# Erdős–Gallai near-equalities and the graphs that exhibit them

#### Michael D. Barrus

Department of Mathematics University of Rhode Island



#### VCU Discrete Mathematics Seminar April 5, 2017

M. D. Barrus (URI)



#### 





M. D. Barrus (URI)

#### The Erdős–Gallai inequalities (1960)

A list  $(d_1, \ldots, d_n)$  of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{i\leq k} d_i \leq k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

for all k.

(4,3,1,1,1) (3,2,2,2,1)

The Erdős–Gallai inequalities (1960) See also Hammer–Ibaraki–Simeone (1978)

A list  $(d_1, \ldots, d_n)$  of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{i\leq k} d_i \leq k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

for all  $k \leq \max\{i : d_i \geq i - 1\}$ .

(4,3,1,1,1) (3,2,2,2,1)

The Erdős–Gallai inequalities (1960) See also Hammer–Ibaraki–Simeone (1978)

A list  $(d_1, \ldots, d_n)$  of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{i\leq k} d_i \leq k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

for all  $k \leq \max\{i : d_i \geq i - 1\}$ .

$$4 < 1 \cdot 0 + 1 + 1 + 1 + 1$$
  
$$7 > 2 \cdot 1 + 1 + 1 + 1$$

The Erdős–Gallai inequalities (1960) See also Hammer–Ibaraki–Simeone (1978)

A list  $(d_1, \ldots, d_n)$  of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{i\leq k} d_i \leq k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

for all  $k \leq \max\{i : d_i \geq i - 1\}$ .

| (4,3,1,1,1)                                                    | (3,2,2,2,1)                                                      |
|----------------------------------------------------------------|------------------------------------------------------------------|
| $4 < 1 \cdot 0 + 1 + 1 + 1 + 1$<br>$7 > 2 \cdot 1 + 1 + 1 + 1$ | $3 < 1 \cdot 0 + 1 + 1 + 1 + 1 + 1 \\ 5 < 2 \cdot 1 + 2 + 2 + 1$ |
|                                                                | $7 < 3 \cdot 2 + 2 + 1$                                          |

#### Chapter 1: Spotting Erdős–Gallai Equalities

$$\sum_{i\leq k} d_i = k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

Why  $\sum d_i \leq k(k-1) + \sum \min\{k, d_i\}$ i>k  $i \le k$ 



Why  $\sum_{i \le k} d_i \le k(k-1) + \sum_{i > k} \min\{k, d_i\}$ 



 $\sum_{i \le k} d_i - k(k-1)$ : Lower bound on number of edges between *A* and *B* 

 $\sum_{i>k} \min\{k, d_i\}: \text{ Upper bound on number of edges}$ between *A* and *B* 

$$\sum_{i \le k} d_i - k(k-1) = \# \text{ edges leaving } A = \sum_{i > k} \min\{k, d_i\}$$

$$\sum_{i \le k} d_i - k(k-1) = \# \text{ edges leaving } A = \sum_{i > k} \min\{k, d_i\}$$









# First sightings

Split graphs (Hammer–Simeone, 1981)

$$\sum_{i=1}^{m} d_i = m(m-1) + \sum_{i=m+1}^{n} d_i,$$

where  $m = \max\{i : d_i \ge i - 1\}$ .

Pseudo-split graphs (Blázsik et al., 1993; Maffray-Preissmann, 1994)

$$\sum_{i=1}^m d_i = m(m-1) + 5m + \sum_{i=m+6}^n d_i$$
 and  $d_{m+1} = d_{m+2} = d_{m+3} = d_{m+4} = d_{m+5} = m+2,$  where  $m = \max\{i: d_i \ge i-1\}.$ 

(

## What if more than one equality holds? Iterated partitioning

For d = (9, 9, 7, 7, 6, 6, 6, 3, 3, 1, 1),

$$9+9=2\cdot 1+2+2+2+2+2+2+2+1+1$$

 $9+9+7+7=4\cdot 3+4+4+4+3+3+1+1$ 

### What if more than one equality holds? Iterated partitioning

For d = (9, 9, 7, 7, 6, 6, 6, 3, 3, 1, 1),



## Classes with multiple equalities

#### Matrogenic/matroidal graphs (Tyshkevich, 1984; see also B, 2013)

For each consecutive pair k, k' of indices with EG-equality with  $k \ge k + 2$ ,

- terms  $d_i$  with  $k < i \le k'$  all equal, in  $\{d_{k'}^*, d_k^* \delta_k 2\}$
- terms  $d_i$  with  $k < d_i < k'$  all equal, in  $\{k + 1, k' 1\}$

Terms past the last index t of EG-equality, with  $d_i > t$ , collectively form one of

 $((t+1)^{2r}), ((t+2r-2)^{2r}), ((t+2)^5).$ 

#### **Threshold graphs**

(Hammer-Ibaraki-Simeone, 1978)

$$\sum_{i=1}^{k} d_i = k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}$$

for all  $k \leq \max\{i : d_i \geq i-1\}$ .





# Tyshkevich's "canonical decomposition" ( $\sim$ 1980, 2000)



#### Theorem

Every graph F can be represented uniquely as a composition

$$F = (G_k, A_k, B_k) \circ \cdots \circ (G_1, A_1, B_1) \circ F_0$$

of indecomposable components.

 $(G_i, A_i, B_i)$ : indecomposable splitted graphs

 $F_0$ : indecomposable graph

(B, 2013) Partition can be recognized via Erdős–Gallai equalities.

M. D. Barrus (URI)

# Other graph families with EG-equality connections

via the canonical decomposition

- Unigraphs (Tyshkevich–Chernyak, 1978–1979, 2000)
- Box-threshold graphs (Tyshkevich–Chernyak, 1985)
- Hereditary unigraphs (B, 2013)
- **Decisive graphs** (B, 2014)

**Most** interesting families with characterizations purely in terms of a degree sequence?

## A number of interesting graph classes have degree sequence characterizations that can be rephrased as having one or more Erdős–Gallai inequalities hold with equality.

#### Chapter 2: Why are we studying Erdős–Gallai equalities?

$$\sum_{i\leq k} d_i = k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

## A question

Are there any edges or non-edges *forced* by the degree sequence?



## A question

Are there any edges or non-edges *forced* by the degree sequence?



## Forcible edges and/or non-edges?

$$d = (2, 2, 2, 1, 1)$$

$$d = (4, 3, 2, 2, 1)$$



$$d = (2, 2, 1, 1)$$

M. D. Barrus (URI)

## Forcible edges and/or non-edges?

$$d = (2, 2, 2, 1, 1)$$





(Hammer–Ibaraki–Simeone, 1978) Threshold graphs are the unique labeled realizations of their degree sequences—every edge, non-edge is forced by the degree sequence

## Forcible edges and non-edges: results

Notation: 
$$\underbrace{\sum_{i \leq k} d_i}_{LHS_k(d)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{RHS_k(d)}$$

#### Theorem (B, 2017+)

Given  $1 \le i < j \le n$ ,

 $v_i v_j$  is a forced edge iff  $\exists k \in \{1, ..., n\}$  such that either LHS<sub>k</sub>(d) = RHS<sub>k</sub>(d),  $i \le k < j$ , and  $k \le d_j$ ,

 $Or LHS_k(d) + 1 = RHS_k(d)$  and  $j \le k$ .

 $v_i v_j$  is a **forced non-edge** iff  $\exists k \in \{1, ..., n\}$  such that either  $LHS_k(d) = RHS_k(d)$ , k < i, and  $d_j < k \le d_i$ ,

 $Or \quad LHS_k(d) + 1 = RHS_k(d) \quad and \quad d_i < k < i.$ 

## Forcible edges and non-edges: results

Notation: 
$$\sum_{\substack{i \leq k \\ \mathsf{LHS}_k(d)}} d_i \leq k(k-1) + \sum_{i > k} \min\{k, d_i\}$$

#### Theorem (B, 2017+)

Given  $1 \leq i < j \leq n$ ,

 $v_i v_j$  is a **forced edge** iff  $\exists k \in \{1, ..., n\}$  such that either LHS<sub>k</sub>(d) = RHS<sub>k</sub>(d),  $i \le k < j$ , and  $k \le d_j$ ,

 $Or LHS_k(d) + 1 = RHS_k(d)$  and  $j \le k$ .

 $v_i v_j$  is a **forced non-edge** iff  $\exists k \in \{1, ..., n\}$  such that either LHS<sub>k</sub>(d) = RHS<sub>k</sub>(d), k < i, and  $d_j < k \le d_i$ ,

 $Or \quad LHS_k(d) + 1 = RHS_k(d) \quad and \quad d_i < k < i.$ 



## Blatant foreshadowing

Looking beyond equality,

some interesting things can happen when  $LHS_k(d) \approx RHS_k(d)$ .

#### **Chapter 3: Pushing the Boundaries on Threshold Graphs**



$$\sum_{i\leq k} d_i \approx k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

# Threshold graphs

Two definitions

Hammer–Ibaraki–Simeone, 1978:

$$\sum_{i=1}^{k} d_i = k(k-1) + \sum_{i=k+1}^{n} \min\{k, d_i\}$$

for all  $k \leq \max\{i : d_i \geq i - 1\}$ .

Chvátal–Hammer, 1973:

Weights on vertices, threshold for adjacency



Threshold: 4.5

## Other properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first m(d)Erdős–Gallai inequalities.  $\sum_{i \le k} d_i = k(k-1) + \sum_{i > k} \min\{k, d_i\}$
- Iterative construction via dominating/isolated vertices



• There are exactly 2<sup>*n*-1</sup> threshold graphs on *n* vertices.

• 
$$\{2K_2, P_4, C_4\}$$
-free

• Unique realization of degree sequence



. . .

• Threshold sequences majorize all other degree sequences

# Threshold graph building












































Options for adding Dominating vertex

#### **Isolated vertex**







*G* is a threshold graph if and only if *G* can be constructed from a single vertex via these operations.



#### **Isolated vertex**







*G* is a threshold graph if and only if *G* can be constructed from a single vertex via these operations.

Consequently, up to isomorphism there are exactly  $2^{n-1}$  threshold graphs on *n* vertices.

### Equality everywhere: properties of threshold graphs (Chvátal, Hammer, others, 1973+)

- Equality in the first m(d)Erdős–Gallai inequalities.  $\sum_{i \le k} d_i = k(k-1) + \sum_{i > k} \min\{k, d_i\}$
- Iterative construction via dominating/isolated vertices





• There are exactly 2<sup>*n*-1</sup> threshold graphs on *n* vertices.

• 
$$\{2K_2, P_4, C_4\}$$
-free

 Unique realization of degree sequence



. . .

• Threshold sequences majorize all other degree sequences

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges



### Theorem (Chvátal–Hammer, 1973)

Any induced subgraph of a threshold graph is a threshold graph. In fact, G is a threshold graph iff G has no induced subgraph isomorphic to one of the following:



(We say that G is  $\{2K_2, P_4, C_4\}$ -free.)

# Threshold sequences and majorization



#### Theorem (Ruch–Gutman, 1979; Peled–Srinivasan, 1989)

d is a threshold sequence if and only if d is a maximal element in the poset of all degree sequences with the same sum, ordered by majorization.

M. D. Barrus (URI)

# Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first m(d)Erdős–Gallai inequalities.  $\sum_{i \le k} d_i = k(k-1) + \sum_{i > k} \min\{k, d_i\}$
- Iterative construction via dominating/isolated vertices



• There are exactly 2<sup>*n*-1</sup> threshold graphs on *n* vertices.

• Unique realization of degree sequence



. . .

• Threshold sequences majorize all other degree sequences

### What if we required Erdős–Gallai near-equality?

Define a weakly threshold sequence to be list  $d = (d_1, ..., d_n)$  of nonnegative integers in descending order having even sum and satisfying

 $\operatorname{RHS}_k(d) - 1 \leq \operatorname{LHS}_k(d) \leq \operatorname{RHS}_k(d)$ 

for all  $k \leq \max\{i : d_i \geq i - 1\}$ .

### What if we required Erdős–Gallai near-equality?

Define a weakly threshold sequence to be list  $d = (d_1, ..., d_n)$  of nonnegative integers in descending order having even sum and satisfying

$$\operatorname{RHS}_k(d) - 1 \leq \operatorname{LHS}_k(d) \leq \operatorname{RHS}_k(d)$$

for all  $k \leq \max\{i : d_i \geq i - 1\}$ .

A **weakly threshold graph** will be a graph having a weakly threshold sequence as its degree sequence.



# Weakly threshold sequences and graphs (B, 2017+)

 Equality or a difference of 1 in each of the first m(d)
Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i\leq k} d_i \leq 1$ 

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction?

- How many weakly threshold sequences/graphs on *n* vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result?

?

### Near the threshold (B, 2017+)

Threshold sequences majorize all other degree sequences.



### Near the threshold (B, 2017+)

Threshold sequences majorize all other degree sequences.



WT sequences (and all diff  $\leq b$ ) are upwards-closed, continue to majorize.

M. D. Barrus (URI)

# Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$ 

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction?

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result

?

### Iterative construction



#### Theorem

G is a threshold graph if and only if G can be constructed by beginning with a single vertex and iteratively adding

- a dominating vertex, or
- an isolated vertex

### Iterative construction



#### Theorem

*G* is a **weakly** threshold graph if and only if *G* can be constructed by beginning with a single vertex or  $P_4$  and iteratively adding

- a dominating vertex, or
- an isolated vertex, or
- a weakly dominating vertex, or
- a weakly isolated vertex, or
- a semi-joined P<sub>4</sub>.



# Non-threshold, weakly threshold graphs



# Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
Erdős–Gallai inequalities.

 $k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$ 

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result

?

 $\overline{\mathbf{A}}$ 

*G* is a threshold graph iff *G* is  $\{2K_2, P_4, C_4\}$ -free

*G* is a threshold graph iff *G* is  $\{2K_2, P_4, C_4\}$ -free

#### Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is  $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.



*G* is a threshold graph iff *G* is  $\{2K_2, P_4, C_4\}$ -free

#### Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is  $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.



Weakly threshold graphs form a large subclass of interval  $\cap$  co-interval.

(The latter class's forbidden induced subgraphs:)



# Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
Erdős–Gallai inequalities.

 $k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$ 

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization
- Unique realizations of degree sequences?
- Majorization result

?

 $\overline{\mathbf{A}}$ 

### Enumeration: more subtle

Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly  $2^{n-1}$  threshold graphs on *n* vertices.

A graph is weakly threshold iff it is constructed from a single vertex or  $P_4$  by iteratively adding one of ...

# Enumeration: more subtle

Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly  $2^{n-1}$  threshold graphs on *n* vertices.

A graph is weakly threshold iff it is constructed from a single vertex or  $P_4$  by iteratively adding one of ...

One wrinkle (of many): there is a difference between counting weakly threshold sequences / weakly threshold graphs (isomorphism classes).



**Unlike** threshold sequences, some weakly threshold sequences have multiple realizations!

### Enumeration: sequences

 $a_n$  = number of weakly threshold **sequences** of length *n* 

**Proposition:** For all  $n \ge 4$ ,  $a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}$ .

 $(1, )1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots$ 

### Enumeration: sequences

 $a_n$  = number of weakly threshold **sequences** of length *n* 

**Proposition:** For all  $n \ge 4$ ,  $a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}$ .

 $(1, )1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots$ 

#### It's in OEIS.org! Sequences A024537, A171842

- Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, ...
- Number of nonisomorphic n-element interval orders with no 3-element antichain.
- Top left entry of the *n*th power of  $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$  or of  $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ .
- Number of  $(1, s_1, ..., s_{n-1}, 1)$  such that  $s_i \in \{1, 2, 3\}$  and  $|s_i s_{i-1}| \le 1$ .
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an (n 1)-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- Lower bound of the order of the set of equivalent resistances of (n 1) equal resistors combined in series and in parallel.

 $b_n$  = number of weakly threshold **graphs** with *n* vertices

*b<sub>n</sub>* = number of weakly threshold **graphs** with *n* vertices

#### Theorem

The generating function for  $(b_n)$  is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

*b<sub>n</sub>* = number of weakly threshold **graphs** with *n* vertices

#### Theorem

The generating function for  $(b_n)$  is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

 $h_n = \#$  indecomposable WT on *n* vertices  $h_n = 3h_{n-1} - h_{n-2}$ 

$$H(x) = 2x + \sum_{k=4}^{\infty} h_n(x) = \frac{2x - 6x^2 + 2x^3 + x^4 - x^5 + x^6}{1 - 3x + x^2}$$

*b<sub>n</sub>* = number of weakly threshold **graphs** with *n* vertices

#### Theorem

The generating function for  $(b_n)$  is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}$$

# WT graphs with exactly *k* canonical components:  $H(x)^{k-1}(H(x) - x)$ 

*b<sub>n</sub>* = number of weakly threshold **graphs** with *n* vertices

#### Theorem

The generating function for  $(b_n)$  is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

# WT graphs with exactly *k* canonical components:  $H(x)^{k-1}(H(x) - x)$ 

$$\sum_{n=0}^{\infty} b_n(x) = \sum_{k=1}^{\infty} H(x)^{k-1} (H(x) - x) = \frac{H(x) - x}{1 - H(x)}$$

M. D. Barrus (URI)

*b<sub>n</sub>* = number of weakly threshold **graphs** with *n* vertices

#### Theorem

The generating function for  $(b_n)$  is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

*b<sub>n</sub>* = number of weakly threshold **graphs** with *n* vertices

#### Theorem

The generating function for  $(b_n)$  is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

$$\begin{split} b_n = & c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \\ & + c_3 \left(\frac{6-(1+i\sqrt{3})(27-3\sqrt{57})^{1/3}-(1-i\sqrt{3})(27+3\sqrt{57})^{1/3}}{6}\right)^n \\ & + c_4 \left(\frac{6-(1-i\sqrt{3})(27-3\sqrt{57})^{1/3}-(1+i\sqrt{3})(27+3\sqrt{57})^{1/3}}{6}\right)^n \\ & + c_5 \left(\frac{3+(27-3\sqrt{57})^{1/3}+(27+3\sqrt{57})^{1/3}}{3}\right)^n, \end{split}$$

M. D. Barrus (URI)
## Enumeration

There are exactly  $\frac{1}{2} \cdot 2^n$  threshold graphs on *n* vertices.

$$a_n ~\sim~ \frac{1}{4}(1+\sqrt{2})^n$$

and

$$b_n \sim c_5 \left( rac{3 + (27 - 3\sqrt{57})^{1/3} + (27 + 3\sqrt{57})^{1/3}}{3} 
ight)^n,$$

so for large n,

$$a_n \ge \frac{1}{4} \cdot 2.4^n$$
 and  $b_n \ge 0.096 \cdot 2.7^n$ .

## Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$ 

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization
- Unique realizations of degree sequences? NO
- Majorization result

...?...

 $\overline{\mathbf{A}}$ 

## **Further questions**

Many of the results for weakly threshold graphs appear to generalize to graphs with  $RHS_k(d) - LHS_k(d)$  bounded by *b*. Do they all?



What else can be said about graphs with near-equality in the Erdős–Gallai inequalities?

M. D. Barrus (URI)

## Thank you!

barrus@uri.edu