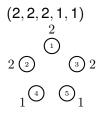
Degree Sequences and Forced Adjacency Relationships

Michael D. Barrus

Department of Mathematics, Brigham Young University Department of Mathematics, University of Rhode Island

SIAM Conference on Discrete Mathematics Minneapolis, MN • June 19, 2014

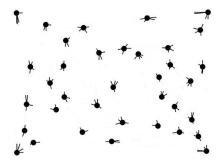
Realizations and Properties



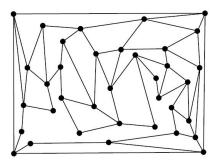
Realizations and Properties

Given a graph property \mathcal{P} , a degree sequence d is

- **potentially** \mathcal{P} -graphic if at least one realization of *d* has property \mathcal{P} .
- forcibly \mathcal{P} -graphic if every realization of d has property \mathcal{P} .



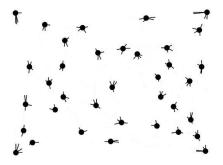
 \mathcal{P}_{ij} : *ij* is an edge (non-edge)



Are there any forcible edges/non-edges?

M. D. Barrus (BYU, URI)

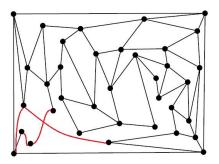
 \mathcal{P}_{ij} : *ij* is an edge (non-edge)



Are there any forcible edges/non-edges?

M. D. Barrus (BYU, URI)

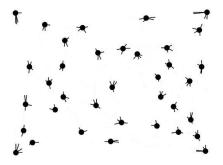
 \mathcal{P}_{ij} : *ij* is an edge (non-edge)



Are there any forcible edges/non-edges?

M. D. Barrus (BYU, URI)

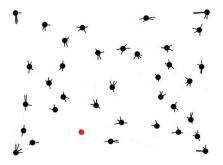
 \mathcal{P}_{ij} : *ij* is an edge (non-edge)



Are there any forcible edges/non-edges?

M. D. Barrus (BYU, URI)

 \mathcal{P}_{ij} : *ij* is an edge (non-edge)



Are there any forcible edges/non-edges?

M. D. Barrus (BYU, URI)

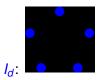
$$d = (2, 2, 2, 1, 1)$$

$$d = (2, 2, 2, 1, 1)$$

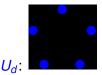
Intersection envelope graph I_d $E(I_d) = \bigcap_{d(G)=d} E(G)$

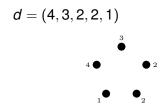
$$d = (2, 2, 2, 1, 1)$$

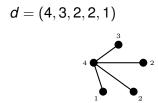
Intersection envelope graph I_d $E(I_d) = \bigcap_{d(G)=d} E(G)$

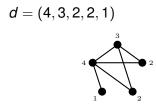


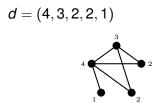
Union envelope graph U_d $E(U_d) = \bigcup_{d(G)=d} E(G)$

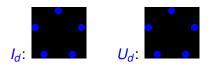


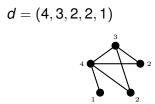






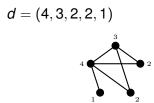






Threshold sequence [Chvátal–Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

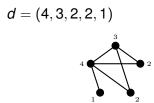
<u>All</u> edges and non-edges are forced by the degree sequence.



Threshold sequence [Chvátal–Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

<u>All</u> edges and non-edges are forced by the degree sequence.

$$d = (2, 2, 1, 1)$$



Threshold sequence [Chvátal-Hammer, 1973]: a degree sequence having exactly one (labeled) realization.

<u>All</u> edges and non-edges are forced by the degree sequence.

$$d = (2, 2, 1, 1)$$

 I_d : U_d :

Questions

How can we recognize forcible adjacency relationships...

...from a degree sequence?

$$d = (5, 4, 3, 3, 3, 1, 1)$$

... from a graph?

$$d^+(i,j) = (d_1, \dots, d_{i-1}, d_i + 1, d_{i+1}, \dots, d_{j-1}, d_j + 1, d_{j+1}, \dots, d_n)$$
 and
 $d^-(i,j) = (d_1, \dots, d_{i-1}, d_i - 1, d_{i+1}, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n).$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

$$d^+(i,j) = (d_1, \dots, d_{i-1}, d_i + 1, d_{i+1}, \dots, d_{j-1}, d_j + 1, d_{j+1}, \dots, d_n)$$
 and
 $d^-(i,j) = (d_1, \dots, d_{i-1}, d_i - 1, d_{i+1}, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n).$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

$$d^+(i,j) = (d_1, \dots, d_{i-1}, d_i + 1, d_{i+1}, \dots, d_{j-1}, d_j + 1, d_{j+1}, \dots, d_n)$$
 and
 $d^-(i,j) = (d_1, \dots, d_{i-1}, d_i - 1, d_{i+1}, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n).$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

Lemma
The pair *i*, *j* is a forcible
$$\begin{cases} edge \\ non-edge \end{cases}$$
 for *d* iff $\begin{cases} d^+(i,j) \\ d^-(i,j) \end{cases}$ is not graphic.

$$d^+(i,j) = (d_1, \dots, d_{i-1}, d_i + 1, d_{i+1}, \dots, d_{j-1}, d_j + 1, d_{j+1}, \dots, d_n)$$
 and
 $d^-(i,j) = (d_1, \dots, d_{i-1}, d_i - 1, d_{i+1}, \dots, d_{j-1}, d_j - 1, d_{j+1}, \dots, d_n).$

$$d = (2, 2, 1, 1)$$
 $d^+(1, 3) = (3, 2, 2, 1)$ $d^+(1, 2) = (3, 3, 1, 1)$

Lemma
The pair *i*, *j* is a forcible
$$\begin{cases} edge \\ non-edge \end{cases}$$
 for *d* iff $\begin{cases} d^+(i,j) \\ d^-(i,j) \end{cases}$ is not graphic.

Erdős–Gallai inequalities

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\underbrace{\sum_{i \leq k} d_i}_{\text{LHS}(k)} \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\text{RHS}(k)}$$

for all $k \leq m = \max\{i : d_i \geq i - 1\}$.

Erdős–Gallai inequalities

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\underbrace{\sum_{i \leq k} d_i}_{\text{LHS}(k)} \leq \underbrace{k(k-1) + \sum_{i > k} \min\{k, d_i\}}_{\text{RHS}(k)}$$

for all $k \leq m = \max\{i : d_i \geq i - 1\}$.

Theorem (Hammer–Ibaraki–Simeone, 1978)

d is a threshold sequence if and only if LHS(k) = RHS(k) for all $k \in \{1, ..., m\}$.

Erdős–Gallai differences

A list (d_1, \ldots, d_n) of nonnegative integers in descending order with even sum is a degree sequence if and only if

$$\sum_{\substack{i \leq k \\ \mathsf{LHS}(k)}} d_i \leq k(k-1) + \sum_{\substack{i > k \\ \mathsf{RHS}(k)}} \min\{k, d_i\}$$

for all $k \leq m = \max\{i : d_i \geq i - 1\}.$

 $\Delta(k) = \mathsf{RHS}(k) - \mathsf{LHS}(k)$

Theorem

Given $1 \le i < j \le n$, $\{i, j\}$ is a **forced edge** iff $\exists k \in \{1, ..., n\}$ such that either $\Delta_k(d) = 0, i \le k < j, and k \le d_j;$ Or $\Delta_k(d) \le 1$ and $j \le k$.

 $\{i, j\}$ is a **forced non-edge** iff $\exists k \in \{1, ..., n\}$ such that either $\Delta_k(d) = 0$, k < i, and $d_j < k \le d_i$; Or $\Delta_k(d) \le 1$ and $d_i < k < i$.

Questions

How can we recognize forcible adjacency relationships...

...from a degree sequence?

$$d = (5, 4, 3, 3, 3, 1, 1)$$

... from a graph?

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for d(G) if and only if $\{i, j\}$ belongs to no alternating circuit in G.

Proposition

The pair $\{i, j\}$ in G is a forcible edge or non-edge for d(G) if and only if $\{i, j\}$ belongs to no alternating circuit in G.

Lots to check...

A structural characterization

A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

A structural characterization

A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is **weakly demanding** if changing one neighbor of a single vertex outside the clique makes the clique demanding.

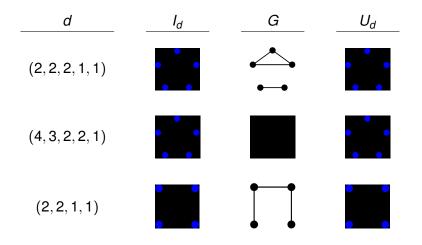
A structural characterization

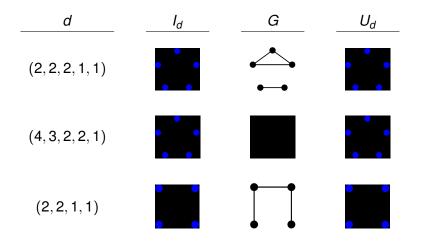
A clique is **demanding** if every vertex outside the clique has as many neighbors as possible in the clique.

A clique is **weakly demanding** if changing one neighbor of a single vertex outside the clique makes the clique demanding.

Theorem

A realization edge is forced for d iff it lies in a demanding or weakly demanding clique or it joins a demanding clique vertex to an external vertex that dominates the clique.

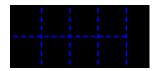


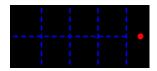


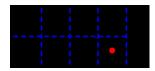
Theorem

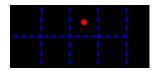
For any degree sequence d, both I_d and U_d are threshold graphs.

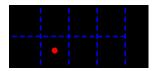
M. D. Barrus (BYU, URI)

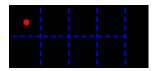


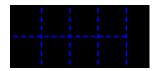




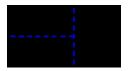


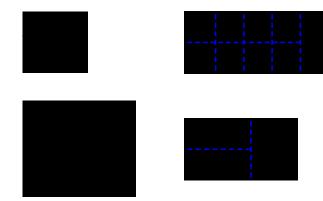












Canonical decomposition [Tyshkevich et al., 1980's, 2000]: Indecomposable split components hooked to each other and an indecomposable "core" following the rightwards dominating/isolated rule; every graph has a unique decomposition, up to isomorphism of canonical components.

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

- LHS(k) = RHS(k);
- Vertices 1,..., k comprise a demanding clique;
- Vertices 1,..., k comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

M. D. Barrus (BYU, URI)

Canonical decomposition and forced adjacency relationships

Theorem

For $k \leq m$, the following are equivalent:

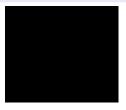
- LHS(k) = RHS(k);
- Vertices 1,..., k comprise a demanding clique;
- Vertices 1,..., k comprise an initial segment of upper cells in a canonical decomposition.

Hence all adjacency relationships between vertices in distinct canonical components are forced.

M. D. Barrus (BYU, URI)

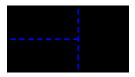
Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.



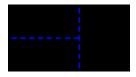
Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.



Theorem

For any degree sequence d, both I_d and U_d are threshold graphs.



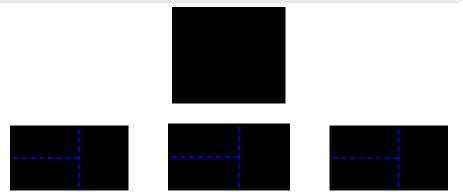
Composing the appropriate envelopes of the individual canonical components, we obtain I_d and U_d .

M. D. Barrus (BYU, URI)

Forced Adjacency Relationships

Theorem

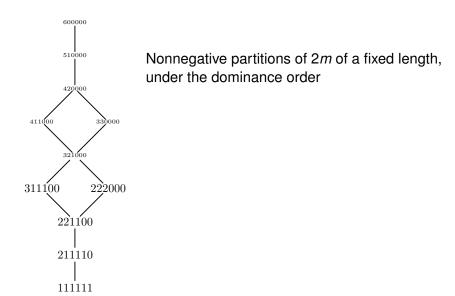
For any degree sequence d, both I_d and U_d are threshold graphs.

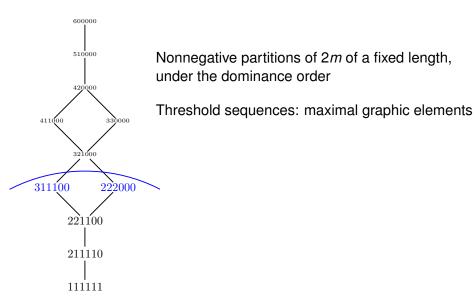


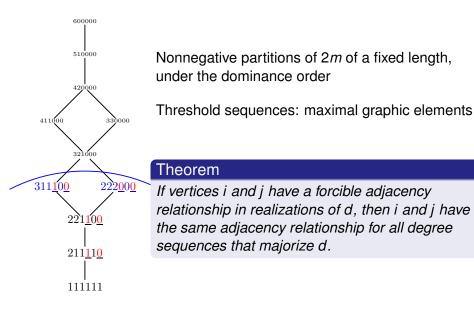
Composing the appropriate envelopes of the individual canonical components, we obtain I_d and U_d .

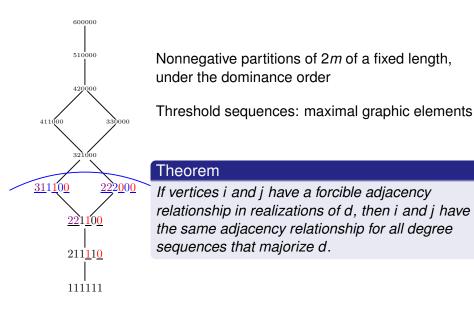
M. D. Barrus (BYU, URI)

Forced Adjacency Relationships

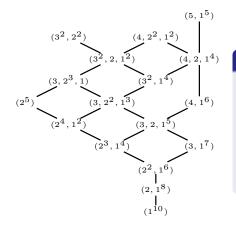








Majorization-closed classes

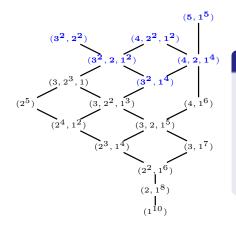


Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

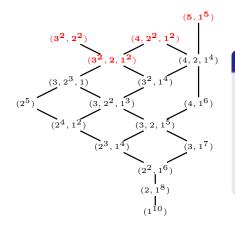


Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Majorization-closed classes

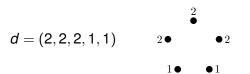


Corollary

Degree sequences for the following classes are "upwards closed" in the poset:

- [Merris, 2003] Split graphs
- Canonically decomposable graphs

Questions



- For which degree sequences is there a simple way to compute the **probability** that two vertices are adjacent?
- What about forcing induced **subgraphs** in **unlabeled** realizations? (Can you find a forcibly *P*₇-inducing-graphic sequence?)