed from \(\bullet \) via dominating/isolated vertices; therefore, exactly \(2^{n-1} \) threshold graphs on \(n \) vertices.

A graph is weakly threshold iff it is constructed from a single vertex or \(P_4 \) by iteratively adding one of ...
Enumeration: more subtle

Threshold iff constructed from \bullet via dominating/isolated vertices; therefore, exactly 2^{n-1} threshold graphs on n vertices.

A graph is weakly threshold iff it is constructed from a single vertex or P_4 by iteratively adding one of ...

One wrinkle (of many): there is a difference between counting weakly threshold sequences / weakly threshold graphs (isomorphism classes).

Unlike threshold sequences, some weakly threshold sequences have multiple realizations!
Enumeration: sequences

\(a_n = \text{number of weakly threshold sequences of length } n \)

Proposition: For all \(n \geq 4 \), \(a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4} \).

\((1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots \)
Enumeration: sequences

\[a_n = \text{number of weakly threshold sequences of length } n \]

Proposition: For all \(n \geq 4 \),

\[a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}. \]

\((1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots\)

It’s in OEIS.org! Sequences A024537, A171842

- Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, \ldots
- Number of nonisomorphic \(n \)-element interval orders with no 3-element antichain.
- Top left entry of the \(n \)th power of \[
\begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
\end{pmatrix}
\] or of \[
\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\].
- Number of \((1, s_1, \ldots, s_{n-1}, 1)\) such that \(s_i \in \{1, 2, 3\} \) and \(|s_i - s_{i-1}| \leq 1\).
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an \((n - 1)\)-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 001101001102220330044040055555.
- Lower bound of the order of the set of equivalent resistances of \((n - 1)\) equal resistors combined in series and in parallel.
Enumeration: graphs

\[b_n = \text{number of weakly threshold graphs with } n \text{ vertices} \]
Enumeration: graphs

\[b_n = \text{number of weakly threshold graphs with } n \text{ vertices} \]

Theorem

The generating function for \((b_n)\) is given by

\[
\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.
\]
Enumeration: graphs

\[b_n = \text{number of weakly threshold graphs} \] with \(n \) vertices

Theorem

The generating function for \((b_n)\) is given by

\[
\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.
\]

\[h_n = \# \text{ indecomposable WT on } n \text{ vertices} \quad h_n = 3h_{n-1} - h_{n-2} \]

\[H(x) = 2x + \sum_{k=4}^{\infty} h_n(x) = \frac{2x - 6x^2 + 2x^3 + x^4 - x^5 + x^6}{1 - 3x + x^2} \]
Enumeration: graphs

\[b_n = \text{number of weakly threshold graphs with } n \text{ vertices} \]

Theorem

The generating function for \((b_n)\) is given by

\[
\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.
\]

WT graphs with exactly \(k\) canonical components: \(H(x)^{k-1}(H(x) - x)\)
Enumeration: graphs

\[b_n = \text{number of weakly threshold graphs with } n \text{ vertices} \]

Theorem

The generating function for \((b_n)\) is given by

\[
\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.
\]

WT graphs with exactly \(k\) canonical components: \(H(x)^{k-1}(H(x) - x)\)

\[
\sum_{n=0}^{\infty} b_n(x) = \sum_{k=1}^{\infty} H(x)^{k-1}(H(x) - x) = \frac{H(x) - x}{1 - H(x)}
\]
Enumeration: graphs

\[b_n = \text{number of weakly threshold graphs with } n \text{ vertices} \]

Theorem

The generating function for \((b_n)\) is given by

\[
\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.
\]
Enumeration: graphs

\(b_n = \text{number of weakly threshold graphs with } n \text{ vertices} \)

Theorem

The generating function for \((b_n)\) is given by

\[
\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.
\]

\[
b_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n + c_3 \left(\frac{6 - (1 + i\sqrt{3})(27 - 3\sqrt{57})^{1/3} - (1 - i\sqrt{3})(27 + 3\sqrt{57})^{1/3}}{6} \right)^n + c_4 \left(\frac{6 - (1 - i\sqrt{3})(27 - 3\sqrt{57})^{1/3} - (1 + i\sqrt{3})(27 + 3\sqrt{57})^{1/3}}{6} \right)^n + c_5 \left(\frac{3 + (27 - 3\sqrt{57})^{1/3} + (27 + 3\sqrt{57})^{1/3}}{3} \right)^n,
\]
Enumeration

There are exactly $\frac{1}{2} \cdot 2^n$ threshold graphs on n vertices.

$$a_n \sim \frac{1}{4}(1 + \sqrt{2})^n$$

and

$$b_n \sim c_5 \left(\frac{3 + (27 - 3\sqrt{57})^{1/3} + (27 + 3\sqrt{57})^{1/3}}{3}\right)^n,$$

so for large n,

$$a_n \geq \frac{1}{4} \cdot 2.4^n \quad \text{and} \quad b_n \geq 0.096 \cdot 2.7^n.$$
Weakly threshold sequences and graphs

- Equality or a difference of 1 in each of the first $m(d)$ Erdős–Gallai inequalities.

 $$k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \leq k} d_i \leq 1$$

- Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Iterative construction

- How many weakly threshold sequences/graphs on n vertices?

- Forbidden subgraph characterization

- Unique realizations of degree sequences? NO

- Majorization result

- ...?...
Further questions

Many of the results for weakly threshold graphs appear to generalize to graphs with $\text{RHS}_k(d) - \text{LHS}_k(d)$ bounded by b. Do they all?

What else can be said about graphs with near-equality in the Erdős–Gallai inequalities?
Thank you!

barrus@uri.edu