Three conjectures on minimal obstructions for tree-depth

Michael D. Barrus

Department of Mathematics University of Rhode Island

Forty-Sixth Southeastern International Conference on Combinatorics, Graph Theory, and Computing March 3, 2015

Joint work with John Sinkovic (Georgia State University)

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps needed to delete all of *G*, where in each step at most one vertex is deleted from each connected component. (Here, td(G) = 4)

Equivalently, the smallest number of labels needed in a labeling where every path with equal endpoints also has a higher label.

Theorem

If G contains H as a minor, then $td(G) \ge td(H)$.

Theorem

If G contains H as a minor, then $td(G) \ge td(H)$.

Call a graph **critical** if every proper minor has a smaller tree-depth. (k-critical = critical, with tree-depth k)

Question: Which are the critical graphs?

M. D. Barrus (URI)

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

Critical graphs for small tree-depths (Dvořák–Giannopoulou–Thilikos, '09, '12)

Critical graphs for small tree-depths (Dvořák–Giannopoulou–Thilikos, '09, '12)

Critical graphs for small tree-depths (Dvořák–Giannopoulou–Thilikos, '09, '12)

- What structural properties must critical graphs possess?
- How are they made? Can we construct them?

Conjectures on k-critical graphs

Conjectures on k-critical graphs

Conjecture 1

[Dvořák–Giannopoulou–Thilikos, '09, '12]

If G is k-critical, then

$$|V(G)| \leq 2^{k-1}$$

M. D. Barrus (URI)

Conjectures on k-critical graphs

Conjecture 2

If G is k-critical, then

 $\Delta(G) \leq k-1.$

M. D. Barrus (URI)

An approach to Conjecture 2

Any vertex with the smallest label has neighbors with distinct labels.

If in some optimal labeling of *G* a vertex of maximum degree receives the label 1, then $\Delta(G) \leq td(G) - 1$.

Conjecture 3(?)

If G is k-critical, then ... G has an optimal labeling where some vertex with maximum degree is labeled 1.

M. D. Barrus (URI)

Conjecture 3(?)

If G is k-critical, then ... for **each** vertex v of G, there is an optimal labeling where v receives label 1.

M. D. Barrus (URI)

Conjecture 3(?)

If G is k-critical, then ... for **each** vertex v of G, there is an optimal labeling where v is the **unique** vertex receiving label 1.

M. D. Barrus (URI)

1-uniqueness

Given a graph G, we say that a graph G is **1-unique** if for every vertex v of G there is an optimal labeling of G where v is the only vertex receiving label 1.

Conjecture 3 (final version)

If *G* is critical, then *G* is 1-unique.

1-uniqueness—a type of criticality?

Theorem

If G is a 1-unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

1-uniqueness—a type of criticality?

Theorem

If G is a 1-unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

Thus, 1-unique graphs are similar to critical graphs—each is at most some edge-deletions away from a critical graph.

1-uniqueness—a type of criticality?

Theorem

If G is a 1-unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

Thus, 1-unique graphs are similar to critical graphs—each is at most some edge-deletions away from a critical graph.

Is every critical graph 1-unique?

Critical graphs for small tree-depths (Dvořák–Giannopoulou–Thilikos, '09, '12)

- What structural properties must critical graphs possess?
- How are they made? Can we construct them?

Critical graphs for small tree-depths (Dvořák–Giannopoulou–Thilikos, '09, '12)

Theorem (DGT)

For any k, adding any edge joining two critical graphs with tree-depth k results in a critical graph with tree-depth k + 1.

M. D. Barrus (URI)

Conjectures on tree-depth

A generalization

A generalization

Hang *k*-critical "appendages" off every vertex of an ℓ -critical graph...

A generalization

Hang *k*-critical "appendages" off every vertex of an ℓ -critical graph...

Are these graphs critical? (And if so, do they satisfy our conjectures?)

The key condition

Theorem

Graphs G constructed with k-critical "appendages" L_i and an ℓ -critical "core" $H_{...}$

- ...have tree-depth $k + \ell 1$ if H and all the L_i are critical;
- ...are critical if H is also 1-unique;

The key condition

Theorem

Graphs G constructed with k-critical "appendages" L_i and an ℓ -critical "core" H...

- …have order at most 2^{td(G)-1} if |V(H)| ≤ 2^{ℓ-1} and |V(L_i)| ≤ 2^{k-1} for all i.
- ...are 1-unique if H and all the L_i are 1-unique;

Families of 1-unique critical graphs

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Conjecture: Every critical graph is 1-unique (and hence the "appendages" construction always produces critical graphs).

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Conjecture: Every critical graph is 1-unique (and hence the "appendages" construction always produces critical graphs).

Ill-defined hope: The critical graphs each either

- belong to one or more of a few easily defined families, or
- can be produced from smaller critical graphs via one of a few easily defined constructions.

Conjecture 3

If G is k-critical, then G is 1-unique.

M. D. Barrus (URI)

Conjectures on tree-depth

March 3, 2015 17 / 17

Conjecture 1[Dvořák–Giannopoulou–Thilikos, '09, '12]If G is k-critical, then $|V(G)| \le 2^{k-1}$.

M. D. Barrus (URI)

Conjectures on tree-depth

March 3, 2015 17 / 17

Conjecture 2

If G is k-critical, then $\Delta(G) \leq k - 1$.

M. D. Barrus (URI)

Thank you!

M. D. Barrus (URI)

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Equivalently, the smallest height of a tree for which the edges of *G* all join ancestor-descendant pairs.