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Degree sequences, inequalities, and graphs
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Degree sequences, inequalities, and graphs

(5,5,5,4,4,4,4,4,4,4,4,4, 4,444,443 3,
3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2 1)

Erdos—Gallai inequalities
Alist (dy,. .., ds) of nonnegative integers in descending order with
even sum is a degree sequence if and only if

> di < k(k—1)+ > min{k,d}
i<k i>k

forall k <max{i:d;>i—1}.
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Degree sequences, inequalities, and graphs

(5,5,5,4,4,4,4,4,4,4,4,4, 4,444,443 3,
3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2 1)

Erdos—Gallai inequalities
Alist (dy,. .., ds) of nonnegative integers in descending order with
even sum is a degree sequence if and only if

> di < k(k—1)+ > min{k,d}

i<k i>k

forall k <max{i:d;>i—1}.

What happens when equality holds?
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Threshold graphs

A threshold sequence is a list d = (d;, . .., dy) of nonnegative
integers in descending order having even sum and satisfying

> di = k(k=1)+ min{k,d;}

i<k i>k

forall k <max{i:d;>i—1}.

A threshold graph is a graph having a threshold sequence as its
degree sequence.

(4,3,2,2,1)
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

Construction one vertex at a time
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

Construction one vertex at a time A framework
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

Construction one vertex at a time

A framework
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

Construction one vertex at a time A framework

1
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There are exactly 2"~ threshold graphs with n vertices.
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

d=(4,3221)
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

d=(4,3221)

1 2

d is a threshold sequence iff it has a unique (labeled) realization.
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

Unique realizability (labeled graphs)

d=(4,3221)

1 2

d is a threshold sequence iff it has a unique (labeled) realization.

G is a threshold graph iff it has no induced 2K, C4, or P4.
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

@ Equality in the first m(d) @ Unique realization of degree
Erdés—Gallai inequalities. sequence

Z/gk di = k(k — 1) + 3js  min{k, d;}
@ lterative construction via E i
dominating/isolated vertices

ﬁ @ {2Ky, Py, Cy}-free
1] ][]

@ There are exactly 2" .
threshold graphs on n vertices.  © Threshold sequences majorize
Coo all other degree sequences

1 1 1

®, 1 ® 1

cecdecabandac=d @
1 1 1 1
1@ 19
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Erdos—Gallai differences?
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Erdos—Gallai differences?

Which adjacency relationships are forced by a degree sequence?

d=(2,2,1,1) d=(4,3,2,2,1)

[T X 3y

=(2,2,2,1,1)

DA S,
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Erdos—Gallai differences

Which adjacency relationships are forced by d?

STd < k(k—1)+> min{k,d}

i<k i>k Ak(d) = RHSk(d) — LHS,(d)
——
LHSk(d) RHSk(d)
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Erd6s—Gallai differences
Which adjacency relationships are forced by d?

STd < k(k—1)+> min{k,d}

i<k i>k Ak(d) = RHSk(d) — LHS,(d)
——
LHSk(d) RHSk(d)

Theorem (B,2015+)

Given1 <i<j<n,

{i,j} is a forced edge iff 3k € {1,...,n} such that either
Ak(d)=0, i<k<j, and k<d; or Ax(d)<1 and j<Kk.
{i,j} is a forced non-edge iff 3k € {1,..., n} such that either
Ag(d)=0, k<i, and di<k<d; or Axd)<1 and
d<k<i.

Forcible edges can be determined by examining when A(k) < 1.
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

@ The first m(d) Erdés—Gallai e 3
differences equal 0. ﬁ
. LY
§ § o
o o
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Properties of threshold graphs

(Chvatal, Hammer, others, 1973+)

@ The first m(d) Erdés—Gallai e 3
differences equal 0. ﬁ
. LY
§ § o
o o

What if A(d) < 1?
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Weakly threshold graphs
A weakly threshold sequence is a graphic list d = (ds, . .., dj) of
nonnegative integers in descending order having even sum and

satisfying 0 < Ax(d) <1 forall k <max{i:d;>i—1}.

A weakly threshold graph is a graph having a weakly threshold
sequence as its degree sequence.
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Weakly threshold graphs

A weakly threshold sequence is a graphic list d = (ds, . .., dj) of
nonnegative integers in descending order having even sum and
satisfying 0 < Ax(d) <1 forall k <max{i:d;>i—1}.

A weakly threshold graph is a graph having a weakly threshold
sequence as its degree sequence.
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A forbidden subgraph characterization
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A forbidden subgraph characterization

111 4

The class of weakly threshold graphs is hereditary (i.e., closed under
taking induced subgraphs).
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A forbidden subgraph characterization

111 4

The class of weakly threshold graphs is hereditary (i.e., closed under
taking induced subgraphs).

Theorem

A graph G is weakly threshold if and only if it is
{2K27 C47 CS’ H7 H’ S3> 83}_free'
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A forbidden subgraph characterization

111 4

The class of weakly threshold graphs is hereditary (i.e., closed under
taking induced subgraphs).

A graph G is weakly threshold if and only if it is
{2K27 C47 CS’ H7 H’ S3> 83}_free'

The class is closed under complementation.
Weakly threshold graphs are all split graphs.
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A forbidden subgraph characterization

111 4

The class of weakly threshold graphs is hereditary (i.e., closed under
taking induced subgraphs).
Theorem

A graph G is weakly threshold if and only if it is
{2K27 C47 CS’ H7 H’ S3> 83}_free'

They form a large subclass of interval N co-interval.
(This class’s forbidden induced subgraphs:)

I o 3 e A
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Structural characterization

' ' ' '
1 1 1 1
. 1 |

——mdem—k——d—=-1 @
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Structural characterization

' ' '
1 1 1 1
. 1 |
——mdem—k——d—=-1 @
1 1 1 1
1 e 1 e
| | | |

Theorem

A graph is weakly threshold iff it is constructed by “composing” special
graphs, where

a graph is special iff it is isomorphic to Ky or is obtained by starting

with P4 and iteratively adding either weakly dominating or weakly
isolated vertices.
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Structural characterization

' ' '
1 1 1 1
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——mdem—k——d—=-1 @
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Theorem

A graph is weakly threshold iff it is constructed by “composing” special
graphs, where

a graph is special iff it is isomorphic to Ky or is obtained by starting
with P4 and iteratively adding either weakly dominating or weakly

isolated vertices.
1 1
m : : : m
-- -t = =—
1 1
| |
| |
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lterative construction

Theorem
A graph is weakly threshold iff it is constructed from Ky or P4 by
iteratively adding one of
@ a dominating vertex, @ an isolated vertex,
@ a weakly dominating vertex, @ a weakly isolated vertex, or
@ a P, with its midpoints dominating all previous vertices.
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Enumeration

Theorem

A graph is weakly threshold iff it is constructed from Ky or P4 by
iteratively adding one of

@ a dominating vertex, @ an isolated vertex,
@ a weakly dominating vertex, @ a weakly isolated vertex, or
@ a P, with its midpoints dominating all previous vertices.
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Enumeration

Theorem

A graph is weakly threshold iff it is constructed from Ky or P4 by
iteratively adding one of

@ a dominating vertex, @ an isolated vertex,
@ a weakly dominating vertex, @ a weakly isolated vertex, or
@ a P, with its midpoints dominating all previous vertices.

Subtleties in direct counting.

Difference between counting degree sequences / :>'<I>'
isomorphism classes.
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Enumeration

an = number of weakly threshold sequences of length n

(1,)1,2,4,9,21,50,120, 289,697, 1682, 4060, . . .
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Enumeration

an = number of weakly threshold sequences of length n
(1,)1,2,4,9,21,50,120, 289,697, 1682, 4060, . . .

OEIS.org sequences A024537, A171842

Theorem
{an}n satisfies the following recurrences:

@ Foralln>4, @ Foralln>4,

an=2a,_1+ Y p_62Kan_4_x. ap=4a, 1 —4ay o+ ap 4.
@ Foralln> 3, @ Foralln> 2,

an = 3ap—1 — ap—2 — ap—3. an=2anp-1+apo—1.
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Enumeration

an = number of weakly threshold sequences of length n

24 (14v2)+ (1= V)"

an = ) -2.4"

~
~

Al =
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Enumeration

an = number of weakly threshold sequences of length n

_2+(1+V2)"+ (1 -V2)"

.2.4"
4

I

From OEIS.org:

Binomial transform of 1,0,1,0,2,0,4,0,8,0, 16, . ..

Number of nonisomorphic n-element interval orders with no 3-element antichain.

1 1 0 1 0o 1
Top left entry of the nth power of |1 1 1] orof [O 1 1f.

0 1 1 1 1 1
Number of (1, sy, ..., s5,_1, 1) such thats; € {1,2,3} and |s; — s;_¢| < 1.
Partial sums of the Pell numbers prefaced with a 1.

The number of ways to write an (n — 1)-bit binary sequence and then give runs of ones weakly incrementing labels
starting with 1, e.g., 0011010011022203003330044040055555.

Lower bound of the order of the set of equivalent resistances of (n — 1) equal resistors combined in series and in parallel.
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Properties of weakly threshold graphs
(B, 2015+)

@ The first m(d) Erdés—Gallai
differences equal 0 or 1.

@ Constrained realizations of

@ lterative construction via degree sequences
(weakly) dominating
vertices/(weakly) isolated @ {2K,, C4, Cs, H, H, S5, S3}-free

vertices/half-dominating P;4s.
@ Weakly threshold sequences

@ There are exactly at the top of the majorization
oset
24 (14v2) 4+ (1-v2)" P
4 ) ?

weakly threshold sequences of
length n.
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Thank you!

barrus@uri.edu
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