Three conjectures on minimal obstructions for tree-depth

Michael D. Barrus

Department of Mathematics
University of Rhode Island

Forty-Sixth Southeastern International Conference on
Combinatorics, Graph Theory, and Computing March 3, 2015

Joint work with John Sinkovic (Georgia State University)

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

0
0

O

0

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component.

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component. (Here, $\operatorname{td}(G)=4)$

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth $\operatorname{td}(G)$: The minimum number of vertex deletion steps needed to delete all of G, where in each step at most one vertex is deleted from each connected component. (Here, $\operatorname{td}(G)=4$)

Equivalently, the smallest number of labels needed in a labeling where every path with equal endpoints also has a higher label.

Tree-depth and minors

Theorem

If G contains H as a minor, then $\operatorname{td}(G) \geq \operatorname{td}(H)$.

Tree-depth and minors

Theorem
 If G contains H as a minor, then $\operatorname{td}(G) \geq \operatorname{td}(H)$.

Call a graph critical if every proper minor has a smaller tree-depth. $(k$-critical $=$ critical, with tree-depth k)

Question: Which are the critical graphs?

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

3:
0

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

- What structural properties must critical graphs possess?
- How are they made? Can we construct them?

Conjectures on k-critical graphs

1:

2: -

3:
 0

Conjectures on k-critical graphs

1:

Conjecture 1 [Dvořák-Giannopoulou-Thilikos, '09, '12]
If G is k-critical, then

$$
|V(G)| \leq 2^{k-1} .
$$

Conjectures on k-critical graphs

Conjecture 2

If G is k-critical, then

$$
\Delta(G) \leq k-1
$$

An approach to Conjecture 2

Any vertex with the smallest label has neighbors with distinct labels.

If in some optimal labeling of G a vertex of maximum degree receives the label 1 , then $\Delta(G) \leq \operatorname{td}(G)-1$.

Further conjectures

Further conjectures

1:

Conjecture 3(?)

If G is k-critical, then ... G has an optimal labeling where some vertex with maximum degree is labeled 1.

Further conjectures

1:

Conjecture 3(?)

If G is k-critical, then ... for each vertex v of G, there is an optimal labeling where v receives label 1.

Further conjectures

1:

$$
3: \bullet \bullet \bullet
$$

Conjecture 3(?)

If G is k-critical, then ... for each vertex v of G, there is an optimal labeling where v is the unique vertex receiving label 1.

1-uniqueness

Given a graph G, we say that a graph G is 1 -unique if for every vertex v of G there is an optimal labeling of G where v is the only vertex receiving label 1 .

(2)

Conjecture 3 (final version)

If G is critical, then G is 1 -unique.

1-uniqueness-a type of criticality?

(2)
(4)
(2)
(3) (2)

Theorem

If G is a 1 -unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

1-uniqueness-a type of criticality?

(3)

(2)
(4)
(2)
(3) (2)

Theorem

If G is a 1 -unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

Thus, 1-unique graphs are similar to critical graphs-each is at most some edge-deletions away from a critical graph.

1-uniqueness-a type of criticality?

(3)

(2)
(4)
(2)

Theorem

If G is a 1 -unique graph, then

- deleting any vertex from G lowers the tree-depth;
- contracting any edge of G lowers the tree-depth.

Thus, 1-unique graphs are similar to critical graphs-each is at most some edge-deletions away from a critical graph.

Is every critical graph 1-unique?

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

5: 136 trees, plus...

- What structural properties must critical graphs possess?
- How are they made? Can we construct them?

Critical graphs for small tree-depths

(Dvořák-Giannopoulou-Thilikos, '09, '12)

$\xrightarrow{9}$

5: 136 trees, plus...

Theorem (DGT)

For any k, adding any edge joining two critical graphs with tree-depth k results in a critical graph with tree-depth $k+1$.

A generalization

! ! : ! :

A generalization

:
 !

Hang k-critical "appendages" off every vertex of an ℓ-critical graph...

A generalization

!
$!$

Hang k-critical "appendages" off every vertex of an ℓ-critical graph...

Are these graphs critical? (And if so, do they satisfy our conjectures?)

The key condition

Theorem

Graphs G constructed with k-critical "appendages" L_{i} and an ℓ-critical "core" H...

- ...have tree-depth $k+\ell-1$ if H and all the L_{i} are critical;
- ...are critical if H is also 1-unique;

The key condition

Theorem

Graphs G constructed with k-critical "appendages" L_{i} and an ℓ-critical "core" H...

- ...have order at most $2^{\operatorname{td}(G)-1}$ if $|V(H)| \leq 2^{\ell-1}$ and $\left|V\left(L_{i}\right)\right| \leq 2^{k-1}$ for all i.
- ...are 1 -unique if H and all the L_{i} are 1 -unique;

Families of 1-unique critical graphs

Things to think about

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Things to think about

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Conjecture: Every critical graph is 1 -unique (and hence the "appendages" construction always produces critical graphs).

Things to think about

Fact: Every 1-unique graph differs from a critical graph by at most the deletion of some edges.

Conjecture: Every critical graph is 1 -unique (and hence the "appendages" construction always produces critical graphs).

III-defined hope: The critical graphs each either

- belong to one or more of a few easily defined families, or
- can be produced from smaller critical graphs via one of a few easily defined constructions.

Things to think about

3:

Things to think about

1:

Conjecture 3

If G is k-critical, then G is 1 -unique.

Things to think about

1:

Conjecture 1
 [Dvořák-Giannopoulou-Thilikos, '09, '12]

If G is k-critical, then $|V(G)| \leq 2^{k-1}$.

Things to think about

1:

Conjecture 2

If G is k-critical, then $\Delta(G) \leq k-1$.

Things to think about

3:

Thank you!

Tree-depth

(aka (vertex) ranking number, ordered coloring number, ...)

Image credit: wikipedia.org

Equivalently, the smallest height of a tree for which the edges of G all join ancestor-descendant pairs.

