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Degree sequences, inequalities, and graphs

d(G) = (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)

M. D. Barrus (URI) Small Erdős–Gallai differences July 21, 2015 2 / 19



Degree sequences, inequalities, and graphs

d(G) = (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
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Degree sequences, inequalities, and graphs

(5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,1)

Erdős–Gallai inequalities
A list (d1, . . . ,dn) of nonnegative integers in descending order with
even sum is a degree sequence if and only if∑

i≤k

di ≤ k(k − 1) +
∑
i>k

min{k ,di}

for all k ≤ max{i : di ≥ i − 1}.

What happens when equality holds?
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Threshold graphs

A threshold sequence is a list d = (d1, . . . ,dn) of nonnegative
integers in descending order having even sum and satisfying∑

i≤k

di = k(k − 1) +
∑
i>k

min{k ,di}

for all k ≤ max{i : di ≥ i − 1}.

A threshold graph is a graph having a threshold sequence as its
degree sequence.

(4,3,2,2,1)
b

b

b

b
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

b

b

b

b

b

A framework

There are exactly 2n−1 threshold graphs with n vertices.
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M. D. Barrus (URI) Small Erdős–Gallai differences July 21, 2015 5 / 19



Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

b

b

A framework

There are exactly 2n−1 threshold graphs with n vertices.
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M. D. Barrus (URI) Small Erdős–Gallai differences July 21, 2015 5 / 19



Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

b

b

b

b

b

A framework

There are exactly 2n−1 threshold graphs with n vertices.
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

d = (4,3,2,2,1)

b

b

b

b

b

1

4

3

2

2

d is a threshold sequence iff it has a unique (labeled) realization.

G is a threshold graph iff it has no induced 2K2, C4, or P4.
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

Equality in the first m(d)
Erdős–Gallai inequalities.∑

i≤k di = k(k − 1) +
∑

i>k min{k, di}

Iterative construction via
dominating/isolated vertices

b

b

b

b

b

There are exactly 2n−1

threshold graphs on n vertices.
b

b

b

b
b

Unique realization of degree
sequence

b

b

b

b

b

1

4

3

2

2

{2K2,P4,C4}-free

b

b

b
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b

b

b

b

b

b

b

b

Threshold sequences majorize
all other degree sequences

...
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Erdős–Gallai differences?

Which adjacency relationships are forced by a degree sequence?

d = (2,2,1,1)
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Erdős–Gallai differences
Which adjacency relationships are forced by d?

∑
i≤k

di︸ ︷︷ ︸
LHSk (d)

≤ k(k − 1) +
∑
i>k

min{k ,di}︸ ︷︷ ︸
RHSk (d)

∆k (d) = RHSk (d)− LHSk (d)

Theorem (B,2015+)
Given 1 ≤ i < j ≤ n,
{i , j} is a forced edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, i ≤ k < j , and k ≤ dj ; or ∆k (d) ≤ 1 and j ≤ k .

{i , j} is a forced non-edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, k < i , and dj < k ≤ di ; or ∆k (d) ≤ 1 and
di < k < i .

Forcible edges can be determined by examining when ∆(k) ≤ 1.
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Properties of threshold graphs
(Chvátal, Hammer, others, 1973+)

The first m(d) Erdős–Gallai
differences equal 0.

Iterative construction via
dominating/isolated vertices

b

b

b

b

b

There are exactly 2n−1 threshold graphs
on n vertices.

b

b

b

b
b

Unique realization of degree sequence

b

b
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2

{2K2,P4,C4}-free

b

b
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b

b
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b

b

Threshold sequences majorize all other

degree sequences

What if ∆k (d) ≤ 1?
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Weakly threshold graphs

A weakly threshold sequence is a graphic list d = (d1, . . . ,dn) of
nonnegative integers in descending order having even sum and
satisfying 0 ≤ ∆k (d) ≤ 1 for all k ≤ max{i : di ≥ i − 1}.

A weakly threshold graph is a graph having a weakly threshold
sequence as its degree sequence.

... ...
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A forbidden subgraph characterization

G is a threshold graph iff G is {2K2,P4,C4}-free
b

b

b

b

b

b

b

b

b

b

b

b

The class of weakly threshold graphs is hereditary (i.e., closed under
taking induced subgraphs).

Theorem
A graph G is weakly threshold if and only if it is
{2K2,C4,C5,H,H,S3,S3}-free.

b b

b

b b

bH

b
b

b

b

b
b

bH b
b

b

b b b

S3 b
b

b

b b b

S3

The class is closed under complementation.
Weakly threshold graphs are all split graphs.
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They form a large subclass of interval ∩ co-interval.
(This class’s forbidden induced subgraphs:)
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Structural characterization

Threshold iff constructed from K1 via dominating/
isolated vertices.

Exactly 2n−1 threshold graphs on n vertices.

b

b

b

b
b

Theorem
A graph is weakly threshold iff it is constructed by “composing” special
graphs, where
a graph is special iff it is isomorphic to K1 or is obtained by starting
with P4 and iteratively adding either weakly dominating or weakly
isolated vertices.

b
b

b

b b b

b b b

b b b
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Iterative construction

Threshold iff constructed from K1 via dominating/isolated vertices.
Exactly 2n−1 threshold graphs on n vertices.

b
b

b

b b b

b b b

b b b

Theorem
A graph is weakly threshold iff it is constructed from K1 or P4 by
iteratively adding one of

a dominating vertex,
a weakly dominating vertex,

an isolated vertex,
a weakly isolated vertex, or

a P4 with its midpoints dominating all previous vertices.
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Enumeration

Threshold iff constructed from K1 via dominating/isolated vertices.
Exactly 2n−1 threshold graphs on n vertices.

Theorem
A graph is weakly threshold iff it is constructed from K1 or P4 by
iteratively adding one of

a dominating vertex,
a weakly dominating vertex,

an isolated vertex,
a weakly isolated vertex, or

a P4 with its midpoints dominating all previous vertices.

Subtleties in direct counting.

Difference between counting degree sequences /
isomorphism classes.
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Enumeration

Exactly 2n−1 threshold graphs on n vertices.

an = number of weakly threshold sequences of length n

(1, )1,2,4,9,21,50,120,289,697,1682,4060, . . .

OEIS.org sequences A024537, A171842

Theorem
{an}n satisfies the following recurrences:

For all n ≥ 4,
an = 2an−1 +

∑n−4
k=0 2kan−4−k .

For all n ≥ 3,
an = 3an−1 − an−2 − an−3.

For all n ≥ 4,
an = 4an−1 − 4an−2 + an−4.

For all n ≥ 2,
an = 2an−1 + an−2 − 1.
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Enumeration

Exactly 2n−1 threshold graphs on n vertices.

an = number of weakly threshold sequences of length n

an =
2 + (1 +

√
2)n + (1−

√
2)n

4
≈ 1

4
· 2.4n

From OEIS.org:
Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, . . .

Number of nonisomorphic n-element interval orders with no 3-element antichain.

Top left entry of the nth power of

1 1 0
1 1 1
0 1 1

 or of

1 0 1
0 1 1
1 1 1

.

Number of (1, s1, ..., sn−1, 1) such that si ∈ {1, 2, 3} and |si − si−1| ≤ 1.

Partial sums of the Pell numbers prefaced with a 1.

The number of ways to write an (n − 1)-bit binary sequence and then give runs of ones weakly incrementing labels
starting with 1, e.g., 0011010011022203003330044040055555.

Lower bound of the order of the set of equivalent resistances of (n− 1) equal resistors combined in series and in parallel.

M. D. Barrus (URI) Small Erdős–Gallai differences July 21, 2015 17 / 19



Enumeration

Exactly 2n−1 threshold graphs on n vertices.

an = number of weakly threshold sequences of length n

an =
2 + (1 +

√
2)n + (1−

√
2)n

4
≈ 1

4
· 2.4n

From OEIS.org:
Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, . . .

Number of nonisomorphic n-element interval orders with no 3-element antichain.

Top left entry of the nth power of

1 1 0
1 1 1
0 1 1

 or of

1 0 1
0 1 1
1 1 1

.

Number of (1, s1, ..., sn−1, 1) such that si ∈ {1, 2, 3} and |si − si−1| ≤ 1.

Partial sums of the Pell numbers prefaced with a 1.

The number of ways to write an (n − 1)-bit binary sequence and then give runs of ones weakly incrementing labels
starting with 1, e.g., 0011010011022203003330044040055555.

Lower bound of the order of the set of equivalent resistances of (n− 1) equal resistors combined in series and in parallel.
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Properties of weakly threshold graphs
(B, 2015+)

The first m(d) Erdős–Gallai
differences equal 0 or 1.

Iterative construction via
(weakly) dominating
vertices/(weakly) isolated
vertices/half-dominating P4s.

There are exactly

2 + (1 +
√

2)n + (1−
√

2)n

4

weakly threshold sequences of
length n.

Constrained realizations of
degree sequences

{2K2,C4,C5,H,H,S3,S3}-free

Weakly threshold sequences
at the top of the majorization
poset

?

M. D. Barrus (URI) Small Erdős–Gallai differences July 21, 2015 18 / 19



Thank you!

barrus@uri.edu
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