
Towards spectral characterizations of hereditary
graph classes

Michael D. Barrus

Department of Mathematics
University of Rhode Island

49th Southeastern International Conference
on Combinatorics, Graph Theory, and Computing
Florida Atlantic University • March 7, 2018

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



Adjacency spectrum of G

b
b

b

b

b

A =


0 1 1 0 1
1 0 0 1 0
1 0 0 1 0
0 1 1 0 0
1 0 0 0 0



Spec(G) ={
−
√

1
2

(
5 +
√

17
)
,−
√

1
2

(
5−
√

17
)
,0,

√
1
2

(
5−
√

17
)
,

√
1
2

(
5 +
√

17
)}

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



Adjacency spectrum of G

b
b

b

b

b

A =


0 1 1 0 1
1 0 0 1 0
1 0 0 1 0
0 1 1 0 0
1 0 0 0 0


Spec(G) ={
−
√

1
2

(
5 +
√

17
)
,−
√

1
2

(
5−
√

17
)
,0,

√
1
2

(
5−
√

17
)
,

√
1
2

(
5 +
√

17
)}

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



Hereditary graph classes

A graph class is hereditary if it is closed under taking induced
subgraphs (⇔ under vertex deletions).

planar graphs

{K ∗5 ,K ∗3,3}-free

complete graphs

{2K1}-free

bipartite graphs

{C2n+1}-free

forests

{Cn}-free

Which hereditary classes are determined by their spectra?
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Cospectral graphs

A class C has no spectral characterization if some cospectral pair has
one element in C and the other not in C.
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Determined by their spectra

Theorem. Kn is the only graph having spectrum
{n − 1, (−1)n−1}, so complete graphs have a spectral
characterization.
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Theorem. G is bipartite⇔ Spec(G) is symmetric about 0.

−
√

1

2

(
5 +
√

17
)
,−

√
1

2

(
5−
√

17
)
, 0,

√
1

2

(
5−
√

17
)
,

√
1

2

(
5 +
√

17
)

b

b

b

b

b

b

b

b

b

b

Which hereditary classes are determined by their spectra?
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Forbidden subgraphs

planar graphs

{K ∗5 ,K ∗3,3}-free

complete graphs

{2K1}-free

bipartite graphs

{C2n+1}-free

forests

{Cn}-free

Call a set F of graphs spectrum-forcing (SF) if the F-free graphs
have a spectral characterization. Which F are?
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SF sets from closed walks

Theorem.
n∑

i=1

λk
i is the number of closed walks of length k .

Cor. {K2} and {K3} are SF. b b
b b

b

n∑
i=1

λk
i =

∑
H∈Wk

 number of
spanning closed

k -walks in H

 number of
induced copies

of H in G

 ,

W4 = {K2,P3,K3,C4,diamond,K4}∑
λ2

i = 2(#K2)
∑
λ3

i = 6(#K3)∑
λ4

i = 2(#K2) + 4(#P3) + 12(#K3) + 8(#C4) + 8(#diamond) + 24(#K4)

Theorem. The set {P3,K4} is SF. What other sets are?
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SF sets from DS families

Theorem. Kn is the only graph having spectrum
{n − 1, (−1)n−1}, so complete graphs have a spectral
characterization.

A graph is DS (determined by its spectrum) if it is the unique graph
having its spectrum (i.e., it belongs to no nontrivial cospectral pair).

Observation. If every F-free graph is DS, then F is SF.

Theorem. The set {P3} is SF.

Proof. Graph G is a disjoint union of cliques iff G is P3-free; the graphs
Kn1 + · · ·+ Knt are all DS. �
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SF sets from DS families

Theorem. Kn is the only graph having spectrum
{n − 1, (−1)n−1}, so complete graphs have a spectral
characterization.

A graph is DS (determined by its spectrum) if it is the unique graph
having its spectrum (i.e., it belongs to no nontrivial cospectral pair).

Observation. If every F-free graph is DS, then F is SF.

For which F are the F-free graphs DS?
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SF sets from eigenvalue bounds

Theorem (Interlacing). For any graph G and any vertex v of G, if
H = G − v and the spectra of G and H are

λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn−1,

respectively, then

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

Observation. Graphs with a fixed upper or lower bound on their
eigenvalues, or a bound on their spectral radius, form a hereditary
class (with a SF set of forbidden subgraphs).

Theorem (again). The set {P3} is SF.
Proof. Spec(P3) = {0,±

√
2}. If G has eigenvalues λ1 > · · · > λn,

λn > −
√

2 implies G is P3-free;
G is P3-free implies G is a disjoint union of complete graphs;
G a disjoint union of complete graphs implies λn = −1 (or λn = 0)
λn = −1 (or λn = 0) implies λn > −

√
2. �
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SF sets from eigenvalue bounds

Theorem (Interlacing). For any graph G and any vertex v of G, if
H = G − v and the spectra of G and H are

λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn−1,

respectively, then

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

Observation. Graphs with a fixed upper or lower bound on their
eigenvalues, or a bound on their spectral radius, form a hereditary
class (with a SF set of forbidden subgraphs).

Which sets F arise as the minimal graphs having eigenvalues
outside some interval in R?
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SF sets survive switching

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral
graphs.

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



SF sets survive switching

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral
graphs.

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



SF sets survive switching

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral
graphs.

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



SF sets survive switching

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral
graphs.

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



SF sets survive switching

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral
graphs.

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



SF sets survive switching

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral
graphs.

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



SF sets survive switching

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral
graphs.

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

M. D. Barrus (URI) Spectra, hereditary graph classes March 7, 2018



Lots to do

Which SF sets arise from counting closed walks?

For which F are the F-free graphs DS?

Which sets F arise as the minimal graphs having eigenvalues
outside some interval in R?

Which families F cannot be broken by GM-switching (or other
cospectral constructions)?

Which sets F are spectrum-forcing?

What are the answers to the analogous questions for the spectra
of A, L, Q, S?

Thank you!
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