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Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 2 / 17



Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component. (Here, td(G) = 4)
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Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Tree-depth td(G): The minimum number of vertex deletion steps
needed to delete all of G, where in each step at most one vertex is
deleted from each connected component. (Here, td(G) = 4)

Equivalently, the smallest number of labels needed in a labeling
where every path with equal endpoints also has a higher label.
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Tree-depth and minors

Theorem
If G contains H as a minor, then td(G) ≥ td(H).
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Tree-depth and minors

Theorem
If G contains H as a minor, then td(G) ≥ td(H).

Call a graph critical if every proper minor has a smaller tree-depth.
(k -critical = critical, with tree-depth k )

Question: Which are the critical graphs?
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Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: 2:

3:

4:
5: 136 trees,

plus...

What structural properties must critical graphs possess?
How are they made? Can we construct them?
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Conjectures on k -critical graphs

1: 2: 3:

4:

Conjecture 1 [Dvořák–Giannopoulou–Thilikos, ’09, ’12]
If G is k -critical, then

|V (G)| ≤ 2k−1.
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Conjectures on k -critical graphs

1: 2: 3:

4:

Conjecture 2
If G is k -critical, then

∆(G) ≤ k − 1.
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An approach to Conjecture 2

Any vertex with the smallest label has neighbors with distinct labels.

If in some optimal labeling of G a vertex of maximum degree receives
the label 1, then ∆(G) ≤ td(G)− 1.
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Further conjectures

1: 2: 3:

4:

Conjecture 3(?)
If G is k -critical, then ... G has an optimal labeling where some vertex
with maximum degree is labeled 1.
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Further conjectures

1: 2: 3:

4:

Conjecture 3(?)
If G is k -critical, then ... for each vertex v of G, there is an optimal
labeling where v receives label 1.
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Further conjectures

1: 2: 3:

4:

Conjecture 3(?)
If G is k -critical, then ... for each vertex v of G, there is an optimal
labeling where v is the unique vertex receiving label 1.

M. D. Barrus (URI) Conjectures on tree-depth March 3, 2015 8 / 17



1-uniqueness

Given a graph G, we say that a graph G is 1-unique if for every vertex
v of G there is an optimal labeling of G where v is the only vertex
receiving label 1.
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Conjecture 3 (final version)
If G is critical, then G is 1-unique.
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1-uniqueness—a type of criticality?
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Theorem
If G is a 1-unique graph, then

deleting any vertex from G lowers the tree-depth;
contracting any edge of G lowers the tree-depth.

Thus, 1-unique graphs are similar to critical graphs—each is at most
some edge-deletions away from a critical graph.

Is every critical graph 1-unique?
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Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: 2: 3:

4:
5: 136 trees,

plus...

What structural properties must critical graphs possess?
How are they made? Can we construct them?
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Critical graphs for small tree-depths
(Dvořák–Giannopoulou–Thilikos, ’09, ’12)

1: 2: 3:

4:
5: 136 trees,

plus...

Theorem (DGT)
For any k, adding any edge joining two critical graphs with tree-depth k
results in a critical graph with tree-depth k + 1.
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A generalization

Hang k -critical “appendages” off every vertex of an `-critical graph...

Are these graphs critical? (And if
so, do they satisfy our
conjectures?)
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The key condition

Theorem
Graphs G constructed with k-critical “appendages” Li and an `-critical
“core” H...

...have tree-depth k + `− 1 if H and all the Li are critical;

...are critical if H is also 1-unique;
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The key condition

Theorem
Graphs G constructed with k-critical “appendages” Li and an `-critical
“core” H...

...have order at most 2td(G)−1 if |V (H)| ≤ 2`−1 and |V (Li)| ≤ 2k−1

for all i .
...are 1-unique if H and all the Li are 1-unique;
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Families of 1-unique critical graphs

1: 2: 3:

4:
5: 136 trees,

plus...
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Things to think about

Fact: Every 1-unique graph differs from a critical graph by at most the
deletion of some edges.

Conjecture: Every critical graph is 1-unique (and hence the
“appendages” construction always produces critical graphs).

Ill-defined hope: The critical graphs each either
belong to one or more of a few easily defined families, or
can be produced from smaller critical graphs via one of a few
easily defined constructions.
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Things to think about

1: 2: 3:

4:

Conjecture 3
If G is k -critical, then G is 1-unique.
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Things to think about

1: 2: 3:

4:

Conjecture 1 [Dvořák–Giannopoulou–Thilikos, ’09, ’12]

If G is k -critical, then |V (G)| ≤ 2k−1.
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Things to think about

1: 2: 3:

4:

Conjecture 2
If G is k -critical, then ∆(G) ≤ k − 1.
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Things to think about

1: 2: 3:

4:

Thank you!
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Tree-depth
(aka (vertex) ranking number, ordered coloring number, ...)

Image credit: wikipedia.org

Equivalently, the smallest height of a tree for which the edges of G all
join ancestor-descendant pairs.
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