Weakly threshold graphs

Michael D. Barrus

Department of Mathematics University of Rhode Island

MAA Northeastern Section Meeting
University of New England • June 4, 2016

Options for adding

Dominating vertex

Options for adding

Dominating vertex

Isolated vertex

Threshold graph: One that can be constructed from a single vertex via these operations.

Threshold sequence: The degree sequence of a threshold graph, eg. (4, 3, 2, 2, 1).

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Equality in the first m(d)
 Erdős–Gallai inequalities.

$$\sum_{i\leq k} d_i = k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

 Iterative construction via dominating/isolated vertices

 There are exactly 2ⁿ⁻¹ threshold graphs on n vertices. Unique realization of degree sequence

• $\{2K_2, P_4, C_4\}$ -free

 Threshold sequences majorize all other degree sequences

• ..

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges

Theorem (Chvátal-Hammer, 1973)

Any induced subgraph of a threshold graph is a threshold graph. In fact, G is a threshold graph iff G has no induced subgraph isomorphic to one of the following:

(We say that G is $\{2K_2, P_4, C_4\}$ -free.)

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Equality in the first m(d)
 Erdős–Gallai inequalities.

$$\sum_{i\leq k} d_i = k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

 Iterative construction via dominating/isolated vertices

 There are exactly 2ⁿ⁻¹ threshold graphs on n vertices. Unique realization of degree sequence

• $\{2K_2, P_4, C_4\}$ -free

 Threshold sequences majorize all other degree sequences

• ..

Threshold sequences and majorization

Theorem (Ruch-Gutman, 1979; Peled-Srinivasan, 1989)

d is a threshold sequence if and only if d is a maximal element in the poset of all degree sequences with the same sum, ordered by majorization.

Degree sequences, inequalities, and graphs

Erdős-Gallai inequalities (1960)

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{i \le k} d_i \le k(k-1) + \sum_{i > k} \min\{k, d_i\}$$

for all $k \le m(d) = \max\{i : d_i \ge i - 1\}.$

Theorem (Hammer-Ibaraki-Simeone, 1978)

d is a threshold sequence if and only if d satisfies each of the first m(d) Erdős–Gallai inequalities with equality.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Equality in the first m(d)
 Erdős–Gallai inequalities.

$$\sum_{i \leq k} d_i = k(k-1) + \sum_{i > k} \min\{k, d_i\}$$

 Iterative construction via dominating/isolated vertices

 There are exactly 2ⁿ⁻¹ threshold graphs on n vertices. Unique realization of degree sequence

• $\{2K_2, P_4, C_4\}$ -free

 Threshold sequences majorize all other degree sequences

• ..

Weakly threshold sequences and graphs (B, 2016+)

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

$$k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i\leq k} d_i \le 1$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

Weakly threshold sequences and graphs (B, 2016+)

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

$$k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

• Iterative construction?

- How many weakly threshold sequences/graphs on n vertices?
- Unique realizations of degree sequences?
- Forbidden subgraph characterization?
- Majorization result?
- ...?...

Non-threshold, weakly threshold graphs

Iterative construction

Theorem

G is a threshold graph if and only if G can be constructed by beginning with a single vertex and iteratively adding

- a dominating vertex, or
- an isolated vertex

Iterative construction

Theorem

G is a **weakly** threshold graph if and only if G can be constructed by beginning with a single vertex **or** P₄ and iteratively adding

- a dominating vertex, or
- an isolated vertex, or
- a weakly dominating vertex, or
- a weakly isolated vertex, or
- a semi-joined P₄.

Non-threshold, weakly threshold graphs

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

$$k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i< k} d_i \le 1$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Unique realizations of degree sequences?
- Forbidden subgraph characterization?
- Majorization result?
- ...?...

G is a threshold graph iff G is $\{2K_2, P_4, C_4\}$ -free

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.

Weakly threshold graphs form a large subclass of **interval** \cap **co-interval**.

(The latter class's forbidden induced subgraphs:)

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

$$k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i< k} d_i \le 1$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Unique realizations of degree sequences?
- Forbidden subgraph characterization
- Majorization result?
- ...?...

Near the threshold

Threshold sequences majorize all other degree sequences.

Near the threshold

Threshold sequences majorize all other degree sequences.

WT sequences are upwards-closed, continue to majorize.

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

$$k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i< k} d_i \le 1$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Unique realizations of degree sequences?
- Forbidden subgraph characterization
- Majorization result

• ...?...

Enumeration: more subtle

Threshold iff constructed from \bullet via dominating/isolated vertices; therefore, exactly 2^{n-1} threshold graphs on n vertices.

A graph is weakly threshold iff it is constructed from a single vertex or P_4 by iteratively adding one of ...

Enumeration: more subtle

Threshold iff constructed from \bullet via dominating/isolated vertices; therefore, exactly 2^{n-1} threshold graphs on n vertices.

A graph is weakly threshold iff it is constructed from a single vertex or P_4 by iteratively adding one of ...

One wrinkle (of many): there is a difference between counting weakly threshold sequences / weakly threshold graphs (isomorphism classes).

Unlike threshold sequences, some weakly threshold sequences have multiple realizations!

Enumeration: sequences

 a_n = number of weakly threshold **sequences** of length n

Proposition: For all
$$n \ge 4$$
, $a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}$. (1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, . . .

Enumeration: sequences

a_n = number of weakly threshold **sequences** of length n

Proposition: For all
$$n \ge 4$$
, $a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}$. (1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, . . .

It's in OEIS.org! Sequences A024537, A171842

- Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, . . .
- Number of nonisomorphic *n*-element interval orders with no 3-element antichain.
- Top left entry of the *n*th power of $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ or of $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- Number of $(1, s_1, ..., s_{n-1}, 1)$ such that $s_i \in \{1, 2, 3\}$ and $|s_i s_{i-1}| \le 1$.
- Partial sums of the Pell numbers prefaced with a 1.
- $lack {lack}$ The number of ways to write an (n-1)-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- lacktriangle Lower bound of the order of the set of equivalent resistances of (n-1) equal resistors combined in series and in parallel.

Enumeration: graphs

 b_n = number of weakly threshold **graphs** with n vertices

Theorem

The generating function for (b_n) is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

Enumeration: graphs

 b_n = number of weakly threshold **graphs** with n vertices

Theorem

The generating function for (b_n) is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

$$\begin{split} b_n = & c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \\ & + c_3 \left(\frac{6-(1+i\sqrt{3})(27-3\sqrt{57})^{1/3} - (1-i\sqrt{3})(27+3\sqrt{57})^{1/3}}{6}\right)^n \\ & + c_4 \left(\frac{6-(1-i\sqrt{3})(27-3\sqrt{57})^{1/3} - (1+i\sqrt{3})(27+3\sqrt{57})^{1/3}}{6}\right)^n \\ & + c_5 \left(\frac{3+(27-3\sqrt{57})^{1/3} + (27+3\sqrt{57})^{1/3}}{3}\right)^n, \end{split}$$

Enumeration

There are exactly $\frac{1}{2} \cdot 2^n$ threshold graphs on *n* vertices.

$$a_n \sim \frac{1}{4}(1+\sqrt{2})^n$$

and

$$b_n \sim c_5 \left(\frac{3 + (27 - 3\sqrt{57})^{1/3} + (27 + 3\sqrt{57})^{1/3}}{3} \right)^n,$$

so for large n,

$$a_n \ge \frac{1}{4} \cdot 2.4^n$$
 and $b_n \ge 0.096 \cdot 2.7^n$.

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

$$k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i\leq k} d_i \leq 1$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

Iterative construction

- How many weakly threshold sequences/graphs on n
 vertices? √
- Unique realizations of degree sequences?
- Forbidden subgraph characterization √
- Majorization result
- ...?...

NO

Thank you!

barrus@uri.edu