## Weakly threshold graphs

Michael D. Barrus<br>Department of Mathematics<br>University of Rhode Island<br>

MAA Northeastern Section Meeting University of New England • June 4, 2016

## Graph building

## Graph building



Isolated vertex


## Graph building

## Options for adding

Dominating vertex


Isolated vertex


Threshold graph: One that can be constructed from a single vertex via these operations.

Threshold sequence: The degree sequence of a threshold graph, eg. $(4,3,2,2,1)$.

## Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Unique realization of degree sequence

- Iterative construction via dominating/isolated vertices

- There are exactly $2^{n-1}$ threshold graphs on $n$ vertices.
- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Threshold sequences majorize all other degree sequences


## A forbidden subgraph characterization

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges


## Theorem (Chvátal-Hammer, 1973)

Any induced subgraph of a threshold graph is a threshold graph. In fact, $G$ is a threshold graph iff $G$ has no induced subgraph isomorphic to one of the following:

(We say that $G$ is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free.)

## Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Unique realization of degree sequence

- Iterative construction via dominating/isolated vertices

- There are exactly $2^{n-1}$ threshold graphs on $n$ vertices.
- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Threshold sequences majorize all other degree sequences


## Threshold sequences and majorization



## Theorem (Ruch-Gutman, 1979; Peled-Srinivasan, 1989)

$d$ is a threshold sequence if and only if $d$ is a maximal element in the poset of all degree sequences with the same sum, ordered by majorization.

## Degree sequences, inequalities, and graphs

$$
\begin{gathered}
(5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3 \\
3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,1)
\end{gathered}
$$

Erdős-Gallai inequalities (1960)
A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \leq m(d)=\max \left\{i: d_{i} \geq i-1\right\}$.

## Theorem (Hammer-lbaraki-Simeone, 1978)

$d$ is a threshold sequence if and only if $d$ satisfies each of the first $m(d)$ Erdős-Gallai inequalities with equality.

## Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Unique realization of degree sequence

- Iterative construction via dominating/isolated vertices

- There are exactly $2^{n-1}$ threshold graphs on $n$ vertices.

- Threshold sequences majorize all other degree sequences


## Weakly threshold sequences and graphs

 (B, 2016+)- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

Weakly threshold sequences and graphs (B, 2016+)

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Forbidden subgraph characterization?
- Majorization result?
- Iterative construction? sequences/graphs on $n$ vertices?
- Unique realizations of degree sequences?


## Non-threshold, weakly threshold graphs



## Iterative construction



## Theorem

$G$ is a threshold graph if and only if $G$ can be constructed by beginning with a single vertex and iteratively adding

- a dominating vertex, or
- an isolated vertex


## Iterative construction



## Theorem

$G$ is a weakly threshold graph if and only if $G$ can be constructed by beginning with a single vertex or $P_{4}$ and iteratively adding

- a dominating vertex, or
- an isolated vertex, or
- a weakly dominating vertex, or
- a weakly isolated vertex, or
- a semi-joined $P_{4}$.



## Non-threshold, weakly threshold graphs



## Weakly threshold sequences and graphs

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Iterative construction $\quad \checkmark$
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result?


## A forbidden subgraph characterization

$G$ is a threshold graph iff $G$ is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free


## A forbidden subgraph characterization

## $G$ is a threshold graph iff $G$ is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

## Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.
In fact, a graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.


## A forbidden subgraph characterization

## $G$ is a threshold graph iff $G$ is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free



## Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs. In fact, a graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.


Weakly threshold graphs form a large subclass of interval $\cap$ co-interval.
(The latter class's forbidden induced subgraphs:)


## Weakly threshold sequences and graphs

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Iterative construction $\quad \checkmark$
- Forbidden subgraph
characterization $\quad \square$

| - Forbidden subgraph |
| :--- |
| characterization |

- Unique realizations of degree sequences?
- Majorization result? sequences/graphs on $n$ vertices?


## Near the threshold

## Threshold sequences majorize all other degree sequences.



## Near the threshold

## Threshold sequences majorize all other degree sequences.



WT sequences are upwards-closed, continue to majorize.

## Weakly threshold sequences and graphs

- How many weakly threshold
- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Iterative construction $\quad \checkmark$
- Forbidden subgraph characterization $\checkmark$
- Majorization result $\quad \checkmark$ sequences/graphs on $n$ vertices?
- Unique realizations of degree sequences?


## Enumeration: more subtle

## Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly $2^{n-1}$ threshold graphs on $n$ vertices.

A graph is weakly threshold iff it is constructed from a single vertex or $P_{4}$ by iteratively adding one of ...

## Enumeration: more subtle

## Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly $2^{n-1}$ threshold graphs on $n$ vertices.

A graph is weakly threshold iff it is constructed from a single vertex or $P_{4}$ by iteratively adding one of ...

One wrinkle (of many): there is a difference between counting weakly threshold sequences / weakly threshold graphs (isomorphism classes).


Unlike threshold sequences, some weakly threshold sequences have multiple realizations!

## Enumeration: sequences

$a_{n}=$ number of weakly threshold sequences of length $n$
Proposition: For all $n \geq 4, a_{n}=4 a_{n-1}-4 a_{n-2}+a_{n-4}$.
$(1) 1,2,4,9,21,50,120,289,697,1682,4060,, \ldots$

## Enumeration: sequences

$a_{n}=$ number of weakly threshold sequences of length $n$
Proposition: For all $n \geq 4, a_{n}=4 a_{n-1}-4 a_{n-2}+a_{n-4}$.

$$
(1,) 1,2,4,9,21,50,120,289,697,1682,4060, \ldots
$$

## It's in OEIS.org! Sequences A024537, A171842

- Binomial transform of $1,0,1,0,2,0,4,0,8,0,16, \ldots$
- Number of nonisomorphic $n$-element interval orders with no 3-element antichain.
- Top left entry of the $n$th power of $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ or of $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
- Number of $\left(1, s_{1}, \ldots, s_{n-1}, 1\right)$ such that $s_{i} \in\{1,2,3\}$ and $\left|s_{i}-s_{i-1}\right| \leq 1$.
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an $(n-1)$-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- Lower bound of the order of the set of equivalent resistances of $(n-1)$ equal resistors combined in series and in parallel.


## Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with $n$ vertices

## Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}}
$$

## Enumeration: graphs

$b_{n}=$ number of weakly threshold graphs with $n$ vertices

## Theorem

The generating function for $\left(b_{n}\right)$ is given by

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{n} x^{n}=\frac{x-2 x^{2}-x^{3}-x^{5}}{1-4 x+3 x^{2}+x^{3}+x^{5}} \\
b_{n}= & c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& +c_{3}\left(\frac{6-(1+i \sqrt{3})(27-3 \sqrt{57})^{1 / 3}-(1-i \sqrt{3})(27+3 \sqrt{57})^{1 / 3}}{6}\right)^{n} \\
& +c_{4}\left(\frac{6-(1-i \sqrt{3})(27-3 \sqrt{57})^{1 / 3}-(1+i \sqrt{3})(27+3 \sqrt{57})^{1 / 3}}{6}\right)^{n} \\
& +c_{5}\left(\frac{3+(27-3 \sqrt{57})^{1 / 3}+(27+3 \sqrt{57})^{1 / 3}}{3}\right)^{n}
\end{aligned}
$$

## Enumeration

## There are exactly $\frac{1}{2} \cdot 2^{n}$ threshold graphs on $n$ vertices.

$$
a_{n} \sim \frac{1}{4}(1+\sqrt{2})^{n}
$$

and

$$
b_{n} \sim c_{5}\left(\frac{3+(27-3 \sqrt{57})^{1 / 3}+(27+3 \sqrt{57})^{1 / 3}}{3}\right)^{n}
$$

so for large $n$,

$$
a_{n} \geq \frac{1}{4} \cdot 2.4^{n} \quad \text { and } \quad b_{n} \geq 0.096 \cdot 2.7^{n}
$$

## Weakly threshold sequences and graphs

- Equality or a difference of 1 in each of the first $m(d)$ Erdős-Gallai inequalities.

$$
k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}-\sum_{i \leq k} d_{i} \leq 1
$$

Call these weakly threshold sequences; call the associated graphs weakly threshold graphs.

- Iterative construction $\quad \checkmark$
- Majorization result
- Unique realizations of degree sequences?
- Forbidden subgraph characterization $\checkmark$ sequences/graphs on $n$ vertices? $\downarrow$
- How many weakly threshold



## Thank you!

barrus@uri.edu

