Graphs with small Erdős-Gallai differences

Michael D. Barrus

Department of Mathematics
University of Rhode Island

Summer Combo in Vermont Saint Michael's College • July 21, 2015

Degree sequences, inequalities, and graphs

Degree sequences, inequalities, and graphs

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

Degree sequences, inequalities, and graphs

Degree sequences, inequalities, and graphs

$$
\begin{gathered}
(5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3 \\
3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,1)
\end{gathered}
$$

Erdős-Gallai inequalities
A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

Degree sequences, inequalities, and graphs

$$
\begin{gathered}
(5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,3,3 \\
3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,1)
\end{gathered}
$$

Erdős-Gallai inequalities
A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

What happens when equality holds?

Threshold graphs

A threshold sequence is a list $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order having even sum and satisfying

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.
A threshold graph is a graph having a threshold sequence as its degree sequence.

$$
(4,3,2,2,1)
$$

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

A framework

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

A framework

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

A framework

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

A framework

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

A framework

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

A framework

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Construction one vertex at a time

There are exactly 2^{n-1} threshold graphs with n vertices.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

$d=(4,3,2,2,1)$

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

$d=(4,3,2,2,1)$

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

$d=(4,3,2,2,1)$

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

$d=(4,3,2,2,1)$

d is a threshold sequence iff it has a unique (labeled) realization.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

$d=(4,3,2,2,1)$

d is a threshold sequence iff it has a unique (labeled) realization.
G is a threshold graph iff it has no induced $2 K_{2}, C_{4}$, or P_{4}.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first $m(d)$ Erdős-Gallai inequalities.

$$
\sum_{i \leq k} d_{i}=k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.

- Unique realization of degree sequence

- $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

- Threshold sequences majorize all other degree sequences

Erdős-Gallai differences?

Erdős-Gallai differences?

Which adjacency relationships are forced by a degree sequence?

$$
d=(4,3,2,2,1)
$$

$d=(2,2,2,1,1)$

Erdős-Gallai differences

Which adjacency relationships are forced by d ?

$$
\underbrace{\sum_{i \leq k} d_{i}}_{\mathrm{LHS}_{k}(d)} \leq \underbrace{k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}}_{\mathrm{RHS}_{k}(d)}
$$

$$
\Delta_{k}(d)=\mathrm{RHS}_{k}(d)-\mathrm{LHS}_{k}(d)
$$

Erdős-Gallai differences

Which adjacency relationships are forced by d ?

$$
\begin{aligned}
& \underbrace{\sum_{i \leq k} d_{i}}_{\mathrm{LHS}_{k}(d)} \leq \underbrace{k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}}_{\mathrm{RHS}_{k}(d)} \\
& \Delta_{k}(d)=\operatorname{RHS}_{k}(d)-\operatorname{LHS}_{k}(d)
\end{aligned}
$$

Theorem (B,2015+)

Given $1 \leq i<j \leq n$,
$\{i, j\}$ is a forced edge iff $\exists k \in\{1, \ldots, n\}$ such that either
$\Delta_{k}(d)=0, \quad i \leq k<j$, and $k \leq d_{j} ; \quad$ or $\quad \Delta_{k}(d) \leq 1 \quad$ and $j \leq k$.
$\{i, j\}$ is a forced non-edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\Delta_{k}(d)=0, \quad k<i, \quad$ and $d_{j}<k \leq d_{i} ;$ or $\Delta_{k}(d) \leq 1 \quad$ and $d_{i}<k<i$.

Forcible edges can be determined by examining when $\Delta(k) \leq 1$.

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- The first $m(d)$ Erdős-Gallai differences equal 0.
- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- The first $m(d)$ Erdős-Gallai differences equal 0.
- Iterative construction via dominating/isolated vertices

- There are exactly 2^{n-1} threshold graphs on n vertices.

- Unique realization of degree sequence

- Threshold sequences majorize all other degree sequences

What if $\Delta_{k}(d) \leq 1 ?$

Weakly threshold graphs

A weakly threshold sequence is a graphic list $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order having even sum and satisfying $0 \leq \Delta_{k}(d) \leq 1$ for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

A weakly threshold graph is a graph having a weakly threshold sequence as its degree sequence.

Weakly threshold graphs

A weakly threshold sequence is a graphic list $d=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order having even sum and satisfying $0 \leq \Delta_{k}(d) \leq 1$ for all $k \leq \max \left\{i: d_{i} \geq i-1\right\}$.

A weakly threshold graph is a graph having a weakly threshold sequence as its degree sequence.

A forbidden subgraph characterization

G is a threshold graph iff G is $\left\{2 K_{2}, P_{4}, C_{4}\right\}$-free

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

The class is closed under complementation. Weakly threshold graphs are all split graphs.

A forbidden subgraph characterization

The class of weakly threshold graphs is hereditary (i.e., closed under taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free.

They form a large subclass of interval \cap co-interval.
(This class's forbidden induced subgraphs:)

Structural characterization

Threshold iff constructed from K_{1} via dominating/ isolated vertices.
Exactly 2^{n-1} threshold graphs on n vertices.

Structural characterization

```
Threshold iff constructed from }\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by "composing" special graphs, where
a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from }\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by "composing" special graphs, where a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from }\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by "composing" special graphs, where a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from }\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly }\mp@subsup{2}{}{n-1}\mathrm{ threshold graphs on }n\mathrm{ vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by "composing" special graphs, where a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Structural characterization

```
Threshold iff constructed from K}\mp@subsup{K}{1}{}\mathrm{ via dominating/
    isolated vertices.
Exactly 2 2-1 threshold graphs on n vertices.
```


Theorem

A graph is weakly threshold iff it is constructed by "composing" special graphs, where a graph is special iff it is isomorphic to K_{1} or is obtained by starting with P_{4} and iteratively adding either weakly dominating or weakly isolated vertices.

Iterative construction

Threshold iff constructed from K_{1} via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on n vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_{1} or P_{4} by iteratively adding one of

- a dominating vertex,
- an isolated vertex,
- a weakly dominating vertex,
- a weakly isolated vertex, or
- a P_{4} with its midpoints dominating all previous vertices.

Enumeration

Threshold iff constructed from K_{1} via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on n vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_{1} or P_{4} by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,
- an isolated vertex,
- a weakly isolated vertex, or
- a P_{4} with its midpoints dominating all previous vertices.

Enumeration

Threshold iff constructed from K_{1} via dominating/isolated vertices. Exactly 2^{n-1} threshold graphs on n vertices.

Theorem

A graph is weakly threshold iff it is constructed from K_{1} or P_{4} by iteratively adding one of

- a dominating vertex,
- a weakly dominating vertex,
- an isolated vertex,
- a weakly isolated vertex, or
- a P_{4} with its midpoints dominating all previous vertices.

Subtleties in direct counting.
Difference between counting degree sequences / isomorphism classes.

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
(1,) 1,2,4,9,21,50,120,289,697,1682,4060, \ldots
$$

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
(1,) 1,2,4,9,21,50,120,289,697,1682,4060, \ldots
$$

OEIS.org sequences A024537, A171842

Theorem

$\left\{a_{n}\right\}_{n}$ satisfies the following recurrences:

- For all $n \geq 4$,

$$
a_{n}=2 a_{n-1}+\sum_{k=0}^{n-4} 2^{k} a_{n-4-k}
$$

- For all $n \geq 3$,

$$
a_{n}=3 a_{n-1}-a_{n-2}-a_{n-3} .
$$

- For all $n \geq 4$,

$$
a_{n}=4 a_{n-1}-4 a_{n-2}+a_{n-4}
$$

- For all $n \geq 2$,

$$
a_{n}=2 a_{n-1}+a_{n-2}-1
$$

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
a_{n}=\frac{2+(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{4} \approx \frac{1}{4} \cdot 2.4^{n}
$$

Enumeration

Exactly 2^{n-1} threshold graphs on n vertices.

$a_{n}=$ number of weakly threshold sequences of length n

$$
a_{n}=\frac{2+(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{4} \approx \frac{1}{4} \cdot 2.4^{n}
$$

From OEIS.org:

- Binomial transform of $1,0,1,0,2,0,4,0,8,0,16, \ldots$
- Number of nonisomorphic n-element interval orders with no 3 -element antichain.
- Top left entry of the nth power of $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$ or of $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
- Number of $\left(1, s_{1}, \ldots, s_{n-1}, 1\right)$ such that $s_{i} \in\{1,2,3\}$ and $\left|s_{i}-s_{i-1}\right| \leq 1$.
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an $(n-1)$-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- Lower bound of the order of the set of equivalent resistances of $(n-1)$ equal resistors combined in series and in parallel.

Properties of weakly threshold graphs (B, 2015+)

- The first $m(d)$ Erdős-Gallai differences equal 0 or 1.
- Iterative construction via (weakly) dominating vertices/(weakly) isolated vertices/half-dominating P_{4} s.
- There are exactly

$$
\frac{2+(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{4}
$$

- Constrained realizations of degree sequences
- $\left\{2 K_{2}, C_{4}, C_{5}, H, \bar{H}, S_{3}, \overline{S_{3}}\right\}$-free
- Weakly threshold sequences at the top of the majorization poset
weakly threshold sequences of length n.

Thank you!

barrus@uri.edu

