Three conjectures on minimal obstructions for tree-depth

Michael D. Barrus

Department of Mathematics
University of Rhode Island

Forty-Sixth Southeastern International Conference on Combinatorics, Graph Theory, and Computing
March 3, 2015

Joint work with John Sinkovic (Georgia State University)
Tree-depth \(td(G) \): The minimum number of vertex deletion steps needed to delete all of \(G \), where in each step at most one vertex is deleted from each connected component.
Tree-depth \(td(G) \): The minimum number of vertex deletion steps needed to delete all of \(G \), where in each step at most one vertex is deleted from each connected component.
Tree-depth $td(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.
Tree-depth \(td(G) \): The minimum number of vertex deletion steps needed to delete all of \(G \), where in each step at most one vertex is deleted from each connected component.
Tree-depth $td(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.
Tree-depth \(\text{td}(G) \): The minimum number of vertex deletion steps needed to delete all of \(G \), where in each step at most one vertex is deleted from each connected component.
Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\text{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.
Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\text{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.
Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $td(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.
Tree-depth $\text{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component. (Here, $\text{td}(G) = 4$)
Tree-depth $td(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component. (Here, $td(G) = 4$)

Equivalently, the smallest number of labels needed in a labeling where every path with equal endpoints also has a higher label.
Theorem

If G contains H as a minor, then $td(G) \geq td(H)$.

Tree-depth and minors
Theorem
If G contains H as a minor, then $td(G) \geq td(H)$.
Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.

M. D. Barrus (URI)

Conjectures on tree-depth

March 3, 2015
Theorem

If \(G \) contains \(H \) as a minor, then
\[
\text{td}(G) \geq \text{td}(H)
\]
Theorem

If G contains H as a minor, then $td(G) \geq td(H)$.
Theorem
If \(G \) contains \(H \) as a minor, then
\[
\text{td}(G) \geq \text{td}(H).
\]
Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.
Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.
Theorem

If G contains H as a minor, then $\text{td}(G) \geq \text{td}(H)$.

Call a graph **critical** if every proper minor has a smaller tree-depth.
(k-critical = critical, with tree-depth k)

Question: Which are the critical graphs?
Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: ● 2: ●●

What structural properties must critical graphs possess?
How are they made? Can we construct them?
Critical graphs for small tree-depths

(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1:

2:

3:

What structural properties must critical graphs possess? How are they made? Can we construct them?
Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: \[\bullet \]
2: \[\bullet - \bullet \]
3: \[\bullet - \bullet - \bullet \]
4: \[\text{Various graphs} \]

What structural properties must critical graphs possess?
How are they made? Can we construct them?
Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: \[\bullet \]
2: \[\bullet - \bullet \]
3: \[\bullet - \bullet - \bullet \]
4: \[\text{Various structures} \]
5: 136 trees, plus...
Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: ●
2: ●●
3: ●●●
4: ...
5: 136 trees, plus...

- What structural properties must critical graphs possess?
- How are they made? Can we construct them?
Conjectures on k-critical graphs

1:

2:

3:

4:

Conjecture 1 [Dvořák–Giannopoulou–Thilikos, '09, '12]

If G is k-critical, then $|V(G)| \leq 2k - 1$.

M. D. Barrus (URI)
Conjectures on k-critical graphs

1:

2:

3:

4:

Conjecture 1 [Dvořák–Giannopoulou–Thilikos, ’09, ’12]

If G is k-critical, then

$$|V(G)| \leq 2^{k-1}.$$
Conjecture 2

If G is k-critical, then

$$\Delta(G) \leq k - 1.$$
An approach to Conjecture 2

Any vertex with the smallest label has neighbors with distinct labels.

If in some optimal labeling of G a vertex of maximum degree receives the label 1, then $\Delta(G) \leq \text{td}(G) - 1$.
Further conjectures

1:

2:

3:

4:

Conjecture 3:
If G is k-critical, then G has an optimal labeling where some vertex with maximum degree is labeled 1.
Further conjectures

1:

2:

3:

4:

Conjecture 3(?)

If G is k-critical, then ... G has an optimal labeling where some vertex with maximum degree is labeled 1.
Further conjectures

1:

2:

3:

4:

Conjecture 3 (?)

If G is k-critical, then for each vertex v of G, there is an optimal labeling where v receives label 1.
Further conjectures

1:

2:

3:

4:

Conjecture 3(?)
If G is k-critical, then ... for each vertex v of G, there is an optimal labeling where v is the unique vertex receiving label 1.
1-uniqueness

Given a graph G, we say that a graph G is 1-unique if for every vertex v of G there is an optimal labeling of G where v is the only vertex receiving label 1.

Conjecture 3 (final version)
If G is critical, then G is 1-unique.
Theorem

If G is a 1-unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.
1-uniqueness—a type of criticality?

Theorem

If G is a 1-unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

Thus, 1-unique graphs are similar to critical graphs—each is at most some edge-deletions away from a critical graph.
1-uniqueness—a type of criticality?

Theorem

If G is a 1-unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

Thus, 1-unique graphs are similar to critical graphs—each is at most some edge-deletions away from a critical graph.

Is every critical graph 1-unique?
Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

What structural properties must critical graphs possess?
How are they made? Can we construct them?
Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: \[\bullet \]
2: \[\bullet - \bullet \]
3: \[\bullet - \bullet - \bullet \]

4: [Diagrams of various graphs]
5: 136 trees, plus...

Theorem (DGT)
For any \(k \), adding any edge joining two critical graphs with tree-depth \(k \)
results in a critical graph with tree-depth \(k + 1 \).
A generalization

Hang -critical “appendages” off every vertex of an ℓ-critical graph...

Are these graphs critical? (And if so, do they satisfy our conjectures?)
A generalization

Hang k-critical “appendages” off every vertex of an ℓ-critical graph...
A generalization

Hang k-critical “appendages” off every vertex of an ℓ-critical graph...

Are these graphs critical? (And if so, do they satisfy our conjectures?)
The key condition

Theorem

Graphs G constructed with k-critical “appendages” L_i and an ℓ-critical “core” H...

- have tree-depth $k + \ell - 1$ if H and all the L_i are critical;
- are critical if H is also 1-unique;
The key condition

Graphs G constructed with k-critical “appendages” L_i and an ℓ-critical “core” H...

...have order at most $2^{\text{td}(G)-1}$ if $|V(H)| \leq 2^{\ell-1}$ and $|V(L_i)| \leq 2^{k-1}$ for all i.

...are 1-unique if H and all the L_i are 1-unique;
Families of 1-unique critical graphs

1: ●

2: ● ●

3: ● ● ●

4: ● ● ● ● ●

5: ● ● ● ●

136 trees, plus...

M. D. Barrus (URI)
Conjectures on tree-depth
March 3, 2015
Things to think about

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.
Things to think about

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Conjecture: Every critical graph is 1-unique (and hence the “appendages” construction always produces critical graphs).
Things to think about

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Conjecture: Every critical graph is 1-unique (and hence the “appendages” construction always produces critical graphs).

Ill-defined hope: The critical graphs each either

- belong to one or more of a few easily defined families, or
- can be produced from smaller critical graphs via one of a few easily defined constructions.
Things to think about

1:

2:

3:

4:

Conjecture 3

If G is k-critical, then G is 1-unique.
Conjecture 3

If G is k-critical, then G is 1-unique.
Things to think about

1:

2:

3:

4:

Conjecture 1 [Dvořák–Giannopoulou–Thilikos, ’09, ’12]

If G is k-critical, then $|V(G)| \leq 2^{k-1}$.
Things to think about

1:

2:

3:

4:

Conjecture 2
If G is k-critical, then $\Delta(G) \leq k - 1$.
Things to think about

1: ●
2: ● ●
3: ● ● ● ●
4: ● ● ● ● ●

Thank you!
Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Equivalently, the smallest height of a tree for which the edges of G all join ancestor-descendant pairs.