Degree Sequences and Forced Adjacency Relationships

Michael D. Barrus

Department of Mathematics, Brigham Young University

SIAM Conference on Discrete Mathematics Minneapolis, MN • June 19, 2014

Realizations and Properties

$\underset{\sim}{(2,2,2,1,1)}$
2 (2) (3) 2
${ }_{1}(4){ }^{(5)}$

Realizations and Properties

Given a graph property \mathcal{P}, a degree sequence d is

- potentially \mathcal{P}-graphic if at least one realization of d has property \mathcal{P}.
- forcibly \mathcal{P}-graphic if every realization of d has property \mathcal{P}.

Forcible adjacency relationships

Forcible adjacency relationships

$\mathcal{P}_{i j}: i j$ is an edge (non-edge)

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}$: ij is an edge (non-edge)

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}: i j$ is an edge (non-edge)

$$
\begin{gathered}
d(G)=(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 \\
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)
\end{gathered}
$$

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}$: ij is an edge (non-edge)

Are there any forcible edges/non-edges?

Forcible adjacency relationships

$\mathcal{P}_{i j}$: ij is an edge (non-edge)

Are there any forcible edges/non-edges?

Forcible adjacency relationships: Envelope graphs

$$
d=(2,2,2,1,1)
$$

Forcible adjacency relationships: Envelope graphs

$$
d=(2,2,2,1,1)
$$

Intersection envelope graph I_{d}

$$
E\left(I_{d}\right)=\bigcap_{d(G)=d} E(G)
$$

$$
I_{d}:
$$

Forcible adjacency relationships: Envelope graphs

$$
d=(2,2,2,1,1)
$$

Intersection envelope graph l_{d}

$$
E\left(I_{d}\right)=\bigcap_{d(G)=d} E(G)
$$

Union envelope graph U_{d}

$$
E\left(U_{d}\right)=\bigcup_{d(G)=d} E(G)
$$

Forcible adjacency relationships: Envelope graphs

$$
d=(4,3,2,2,1)
$$

Threshold sequence [chvátal-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

Forcible adjacency relationships: Envelope graphs

$$
d=(4,3,2,2,1)
$$

Threshold sequence [chvátal-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

Forcible adjacency relationships: Envelope graphs

$$
d=(4,3,2,2,1)
$$

Threshold sequence [chvátal-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

Forcible adjacency relationships: Envelope graphs

$$
d=(4,3,2,2,1)
$$

Threshold sequence [Chvatala-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

Forcible adjacency relationships: Envelope graphs

$$
d=(4,3,2,2,1)
$$

Threshold sequence [Chvatala-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

All edges and non-edges are forced by the degree sequence.

Forcible adjacency relationships: Envelope graphs

$$
d=(4,3,2,2,1)
$$

Threshold sequence [Chvatala-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

All edges and non-edges are forced by the degree sequence.
$d=(2,2,1,1)$

Forcible adjacency relationships: Envelope graphs

$$
d=(4,3,2,2,1)
$$

Threshold sequence [Chvatala-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

All edges and non-edges are forced by the degree sequence.
$d=(2,2,1,1)$

Questions

How can we recognize forcible adjacency relationships...
...from a degree sequence?
...from a graph?

$$
d=(5,4,3,3,3,1,1)
$$

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
d^{+}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
d^{-}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1)
$$

$$
d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
d^{+}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
d^{-}(i, j) & =\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1)
$$

$$
d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
& d^{+}(i, j)=\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
& d^{-}(i, j)=\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1) \quad d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

Lemma

The pair i, j is a forcible $\left\{\begin{array}{c}\text { edge } \\ \text { non-edge }\end{array}\right\}$ ford iff $\left\{\begin{array}{l}d^{+}(i, j) \\ d^{-}(i, j)\end{array}\right\}$ is not graphic.

A beginning

For graphic d and $1 \leq i<j \leq n$, define

$$
\begin{aligned}
& d^{+}(i, j)=\left(d_{1}, \ldots, d_{i-1}, d_{i}+1, d_{i+1}, \ldots, d_{j-1}, d_{j}+1, d_{j+1}, \ldots, d_{n}\right) \quad \text { and } \\
& d^{-}(i, j)=\left(d_{1}, \ldots, d_{i-1}, d_{i}-1, d_{i+1}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right) .
\end{aligned}
$$

$$
d=(2,2,1,1)
$$

$$
d^{+}(1,3)=(3,2,2,1) \quad d^{+}(1,2)=(3,3,1,1)
$$

Lemma

The pair i, j is a forcible $\left\{\begin{array}{c}\text { edge } \\ \text { non-edge }\end{array}\right\}$ ford iff $\left\{\begin{array}{l}d^{+}(i, j) \\ d^{-}(i, j)\end{array}\right\}$ is not graphic.

Erdős-Gallai inequalities

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

for all $k \leq m=\max \left\{i: d_{i} \geq i-1\right\}$.

Erdős-Gallai inequalities

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\underbrace{\sum_{i \leq k} d_{i}}_{\text {LHS }(k)} \leq \underbrace{k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}}_{\text {RHS(k) }}
$$

for all $k \leq m=\max \left\{i: d_{i} \geq i-1\right\}$.

Theorem (Hammer-Ibaraki-Simeone, 1978)

d is a threshold sequence if and only if $\operatorname{LHS}(k)=\operatorname{RHS}(k)$ for all $k \in\{1, \ldots, m\}$.

Erdős-Gallai differences

A list $\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$
\Delta(k)=\mathrm{RHS}(k)-\operatorname{LHS}(k)
$$

for all $k \leq m=\max \left\{i: d_{i} \geq i-1\right\}$.

Theorem

Given $1 \leq i<j \leq n$,
$\{i, j\}$ is a forced edge iff $\exists k \in\{1, \ldots, n\}$ such that either
$\Delta_{k}(d)=0, \quad i \leq k<j$, and $k \leq d_{j} ; \quad$ or $\quad \Delta_{k}(d) \leq 1 \quad$ and $j \leq k$.
$\{i, j\}$ is a forced non-edge iff $\exists k \in\{1, \ldots, n\}$ such that either $\Delta_{k}(d)=0, k<i$, and $d_{j}<k \leq d_{i} ;$ or $\Delta_{k}(d) \leq 1$ and $d_{i}<k<i$.

$$
(7, \quad 6, \quad \underline{3}, \underline{3}, \quad \underline{3}, \quad \underline{3}, 1,1,1)
$$

$$
(4, \quad 4, \quad 3,3,3, \quad 1)
$$

Questions

How can we recognize forcible adjacency relationships...
...from a degree sequence?
...from a graph?

$$
d=(5,4,3,3,3,1,1)
$$

A switching result?

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for $d(G)$ if and only if $\{i, j\}$ belongs to no alternating circuit in G.

A switching result?

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for $d(G)$ if and only if $\{i, j\}$ belongs to no alternating circuit in G.

Lots to check...

A structural characterization

A clique is demanding if every vertex outside the clique has as many neighbors as possible in the clique.

A structural characterization

A clique is demanding if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is weakly demanding if changing one neighbor of a single vertex outside the clique makes the clique demanding.

A structural characterization

A clique is demanding if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is weakly demanding if changing one neighbor of a single vertex outside the clique makes the clique demanding.

Theorem

A realization edge is forced for d iff it lies in a demanding or weakly demanding clique or it joins a demanding clique vertex to an external vertex that dominates the
 clique.

Overall structure of forced relationships

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Threshold graphs and canonical decomposition

Canonical decomposition [Tyshkevich et al., 1980's, 2000]: Indecomposable split components hooked to each other and an indecomposable "core" following the rightwards dominating/isolated rule; every graph has a unique decomposition, up to isomorphism of canonical components.

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

- LHS $(k)=$ RHS (k);
- Vertices $1, \ldots, k$ comprise a demanding clique;
- Vertices $1, \ldots, k$ comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

- LHS $(k)=$ RHS (k);
- Vertices $1, \ldots, k$ comprise a demanding clique;
- Vertices $1, \ldots, k$ comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Composing the appropriate envelopes of the individual canonical components, we obtain I_{d} and U_{d}.

Overall structure of forced relationships

Theorem

For any degree sequence d, both I_{d} and U_{d} are threshold graphs.

Composing the appropriate envelopes of the individual canonical components, we obtain I_{d} and U_{d}.

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Threshold sequences: maximal graphic elements

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Threshold sequences: maximal graphic elements

Theorem

If vertices i and j have a forcible adjacency relationship in realizations of d, then i and j have the same adjacency relationship for all degree sequences that majorize d.

Forced relationships and the dominance order

Nonnegative partitions of $2 m$ of a fixed length, under the dominance order

Threshold sequences: maximal graphic elements

Theorem

If vertices i and j have a forcible adjacency relationship in realizations of d, then i and j have the same adjacency relationship for all degree sequences that majorize d.

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Questions

$$
d=(2,2,2,1,1)
$$

- For which degree sequences is there a simple way to compute the probability that two vertices are adjacent?
- What about forcing induced subgraphs in unlabeled realizations? (Can you find a forcibly P_{7}-inducing-graphic sequence?)

