Graphs with low Erdős–Gallai differences

Michael D. Barrus

Department of Mathematics University of Rhode Island

48th Southeastern International Conference on Combinatorics, Graph Theory, and Computing Florida Atlantic University • March 8, 2017

Erdős–Gallai inequalities (1960)

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{i\leq k} d_i \leq k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

for all $k \leq \max\{i : d_i \geq i - 1\}$.

Erdős–Gallai inequalities (1960)

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{i\leq k} d_i \leq k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

for all $k \leq \max\{i : d_i \geq i - 1\}$.

What happens when equality holds?

Threshold graphs

A **threshold sequence** is a list $d = (d_1, ..., d_n)$ of nonnegative integers in descending order having even sum and satisfying

$$\sum_{i\leq k} d_i = k(k-1) + \sum_{i>k} \min\{k, d_i\}$$

for all $k \leq \max\{i : d_i \geq i - 1\}$.

A **threshold graph** is a graph having a threshold sequence as its degree sequence.

(4, 3, 2, 2, 1)

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first m(d)Erdős–Gallai inequalities. $\sum_{i \le k} d_i = k(k-1) + \sum_{i > k} \min\{k, d_i\}$
- Iterative construction via dominating/isolated vertices

• There are exactly 2^{*n*-1} threshold graphs on *n* vertices.

•
$$\{2K_2, P_4, C_4\}$$
-free

• Unique realization of degree sequence

. . .

• Threshold sequences majorize all other degree sequences

Options for adding

Dominating vertex

Isolated vertex

Options for adding

Dominating vertex

Isolated vertex

Options for adding

Dominating vertex

Isolated vertex

Options for adding

Dominating vertex

Isolated vertex

Options for adding

Dominating vertex

Isolated vertex

Options for adding

Dominating vertex

Isolated vertex

G is a threshold graph if and only if *G* can be constructed from a single vertex via these operations.

Options for adding

Dominating vertex

Isolated vertex

G is a threshold graph if and only if *G* can be constructed from a single vertex via these operations.

Consequently, up to isomorphism there are exactly 2^{n-1} threshold graphs on *n* vertices.

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges

Theorem (Chvátal–Hammer, 1973)

Any induced subgraph of a threshold graph is a threshold graph. In fact, G is a threshold graph iff G has no induced subgraph isomorphic to one of the following:

(We say that G is $\{2K_2, P_4, C_4\}$ -free.)

Induced subgraph: a subgraph obtained by deleting vertices and their incident edges

Theorem (Chvátal–Hammer, 1973)

Any induced subgraph of a threshold graph is a threshold graph. In fact, G is a threshold graph iff G has no induced subgraph isomorphic to one of the following:

(We say that G is $\{2K_2, P_4, C_4\}$ -free.)

Consequently, for every threshold sequence there is only one threshold graph.

Threshold sequences and majorization

Theorem (Ruch–Gutman, 1979; Peled–Srinivasan, 1989)

d is a threshold sequence if and only if d is a maximal element in the poset of all degree sequences with the same sum, ordered by majorization.

M. D. Barrus (URI)

Graphs with low EG differences

Properties of threshold graphs

(Chvátal, Hammer, others, 1973+)

- Equality in the first m(d)Erdős–Gallai inequalities. $\sum_{i \le k} d_i = k(k-1) + \sum_{i > k} \min\{k, d_i\}$
- Iterative construction via dominating/isolated vertices

• There are exactly 2^{*n*-1} threshold graphs on *n* vertices.

•
$$\{2K_2, P_4, C_4\}$$
-free

• Unique realization of degree sequence

. . .

• Threshold sequences majorize all other degree sequences

Weakly threshold sequences and graphs (B, 2017+)

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i\leq k} d_i \leq 1$

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Weakly threshold sequences and graphs (B, 2017+)

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i>k} \min\{k, d_i\} - \sum_{i\leq k} d_i \leq 1$

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction?

- How many weakly threshold sequences/graphs on *n* vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result?

?

Non-threshold, weakly threshold graphs

Near the threshold

Threshold sequences majorize all other degree sequences.

Near the threshold

Threshold sequences majorize all other degree sequences.

WT sequences (and all diff $\leq b$) are upwards-closed, continue to majorize.

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction?

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result

?

Iterative construction

Theorem

G is a threshold graph if and only if G can be constructed by beginning with a single vertex and iteratively adding

- a dominating vertex, or
- an isolated vertex

Iterative construction

Theorem

G is a **weakly** threshold graph if and only if *G* can be constructed by beginning with a single vertex or P_4 and iteratively adding

- a dominating vertex, or
- an isolated vertex, or
- a weakly dominating vertex, or
- a weakly isolated vertex, or
- a semi-joined P₄.

M. D. Barrus (URI)

Non-threshold, weakly threshold graphs

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization?
- Unique realizations of degree sequences?
- Majorization result

?

 $\overline{\mathbf{A}}$

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.

G is a threshold graph iff *G* is $\{2K_2, P_4, C_4\}$ -free

Theorem

The class of weakly threshold graphs is closed under taking induced subgraphs.

In fact, a graph G is weakly threshold if and only if it is $\{2K_2, C_4, C_5, H, \overline{H}, S_3, \overline{S_3}\}$ -free.

Weakly threshold graphs form a large subclass of interval \cap co-interval.

(The latter class's forbidden induced subgraphs:)

Graphs with low EG differences

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

 $k(k - 1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization
- Unique realizations of degree sequences?
- Majorization result

?

 \checkmark

Enumeration: more subtle

Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly 2^{n-1} threshold graphs on *n* vertices.

A graph is weakly threshold iff it is constructed from a single vertex or P_4 by iteratively adding one of ...

Enumeration: more subtle

Threshold iff constructed from • via dominating/isolated vertices; therefore, exactly 2^{n-1} threshold graphs on *n* vertices.

A graph is weakly threshold iff it is constructed from a single vertex or P_4 by iteratively adding one of ...

One wrinkle (of many): there is a difference between counting weakly threshold sequences / weakly threshold graphs (isomorphism classes).

Unlike threshold sequences, some weakly threshold sequences have multiple realizations!

Enumeration: sequences

 a_n = number of weakly threshold **sequences** of length *n*

Proposition: For all $n \ge 4$, $a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}$.

 $(1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots$

Enumeration: sequences

 a_n = number of weakly threshold **sequences** of length *n*

Proposition: For all $n \ge 4$, $a_n = 4a_{n-1} - 4a_{n-2} + a_{n-4}$.

 $(1,)1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, \ldots$

It's in OEIS.org! Sequences A024537, A171842

- Binomial transform of 1, 0, 1, 0, 2, 0, 4, 0, 8, 0, 16, ...
- Number of nonisomorphic n-element interval orders with no 3-element antichain.
- Top left entry of the *n*th power of $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ or of $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
- Number of $(1, s_1, ..., s_{n-1}, 1)$ such that $s_i \in \{1, 2, 3\}$ and $|s_i s_{i-1}| \le 1$.
- Partial sums of the Pell numbers prefaced with a 1.
- The number of ways to write an (n 1)-bit binary sequence and then give runs of ones weakly incrementing labels starting with 1, e.g., 0011010011022203003330044040055555.
- Lower bound of the order of the set of equivalent resistances of (n 1) equal resistors combined in series and in parallel.

Enumeration: graphs

b_n = number of weakly threshold **graphs** with *n* vertices

Theorem

The generating function for (b_n) is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

Enumeration: graphs

b_n = number of weakly threshold **graphs** with *n* vertices

Theorem

The generating function for (b_n) is given by

$$\sum_{n=0}^{\infty} b_n x^n = \frac{x - 2x^2 - x^3 - x^5}{1 - 4x + 3x^2 + x^3 + x^5}.$$

$$\begin{split} b_n = & c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n \\ & + c_3 \left(\frac{6-(1+i\sqrt{3})(27-3\sqrt{57})^{1/3}-(1-i\sqrt{3})(27+3\sqrt{57})^{1/3}}{6}\right)^n \\ & + c_4 \left(\frac{6-(1-i\sqrt{3})(27-3\sqrt{57})^{1/3}-(1+i\sqrt{3})(27+3\sqrt{57})^{1/3}}{6}\right)^n \\ & + c_5 \left(\frac{3+(27-3\sqrt{57})^{1/3}+(27+3\sqrt{57})^{1/3}}{3}\right)^n, \end{split}$$

Enumeration

There are exactly $\frac{1}{2} \cdot 2^n$ threshold graphs on *n* vertices.

$$a_n ~\sim~ \frac{1}{4}(1+\sqrt{2})^n$$

and

$$b_n \sim c_5 \left(rac{3 + (27 - 3\sqrt{57})^{1/3} + (27 + 3\sqrt{57})^{1/3}}{3}
ight)^n,$$

so for large n,

$$a_n \ge \frac{1}{4} \cdot 2.4^n$$
 and $b_n \ge 0.096 \cdot 2.7^n$.

Weakly threshold sequences and graphs

 Equality or a difference of 1 in each of the first m(d)
 Erdős–Gallai inequalities.

 $k(k-1) + \sum_{i > k} \min\{k, d_i\} - \sum_{i \le k} d_i \le 1$

Call these **weakly threshold sequences**; call the associated graphs **weakly threshold graphs**.

Iterative construction

- How many weakly threshold sequences/graphs on n vertices?
- Forbidden subgraph characterization
- Unique realizations of degree sequences? NO
- Majorization result

...?...

 $\overline{\mathbf{A}}$

Further questions

Many of the results for weakly threshold graphs appear to generalize to graphs with Erdős–Gallai differences bounded by *b*. Do they all?

Thank you!

barrus@uri.edu