Realization graphs of degree sequences

Michael D. Barrus

Department of Mathematics University of Rhode Island

SIAM Conference on Discrete Mathematics Georgia State University • June 7, 2016

Graphs, degree sequences, realizations, and 2-switches
$(2,2,2,1,1)$

Graphs, degree sequences, realizations, and 2-switches
$(2,2,2,1,1)$
$\stackrel{2}{\bullet}$
$2 \bullet$

- 2
$1-\quad \bullet 1$

Graphs, degree sequences, realizations, and 2-switches
$(2,2,2,1,1)$
$\stackrel{2}{-}$
The realizations
$2 \bullet$

- 2

Graphs, degree sequences, realizations, and 2-switches
(2, 2, 2, 1, 1)
$\stackrel{2}{\bullet}$
The realizations
$2 \bullet$

- 2

1 • 1

2-switch

The realization graph of d

$$
d=(2,2,2,1,1)
$$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2 -switch $\}$

The realization graph of d

$d=(2,2,2,1,1)$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=$ \{pairs joined by a 2-switch\}

The realization graph of d

 $d=(2,2,2,1,1)$

Known:

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2-switch\}

The realization graph of d

 $d=(2,2,2,1,1)$

Known:

- $R(d)$ connected for all d.
$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=$ \{pairs joined by a 2-switch\}

The realization graph of d

 $d=(2,2,2,1,1)$

Known:

- $R(d)$ connected for all d.
- ?
- Bounds on diam $R(d)$.
- Various conditions on d imply $R(d)$ is Hamiltonian.
$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2-switch\}

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Composing a split graph with a graph:
clique
independent set

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Composing a split graph with a graph:

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Composing a split graph with a graph:
independent set
clique

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Decomposing a graph:

Canonical decomposition

[Tyshkevich, ~1980, 2000]
Decomposing a graph:

Canonical decomposition

[Tyshkevich, ~1980, 2000]
Decomposing a graph:

Theorem

Every graph F can be represented as a composition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

of indecomposable components. Here the $\left(G_{i}, A_{i}, B_{i}\right)$ are indecomposable splitted graphs and F_{0} is an indecomposable graph. This decomposition is unique up to isomorphism of components.

Cartesian products of graphs

$$
V(G \square H)=V(G) \times V(H),
$$

$E(G \square H)=\{$ pairs $(u, v),(u, w)$ such that $v \leftrightarrow w$ in $H\}$
$\cup\{$ pairs $(x, y),(z, y)$ such that $x \leftrightarrow z$ in $G\}$

Realization graph products

(B, 2016)

Theorem

If a degree sequence d has a realization F with canonical decomposition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

then

$$
R(d)=R\left(\operatorname{deg}\left(G_{k}\right)\right) \square \cdots \square R\left(\operatorname{deg}\left(G_{1}\right)\right) \square R\left(\operatorname{deg}\left(G_{0}\right)\right)
$$

Realization graph products

(B, 2016)

Theorem

If a degree sequence d has a realization F with canonical decomposition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

then

$$
R(d)=R\left(\operatorname{deg}\left(G_{k}\right)\right) \square \cdots \square R\left(\operatorname{deg}\left(G_{1}\right)\right) \square R\left(\operatorname{deg}\left(G_{0}\right)\right)
$$

Realization graph products

(B, 2016)

Theorem

If a degree sequence d has a realization F with canonical decomposition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

then

$$
R(d)=R\left(\operatorname{deg}\left(G_{k}\right)\right) \square \cdots \square R\left(\operatorname{deg}\left(G_{1}\right)\right) \square R\left(\operatorname{deg}\left(G_{0}\right)\right)
$$

Realization graph products

(B, 2016)

Theorem

If a degree sequence d has a realization F with canonical decomposition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

then

$$
R(d)=R\left(\operatorname{deg}\left(G_{k}\right)\right) \square \cdots \square R\left(\operatorname{deg}\left(G_{1}\right)\right) \square R\left(\operatorname{deg}\left(G_{0}\right)\right)
$$

Theorem

Let d be a degree sequence. The realization graph $R(d)$ is a hypercube if and only if d is the degree sequence of a split P_{4}-reducible graph.

Realization graph products

(B, 2016)

Theorem

If a degree sequence d has a realization F with canonical decomposition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

then

$$
R(d)=R\left(\operatorname{deg}\left(G_{k}\right)\right) \square \cdots \square R\left(\operatorname{deg}\left(G_{1}\right)\right) \square R\left(\operatorname{deg}\left(G_{0}\right)\right)
$$

Corollary

If each of $R\left(\operatorname{deg}\left(G_{k}\right)\right), \ldots, R\left(\operatorname{deg}\left(G_{0}\right)\right)$ is Hamiltonian, then $R(d)$ is Hamiltonian as well.

Induced subgraphs and realization graphs

(B, 2016)

Proposition

For degree sequences d and e, if d has a realization that is an induced subgraph of some realization of e, then $R(d)$ is an induced subgraph of $R(e)$.

Theorem

Realizationgs form a WQO under the induced subgraph order. In other words, in any infinite list of realization graphs, one of them is an induced subgraph of some other.

$$
R\left(d_{1}\right) \quad R\left(d_{2}\right) \quad R\left(d_{3}\right) \quad \cdots
$$

Induced subgraphs and realization graphs

Proposition

For degree sequences d and e, if d has a realization that is an induced subgraph of some realization of e, then $R(d)$ is an induced subgraph of $R(e)$.

Theorem

The following are equivalent for a degree sequence d:

- $R(d)$ is bipartite;
- $R(d)$ is triangle-free;
- $R(d)$ is the Cartesian product of transposition graphs and at most one copy of $K_{6,6}-6 K_{2}$;
- d is the degree sequence of a pseudo-split matrogenic graph.

The realization graph of d

$d=(2,2,2,1,1)$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2 -switch $\}$

Known:

- $R(d)$ connected for all d.
- Bounds on diam $R(d)$.
- Various conditions on d imply $R(d)$ is Hamiltonian.
- Cartesian product decomposition...
- Well-quasi-ordered...
- Special types of $R(d)$.

The realization graph of d

$d=(2,2,2,1,1)$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2-switch $\}$

Known:

- $R(d)$ connected for all d.
- Bounds on diam $R(d)$.
- Various conditions on d imply $R(d)$ is Hamiltonian.
- Cartesian product decomposition...
- Well-quasi-ordered...
- Special types of $R(d)$.

The realization graph of d

$d=(2,2,2,1,1)$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2-switch $\}$

Known:

- $R(d)$ connected for all d.
- Bounds on diam $R(d)$.
- Various conditions on d imply $R(d)$ is Hamiltonian.
- Cartesian product decomposition...
- Well-quasi-ordered...
- Special types of $R(d)$.
- ?

