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Graphs, degrees, and realizations

G:

d(G) = (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
3,3,3,3,3,3,3,3,2,2,2,2,2,2)
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The question

d = (2,2,1,1)

b

b b

b b

b b

b

d = (2,2,2,1,1)

b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b

Which edges and non-edges are forced by the degree sequence?
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Threshold sequences and threshold graphs

Threshold sequence: a degree sequence having exactly one
realization.
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An answer

A clique is demanding if every vertex outside the clique
has as many neighbors as possible in the clique. b b
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Theorem
Forced edges correspond exactly to three cases:
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Threshold sequences and threshold graphs

Threshold sequence: a degree sequence having exactly one
realization.
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Measures of “thresholdness”

Erdős–Gallai inequalities for degree sequences (d1, . . . ,dn):∑
i≤k

di︸ ︷︷ ︸
LHS(k)

≤ k(k − 1) +
∑
i>k

min{k ,di}︸ ︷︷ ︸
RHS(k)

for all k ≤ m = max{i : di ≥ i − 1}.

Threshold graphs: RHS(k)− LHS(k) = 0 for all k ∈ {1, . . . ,m}.

Theorem
A sequence d has no forcible edges if and only if
RHS(1)−LHS(1) ≥ 1 and RHS(k)−LHS(k) ≥ 2 for all k ∈ {2, . . . ,m}.
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Measures of “thresholdness”

d = (2,2,1,1)
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Measures of “thresholdness”

Observation
If G is threshold iff Id(G) = G = Ud(G).
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Theorem
For any degree sequence d, both Id and Ud are threshold graphs.

M. D. Barrus (BYU) Forced adjacency relationships 8/1/13 9 / 11



Measures of “thresholdness”

Observation
If G is threshold iff Id(G) = G = Ud(G).

Id :

b

b

b

b

b

G:

b

b

b

b

b

Ud :

b

b

b

b

b

Theorem
For any degree sequence d, both Id and Ud are threshold graphs.

M. D. Barrus (BYU) Forced adjacency relationships 8/1/13 9 / 11



Forced relationships and the dominance order
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Partitions of 2m under the dominance order

Threshold sequences: maximal degree
sequences

Theorem
If vertices i and j have a forcible adjacency
relationship in realizations of d, then i and j have
the same adjacency relationship for all degree
sequences that majorize d.
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Thank you!

barrus@math.byu.edu
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