Towards spectral characterizations of hereditary graph classes

Michael D. Barrus

Department of Mathematics University of Rhode Island

49th Southeastern International Conference on Combinatorics, Graph Theory, and Computing Florida Atlantic University • March 7, 2018

Adjacency spectrum of G

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Adjacency spectrum of G

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Spec(G) =$$

$$\left\{ -\sqrt{\frac{1}{2} \left(5+\sqrt{17}\right)}, -\sqrt{\frac{1}{2} \left(5-\sqrt{17}\right)}, 0, \sqrt{\frac{1}{2} \left(5-\sqrt{17}\right)}, \sqrt{\frac{1}{2} \left(5+\sqrt{17}\right)} \right\}$$

Hereditary graph classes

A graph class is hereditary if it is closed under taking induced subgraphs (\Leftrightarrow under vertex deletions).

planar graphs

complete graphs

bipartite graphs

forests

Which hereditary classes are determined by their spectra?

Cospectral graphs

A class $\mathcal C$ has no spectral characterization if some cospectral pair has one element in $\mathcal C$ and the other not in $\mathcal C$.

Which hereditary classes are determined by their spectra?

Determined by their spectra

Theorem. K_n is the only graph having spectrum $\{n-1,(-1)^{n-1}\}$, so complete graphs have a spectral characterization.

Theorem. G is bipartite \Leftrightarrow Spec(G) is symmetric about 0.

$$\left\{-\sqrt{\frac{1}{2}\left(5+\sqrt{17}\right)},-\sqrt{\frac{1}{2}\left(5-\sqrt{17}\right)},0,\sqrt{\frac{1}{2}\left(5-\sqrt{17}\right)},\sqrt{\frac{1}{2}\left(5+\sqrt{17}\right)}\right\}$$

Which hereditary classes are determined by their spectra?

Forbidden subgraphs

planar graphs

$$\{K_5^*, K_{3,3}^*\}$$
-free

bipartite graphs

complete graphs

 $\{2K_1\}$ -free

forests

Call a set \mathcal{F} of graphs **spectrum-forcing** (SF) if the \mathcal{F} -free graphs have a spectral characterization. **Which** \mathcal{F} **are?**

Theorem. $\sum_{i=1}^{n} \lambda_i^k$ is the number of closed walks of length k.

Theorem. $\sum_{i=1}^{n} \lambda_i^k$ is the number of closed walks of length k.

Cor. $\{K_2\}$ and $\{K_3\}$ are SF.

Theorem. $\sum_{i=1}^{n} \lambda_i^k$ is the number of closed walks of length k.

Cor.
$$\{K_2\}$$
 and $\{K_3\}$ are SF.

$$\sum_{i=1}^{n} \lambda_{i}^{k} = \sum_{H \in \mathscr{W}_{k}} \begin{pmatrix} \text{number of spanning closed} \\ k\text{-walks in } H \end{pmatrix} \begin{pmatrix} \text{number of induced copies} \\ \text{of } H \text{ in } G \end{pmatrix},$$

Theorem. $\sum_{i=1}^{n} \lambda_i^k$ is the number of closed walks of length k.

Cor.
$$\{K_2\}$$
 and $\{K_3\}$ are SF.

$$\sum_{i=1}^n \lambda_i^k = \sum_{H \in \mathscr{W}_k} \begin{pmatrix} \text{number of} \\ \text{spanning closed} \\ k\text{-walks in } H \end{pmatrix} \begin{pmatrix} \text{number of} \\ \text{induced copies} \\ \text{of } H \text{ in } G \end{pmatrix},$$

$$W_4 = \{K_2, P_3, K_3, C_4, \text{diamond}, K_4\}$$

Theorem. $\sum_{i=1}^{n} \lambda_i^k$ is the number of closed walks of length k.

Cor. $\{K_2\}$ and $\{K_3\}$ are SF.

$$\begin{split} \sum_{i=1}^n \lambda_i^k &= \sum_{H \in \mathscr{W}_k} \begin{pmatrix} \text{number of spanning closed} \\ \text{s-walks in } H \end{pmatrix} \begin{pmatrix} \text{number of induced copies} \\ \text{of } H \text{ in } G \end{pmatrix}, \\ \mathscr{W}_4 &= \{K_2, P_3, K_3, C_4, \text{diamond}, K_4\} \\ \sum \lambda_i^2 &= 2(\#K_2) \qquad \sum \lambda_i^3 = 6(\#K_3) \\ \sum \lambda_i^4 &= 2(\#K_2) + 4(\#P_3) + 12(\#K_3) + 8(\#C_4) + 8(\#\text{diamond}) + 24(\#K_4) \end{split}$$

Theorem. The set $\{P_3, K_4\}$ is SF.

What other sets are?

Theorem. K_n is the only graph having spectrum $\{n-1, (-1)^{n-1}\}$, so complete graphs have a spectral characterization.

A graph is DS (determined by its spectrum) if it is the unique graph having its spectrum (i.e., it belongs to no nontrivial cospectral pair).

Theorem. K_n is the only graph having spectrum $\{n-1, (-1)^{n-1}\}$, so complete graphs have a spectral characterization.

A graph is DS (determined by its spectrum) if it is the unique graph having its spectrum (i.e., it belongs to no nontrivial cospectral pair).

Observation. If every \mathcal{F} -free graph is DS, then \mathcal{F} is SF.

Theorem. K_n is the only graph having spectrum $\{n-1,(-1)^{n-1}\}$, so complete graphs have a spectral characterization.

A graph is DS (determined by its spectrum) if it is the unique graph having its spectrum (i.e., it belongs to no nontrivial cospectral pair).

Observation. If every \mathcal{F} -free graph is DS, then \mathcal{F} is SF.

Theorem. The set $\{P_3\}$ is SF.

Proof. Graph *G* is a disjoint union of cliques iff *G* is P_3 -free; the graphs $K_{n_1} + \cdots + K_{n_t}$ are all DS. \square

Theorem. K_n is the only graph having spectrum $\{n-1,(-1)^{n-1}\}$, so complete graphs have a spectral characterization.

A graph is DS (determined by its spectrum) if it is the unique graph having its spectrum (i.e., it belongs to no nontrivial cospectral pair).

Observation. If every \mathcal{F} -free graph is DS, then \mathcal{F} is SF.

For which \mathcal{F} are the \mathcal{F} -free graphs DS?

Theorem (Interlacing). For any graph G and any vertex v of G, if H = G - v and the spectra of G and H are

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$$
 and $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{n-1}$,

respectively, then

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$
.

Theorem (Interlacing). For any graph G and any vertex v of G, if H = G - v and the spectra of G and H are

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
 and $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1}$,

respectively, then

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$
.

Observation. Graphs with a fixed upper or lower bound on their eigenvalues, or a bound on their spectral radius, form a hereditary class (with a SF set of forbidden subgraphs).

Theorem (Interlacing). For any graph G and any vertex v of G, if H = G - v and the spectra of G and H are

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$$
 and $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{n-1}$,

respectively, then

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$
.

Observation. Graphs with a fixed upper or lower bound on their eigenvalues, or a bound on their spectral radius, form a hereditary class (with a SF set of forbidden subgraphs).

Theorem (again). The set $\{P_3\}$ is SF.

Proof. Spec(P_3) = $\{0, \pm \sqrt{2}\}$. If G has eigenvalues $\lambda_1 > \cdots > \lambda_n$,

- $\lambda_n > -\sqrt{2}$ implies *G* is P_3 -free;
- G is P₃-free implies G is a disjoint union of complete graphs;
- G a disjoint union of complete graphs implies $\lambda_n = -1$ (or $\lambda_n = 0$)
- $\lambda_n = -1$ (or $\lambda_n = 0$) implies $\lambda_n > -\sqrt{2}$. \square

Theorem (Interlacing). For any graph G and any vertex v of G, if H = G - v and the spectra of G and H are

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
 and $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{n-1}$,

respectively, then

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{n-1} \geq \mu_{n-1} \geq \lambda_n$$
.

Observation. Graphs with a fixed upper or lower bound on their eigenvalues, or a bound on their spectral radius, form a hereditary class (with a SF set of forbidden subgraphs).

Which sets $\mathcal F$ arise as the minimal graphs having eigenvalues outside some interval in $\mathbb R$?

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral graphs.

Which families \mathcal{F} cannot be broken by GM-switching (or other cospectral constructions)?

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral graphs.

Which families \mathcal{F} cannot be broken by GM-switching (or other cospectral constructions)?

Theorem (Godsil–McKay, 1982). GM-switching produces cospectral graphs.

Which families \mathcal{F} cannot be broken by GM-switching (or other cospectral constructions)?

Lots to do

- Which SF sets arise from counting closed walks?
- For which \mathcal{F} are the \mathcal{F} -free graphs DS?
- Which sets \mathcal{F} arise as the minimal graphs having eigenvalues outside some interval in \mathbb{R} ?
- Which families F cannot be broken by GM-switching (or other cospectral constructions)?
- Which sets F are spectrum-forcing?

Lots to do

- Which SF sets arise from counting closed walks?
- For which \mathcal{F} are the \mathcal{F} -free graphs DS?
- Which sets \mathcal{F} arise as the minimal graphs having eigenvalues outside some interval in \mathbb{R} ?
- Which families F cannot be broken by GM-switching (or other cospectral constructions)?
- Which sets F are spectrum-forcing?
- What are the answers to the analogous questions for the spectra of \(\overline{A}, L, Q, S? \)

Lots to do

- Which SF sets arise from counting closed walks?
- For which \mathcal{F} are the \mathcal{F} -free graphs DS?
- Which sets \mathcal{F} arise as the minimal graphs having eigenvalues outside some interval in \mathbb{R} ?
- Which families F cannot be broken by GM-switching (or other cospectral constructions)?
- Which sets F are spectrum-forcing?
- What are the answers to the analogous questions for the spectra of A, L, Q, S?

Thank you!