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Realizations and Properties

(2,2,2,1,1)

1

2 3

4 5

1

2

2

2

1

b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b b

b

b

b

b

Given a graph property P, a degree sequence d is

potentially P-graphic if at least one realization of d has property
P.
forcibly P-graphic if every realization of d has property P.
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Forcible adjacency relationships

Pij : ij is an edge (non-edge)

d(G) = (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,3,3,3,3,3,3,3,3,2,2,2,2,2,2)

Are there any forcible edges/non-edges?
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Forcible adjacency relationships: Envelope graphs

d = (2,2,2,1,1)
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Intersection envelope graph Id
E(Id ) =

⋂
d(G)=d

E(G)

Id :
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Union envelope graph Ud

E(Ud ) =
⋃

d(G)=d

E(G)

Ud :
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Forcible adjacency relationships: Envelope graphs

d = (4,3,2,2,1)
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Questions

How can we recognize forcible adjacency relationships...

...from a degree sequence?

d = (5,4,3,3,3,1,1)

...from a graph?
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A beginning

For graphic d and 1 ≤ i < j ≤ n, define

d+(i , j) = (d1, . . . ,di−1,di + 1,di+1, . . . ,dj−1,dj + 1,dj+1, . . . ,dn) and
d−(i , j) = (d1, . . . ,di−1,di − 1,di+1, . . . ,dj−1,dj − 1,dj+1, . . . ,dn).

d = (2,2,1,1)

b

b b

b b

b b

b

d+(1,3) = (3,2,2,1) d+(1,2) = (3,3,1,1)

Lemma

The pair i , j is a forcible
{

edge
non-edge

}
for d iff

{
d+(i , j)
d−(i , j)

}
is not graphic.
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Erdős–Gallai inequalities

A list (d1, . . . ,dn) of nonnegative integers in descending order with
even sum is a degree sequence if and only if∑

i≤k

di︸ ︷︷ ︸
LHS(k)

≤ k(k − 1) +
∑
i>k

min{k ,di}︸ ︷︷ ︸
RHS(k)

for all k ≤ m = max{i : di ≥ i − 1}.

Theorem (Hammer–Ibaraki–Simeone, 1978)
d is a threshold sequence if and only if LHS(k) = RHS(k) for all
k ∈ {1, . . . ,m}.
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Erdős–Gallai differences

A list (d1, . . . ,dn) of nonnegative integers in descending order with
even sum is a degree sequence if and only if∑
i≤k

di︸ ︷︷ ︸
LHS(k)

≤ k(k − 1) +
∑
i>k

min{k ,di}︸ ︷︷ ︸
RHS(k)

∆(k) = RHS(k)− LHS(k)

for all k ≤ m = max{i : di ≥ i − 1}.

Theorem
Given 1 ≤ i < j ≤ n,
{i , j} is a forced edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, i ≤ k < j , and k ≤ dj ; or ∆k (d) ≤ 1 and j ≤ k.

{i , j} is a forced non-edge iff ∃k ∈ {1, . . . ,n} such that either
∆k (d) = 0, k < i , and dj < k ≤ di ; or ∆k (d) ≤ 1 and di < k < i.

(7, 6, 3, 3, 3, 3, 1, 1, 1)
(4, 4, 3, 3, 3, 1)
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Questions

How can we recognize forcible adjacency relationships...

...from a degree sequence?

d = (5,4,3,3,3,1,1)

...from a graph?
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A switching result?

Proposition
The pair {i , j} in G is a forcible edge or non-edge for d(G) if and only if
{i , j} belongs to no alternating circuit in G.

Lots to check...
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A structural characterization

A clique is demanding if every vertex outside the clique
has as many neighbors as possible in the clique. b bb

b

b

b

b

b

b

b bb

b

b

b A clique is weakly demanding if changing one neighbor
of a single vertex outside the clique makes the clique
demanding.

Theorem
A realization edge is forced for d iff it lies in a demanding
or weakly demanding clique or it joins a demanding
clique vertex to an external vertex that dominates the
clique.

b bb

b

b

b

b

b

b
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Overall structure of forced relationships

d Id G Ud

(2,2,2,1,1)
b

b

b

b

b b

b

b

b

b

(4,3,2,2,1)
b

b

b

b

b b

b

b

b

b b

b

b

b

b

(2,2,1,1)
b

b b

b b

b b

b

Theorem
For any degree sequence d, both Id and Ud are threshold graphs.
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Threshold graphs and canonical decomposition
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Canonical decomposition [Tyshkevich et al., 1980’s, 2000]: Indecomposable split
components hooked to each other and an indecomposable “core”
following the rightwards dominating/isolated rule; every graph has a
unique decomposition, up to isomorphism of canonical components.
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Canonical decomposition and forced adjacency
relationships
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Theorem
For k ≤ m, the following are equivalent:

LHS(k) = RHS(k);
Vertices 1, . . . , k comprise a demanding clique;
Vertices 1, . . . , k comprise an initial segment of upper cells in a
canonical decomposition.

Hence all adjacency relationships between vertices in distinct
canonical components are forced.
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Overall structure of forced relationships

Theorem
For any degree sequence d, both Id and Ud are threshold graphs.
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Composing the appropriate envelopes of the individual canonical
components, we obtain Id and Ud .
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Forced relationships and the dominance order

600000

510000

420000

411000 330000

321000

311100 222000

221100

211110

111111

Nonnegative partitions of 2m of a fixed length,
under the dominance order

Threshold sequences: maximal graphic elements

Theorem
If vertices i and j have a forcible adjacency
relationship in realizations of d, then i and j have
the same adjacency relationship for all degree
sequences that majorize d.
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Majorization-closed classes

(110)

(2, 18)

(22, 16)

(23, 14) (3, 17)

(24, 12) (3, 2, 15)

(25) (3, 22, 13) (4, 16)

(3, 23, 1) (32, 14)

(32, 2, 12) (4, 2, 14)

(32, 22) (4, 22, 12)

(5, 15)

Corollary
Degree sequences for the following
classes are “upwards closed” in the
poset:

[Merris, 2003] Split graphs
Canonically decomposable
graphs

M. D. Barrus (BYU, URI) Forced Adjacency Relationships June 19, 2014 18 / 19



Majorization-closed classes

(110)

(2, 18)

(22, 16)

(23, 14) (3, 17)

(24, 12) (3, 2, 15)

(25) (3, 22, 13) (4, 16)

(3, 23, 1) (32, 14)

(32, 2, 12) (4, 2, 14)

(32, 22) (4, 22, 12)

(5, 15)

Corollary
Degree sequences for the following
classes are “upwards closed” in the
poset:

[Merris, 2003] Split graphs
Canonically decomposable
graphs

M. D. Barrus (BYU, URI) Forced Adjacency Relationships June 19, 2014 18 / 19



Majorization-closed classes

(110)

(2, 18)

(22, 16)

(23, 14) (3, 17)

(24, 12) (3, 2, 15)

(25) (3, 22, 13) (4, 16)

(3, 23, 1) (32, 14)

(32, 2, 12) (4, 2, 14)

(32, 22) (4, 22, 12)

(5, 15)

Corollary
Degree sequences for the following
classes are “upwards closed” in the
poset:

[Merris, 2003] Split graphs
Canonically decomposable
graphs

M. D. Barrus (BYU, URI) Forced Adjacency Relationships June 19, 2014 18 / 19



Questions

d = (2,2,2,1,1)
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For which degree sequences is there a simple way to compute the
probability that two vertices are adjacent?

What about forcing induced subgraphs in unlabeled
realizations? (Can you find a forcibly P7-inducing-graphic
sequence?)

M. D. Barrus (BYU, URI) Forced Adjacency Relationships June 19, 2014 19 / 19


