Realization graphs of degree sequences

Michael D. Barrus

Department of Mathematics
University of Rhode Island

AMS Fall Eastern Sectional Meeting
Bowdoin College, Brunswick, ME • September 24, 2016

Graphs, degree sequences, realizations, and 2-switches
(2, 2, 2, 1, 1)

Graphs, degree sequences, realizations, and 2-switches
$(2,2,2,1,1)$
$\stackrel{2}{\bullet}$
$2 \bullet$

- 2
$1 \bullet$ •1

Graphs, degree sequences, realizations, and 2-switches
$(2,2,2,1,1)$
$\stackrel{2}{-}$
The realizations
$2 \bullet$

- 2

Graphs, degree sequences, realizations, and 2-switches
$(2,2,2,1,1)$
$\stackrel{2}{\bullet}$
The realizations
$2 \bullet$

- 2

1 • 1

Alternating 4-cycle

The realization graph of d

$$
d=(2,2,2,1,1)
$$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=$ \{pairs joined by a 2-switch\}

The realization graph of d

$d=(2,2,2,1,1)$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=$ \{pairs joined by a 2-switch\}

The realization graph of d

 $d=(2,2,2,1,1)$

Known:

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=$ \{pairs joined by a 2-switch\}

The realization graph of d

 $d=(2,2,2,1,1)$

Known:

- $R(d)$ connected for all d.
?
$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2-switch\}

The realization graph of d

 $d=(2,2,2,1,1)$

Known:

- $R(d)$ connected for all d.
- ?
- Bounds on distances.
- Various conditions on d imply $R(d)$ is Hamiltonian.
$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2 -switch $\}$

Connections in realization graphs

Proposition

Every path of length 2 belongs to a triangle or 4-cycle.

Connections in realization graphs

In a realization graph G, $R((2,1,1,1,1))$

Proposition

Every path of length 2 belongs to a triangle or 4-cycle.

Corollary

G is K_{1} or K_{2}, or G has girth 3 or 4.

Corollary

G is K_{1} or K_{2}, or G is 2-connected.

Induced subgraphs and realization graphs

Proposition

For degree sequences d and e, if d has a realization that is an induced subgraph of some realization of e, then $R(d)$ is an induced subgraph of $R(e)$.

Theorem

Realization graphs form a WQO under the induced subgraph order. In other words, in any infinite list of realization graphs, one of them is an induced subgraph of some other.

$$
R\left(d_{1}\right) \quad R\left(d_{2}\right) \quad R\left(d_{3}\right) \quad \ldots
$$

Induced subgraphs and realization graphs

Proposition

For degree sequences d and e, if d has a realization that is an induced subgraph of some realization of e, then $R(d)$ is an induced subgraph of $R(e)$.

Theorem

The following are equivalent for a degree sequence d:

- $R(d)$ is bipartite;
- $R(d)$ is triangle-free;
- $R(d)$ is the Cartesian product of transposition graphs and at most one copy of $K_{6,6}-6 K_{2}$;
- d is the degree sequence of a pseudo-split matrogenic graph.

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Composing a splitted graph with a graph:

clique

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Composing a splitted graph with a graph:

clique

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Composing a splitted graph with a graph:

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Composing a splitted graph with a graph:

Composing degree sequences:

$$
(3,2 ; 1,1,1) \circ(1,1,1,1) \quad=\quad(7,6,3,3,3,3,1,1,1)
$$

Canonical decomposition

[Tyshkevich, ~1980, 2000]

Decomposing a graph:

Decomposing a degree sequence:

$$
(5,5,5,4,4,2,1) \quad=\quad(3,3,3 ; 2,1) \circ(1,1)
$$

Canonical decomposition

[Tyshkevich, ~1980, 2000]
Decomposing a degree sequence:

$$
(9,9,7,5,5,5,5,5,2,1,1)=(2,2 ; 1,1) \circ(; 0) \circ(0 ;) \circ(2,2,2,2,2)
$$

Canonical decomposition

[Tyshkevich, ~1980, 2000]
Decomposing a degree sequence:

$$
(9,9,7,5,5,5,5,5,2,1,1) \quad=\quad(2,2 ; 1,1) \circ(; 0) \circ(0 ;) \circ(2,2,2,2,2)
$$

Theorem

Every degree sequence d can be uniquely expressed (modulo some minor details) as a composition of indecomposable degree sequences, i.e.,

$$
d=\left(\pi_{k}^{C} ; \pi_{k}^{\prime}\right) \circ \cdots \circ\left(\pi_{1}^{C} ; \pi_{1}^{\prime}\right) \circ \pi_{0}
$$

for indecomposable splitted sequences $\left(\pi_{i}^{C} ; \pi_{i}^{l}\right)$ and indecomposable sequence π_{0}.

Cartesian products of graphs

$$
V(G \square H)=V(G) \times V(H),
$$

$E(G \square H)=\{$ pairs $(u, v),(u, w)$ such that $v \leftrightarrow w$ in $H\}$
$\cup\{$ pairs $(x, y),(z, y)$ such that $x \leftrightarrow z$ in $G\}$

Realization graph products

Theorem

If a degree sequence d has canonical decomposition

$$
d=\left(\pi_{k}^{C} ; \pi_{k}^{l}\right) \circ \cdots \circ\left(\pi_{1}^{C} ; \pi_{1}^{l}\right) \circ \pi_{0}
$$

then

$$
R(d)=R\left(\pi_{k}\right) \square \cdots \square R\left(\pi_{1}\right) \square R\left(\pi_{0}\right)
$$

Realization graph products

Theorem

If a degree sequence d has canonical decomposition

$$
d=\left(\pi_{k}^{C} ; \pi_{k}^{\prime}\right) \circ \cdots \circ\left(\pi_{1}^{C} ; \pi_{1}^{\prime}\right) \circ \pi_{0},
$$

then

$$
R(d)=R\left(\pi_{k}\right) \square \cdots \square R\left(\pi_{1}\right) \square R\left(\pi_{0}\right) .
$$

$$
\begin{aligned}
& (7,6,3,3,3,3,1,1,1) \\
= & (3,2 ; 1,1,1) \circ(1,1,1,1)
\end{aligned}
$$

Realization graph products

Theorem

If a degree sequence d has canonical decomposition

$$
d=\left(\pi_{k}^{C} ; \pi_{k}^{\prime}\right) \circ \cdots \circ\left(\pi_{1}^{C} ; \pi_{1}^{\prime}\right) \circ \pi_{0},
$$

then

$$
R(d)=R\left(\pi_{k}\right) \square \cdots \square R\left(\pi_{1}\right) \square R\left(\pi_{0}\right)
$$

$$
\begin{aligned}
& (7,6,3,3,3,3,1,1,1) \\
= & (3,2 ; 1,1,1) \circ(1,1,1,1)
\end{aligned}
$$

Realization graph products

Theorem

If a degree sequence d has canonical decomposition

$$
d=\left(\pi_{k}^{C} ; \pi_{k}^{l}\right) \circ \cdots \circ\left(\pi_{1}^{C} ; \pi_{1}^{l}\right) \circ \pi_{0}
$$

then

$$
R(d)=R\left(\pi_{k}\right) \square \cdots \square R\left(\pi_{1}\right) \square R\left(\pi_{0}\right)
$$

Theorem

Let d be a degree sequence. The realization graph $R(d)$ is a hypercube if and only if d is the degree sequence of a split P_{4}-reducible graph.

Realization graph products

Theorem

If a degree sequence d has canonical decomposition

$$
d=\left(\pi_{k}^{C} ; \pi_{k}^{\prime}\right) \circ \cdots \circ\left(\pi_{1}^{C} ; \pi_{1}^{\prime}\right) \circ \pi_{0},
$$

then

$$
R(d)=R\left(\pi_{k}\right) \square \cdots \square R\left(\pi_{1}\right) \square R\left(\pi_{0}\right) .
$$

Corollary

If each of $R\left(\pi_{k}\right), \ldots, R\left(\pi_{0}\right)$ is Hamiltonian, then $R(d)$ is Hamiltonian as well.

The realization graph of d

$d=(2,2,2,1,1)$

Known:

- $R(d)$ 2-connected for virtually all d.
- Bounds on distances.
- Well-quasi-ordered...
- Special types of $R(d)$.
- Cartesian product decomposition...
- Various conditions on d imply $R(d)$ is Hamiltonian.
$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2 -switch $\}$

The realization graph of d

$d=(2,2,2,1,1)$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2-switch $\}$

Known:

- $R(d)$ 2-connected for virtually all d.
- Bounds on distances.
- Well-quasi-ordered...
- Special types of $R(d)$.
- Cartesian product decomposition...
- Various conditions on d imply $R(d)$ is Hamiltonian.
?

The realization graph of d

$d=(2,2,2,1,1)$

$V(R(d))=\{$ realizations of $d\}$,
$E(R(d))=\{$ pairs joined by a 2-switch $\}$

Known:

- $R(d)$ 2-connected for virtually all d.
- Bounds on distances.
- Well-quasi-ordered...
- Special types of $R(d)$.
- Cartesian product decomposition...
- Various conditions on d imply $R(d)$ is Hamiltonian.

Thank you!

