Adjacency relationships forced by graph degree sequences

Michael D. Barrus

Department of Mathematics Brigham Young University

MathFest 2013

• Hartford, CT • August 1, 2013

3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2)

The question

$$d = (2, 2, 1, 1)$$

$$d = (2, 2, 2, 1, 1)$$

Which edges and non-edges are forced by the degree sequence?

M. D. Barrus (BYU)

Threshold sequence: a degree sequence having exactly one realization.

Threshold sequence: a degree sequence having exactly one realization.

Threshold sequence: a degree sequence having exactly one realization.

Threshold sequence: a degree sequence having exactly one realization.

All edges and non-edges are forced by the degree sequence.

An answer

A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

Theorem

M. D. Barrus (BYU)

An answer

A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

Forced edges correspond exactly to three cases:

Forced adjacency relationships

Threshold sequence: a degree sequence having exactly one realization.

All edges and non-edges are forced by the degree sequence.

Erdős–Gallai inequalities for degree sequences (d_1, \ldots, d_n) :

$$\underbrace{\sum_{i \leq k} d_i}_{\text{LHS}(k)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\text{RHS}(k)}$$

for all $k \leq m = \max\{i : d_i \geq i - 1\}$.

Threshold graphs: RHS(k) - LHS(k) = 0 for all $k \in \{1, ..., m\}$.

Erdős–Gallai inequalities for degree sequences (d_1, \ldots, d_n) :

$$\underbrace{\sum_{i \leq k} d_i}_{\text{LHS}(k)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\text{RHS}(k)}$$

for all $k \leq m = \max\{i : d_i \geq i - 1\}$.

Threshold graphs: RHS(k) - LHS(k) = 0 for all $k \in \{1, ..., m\}$.

Theorem

A sequence d has **no** forcible edges if and only if RHS(1) – LHS(1) \geq 1 and RHS(k) – LHS(k) \geq 2 for all $k \in \{2, ..., m\}$.

d = (2, 2, 1, 1)

$$d = (2, 2, 2, 1, 1)$$

$$d = (2, 2, 1, 1)$$

d = (2, 2, 2, 1, 1)

Intersection envelope graph

Union envelope graph

Observation

If G is threshold iff
$$I_{d(G)} = G = U_{d(G)}$$
.

Observation

If G is threshold iff
$$I_{d(G)} = G = U_{d(G)}$$
.

Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.

Partitions of 2m under the dominance order

Partitions of 2*m* under the dominance order

Threshold sequences: maximal degree sequences

Partitions of 2*m* under the dominance order

Threshold sequences: maximal degree sequences

Theorem

If vertices i and j have a forcible adjacency relationship in realizations of d, then i and j have the same adjacency relationship for all degree sequences that majorize d.

Partitions of 2*m* under the dominance order

Threshold sequences: maximal degree sequences

Theorem

If vertices i and j have a forcible adjacency relationship in realizations of d, then i and j have the same adjacency relationship for all degree sequences that majorize d.

Thank you!

barrus@math.byu.edu