Alternating 4-cycles in graphs

Michael D. Barrus

Department of Mathematics
Brigham Young University
September 17, 2012
Joint work with Douglas B. West

Alternating 4-cycles...

Alternating 4-cycle $\left(A_{4}\right)$

...and degree sequences

2-switches

Theorem (Fulkerson-Hoffman-McAndrew, 1965) $\operatorname{deg}(G)=\operatorname{deg}(H)$ iff 2-switches transform G into H.
...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976)

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976)

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976)

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976)

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976)

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976)

Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976) Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

...and graph classes

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976) Vertex sets of A_{4} 's are circuits of a matroid on V.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

Questions

What structural properties of a graph can we tie to the existence and location of alternating 4-cycles?

How do these affect the degree sequence?

The A_{4}-structure of a graph

Hypergraph H

$$
V(H)=V(G), \quad E(H)=\left\{A \subseteq V(G): G[A] \cong 2 K_{2} \text { or } C_{4} \text { or } P_{4}\right\}
$$

Characterizations in terms of the A_{4}-structure

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
- Matrogenic graphs (Földes-Hammer, 1976) Vertex sets of A_{4} 's are circuits of a matroid on V.
- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E.

Characterizations in terms of the A_{4}-structure

- Threshold graphs (Chvátal-Hammer, 1973) No A_{4} 's present.
The A_{4}-structure has no edges.
- Matrogenic graphs (Földes-Hammer, 1976)

Vertex sets of A_{4} 's are circuits of a matroid on V.
No 5 vertices induce exactly 2 or 3 edges in the A_{4}-structure.

- Matroidal graphs (Peled, 1977) Edge sets of A_{4} 's are circuits of a matroid on E. No 5 vertices induce more than 1 edge in the A_{4}-structure.

Graphs with a common A_{4}-Structure

What properties does the A_{4}-structure determine?

Matchings

A nontrivial matching is a set of at least two pairwise non-intersecting edges.

Theorem

Let G and H be triangle-free graphs with the same vertex set V. If G and H have the same A_{4}-structure and $W \subseteq V$, then W is the vertex set of a nontrivial matching in one of these graphs if and only if it is in the other.

Corollary

Two triangle-free graphs with the same A_{4}-structure have maximum matchings of the same size.

Matchings

A nontrivial matching is a set of at least two pairwise non-intersecting edges.

Theorem

Let G and H be triangle-free graphs with the same vertex set V. If G and H have the same A_{4}-structure and $W \subseteq V$, then W is the vertex set of a nontrivial matching in one of these graphs if and only if it is in the other.

Corollary

Two triangle-free graphs with the same A_{4}-structure have maximum matchings of the same size.

Matchings

A nontrivial matching is a set of at least two pairwise non-intersecting edges.

Theorem

Let G and H be triangle-free graphs with the same vertex set V. If G and H have the same A_{4}-structure and $W \subseteq V$, then W is the vertex set of a nontrivial matching in one of these graphs if and only if it is in the other.

Corollary

Two triangle-free graphs with the same A_{4}-structure have maximum matchings of the same size.

Perfect graphs

The chromatic number of a graph is the minimum number of colors needed to properly color the graph.
The clique number is the size of largest set of pairwise adjacent vertices.

A graph is perfect if in every induced subgraph the chromatic number equals the clique number.

Theorem

If G and H have the same A_{4}-structure, then G is perfect iff H is perfect.

P_{4} and modules

P_{4} and modules

A module is a vertex subset S such that each vertex outside S is joined to S by either all possible edges or no edges.

P_{4} and modules

A module is a vertex subset S such that each vertex outside S is joined to S by either all possible edges or no edges.

P_{4} and modules

A module is a vertex subset S such that each vertex outside S is joined to S by either all possible edges or no edges.

P_{4} and modules

A module is a vertex subset S such that each vertex outside S is joined to S by either all possible edges or no edges.

P_{4} and modules

A module is a vertex subset S such that each vertex outside S is joined to S by either all possible edges or no edges.

P_{4} and modules

Theorem

- An induced P_{4} intersects a module in exactly 0, 1, or 4 vertices.
- (Seinsche, 1974) In a graph G every induced subgraph on at least 3 vertices contains a nontrivial module iff G is P_{4}-free.

Modules

A module S is a vertex subset such that no alternating path of length 2 begins and ends in S and has its midpoint outside S.

Forbidden:

Strict modules

Define a strict module to be a vertex subset S such that no (possibly closed) alternating path of length 2 or 3 begins and ends in S and has its midpoints outside S.

Forbidden:

This is equivalent to not having alternating paths of any length begin and end in S.

A_{4} and strict modules

Lemma

An A_{4} intersects a strict module in exactly 0 or 4 vertices.

Forbidden:

Theorem

In a graph G every induced subgraph on at least 2 vertices has a nontrivial strict module if and only if G is A_{4}-free, i.e., threshold.

Strict modules and graph structure

Forbidden:

Strict modules and graph structure

Lemma

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Strict modules and graph structure

Lemma

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Strict modules and graph structure

Lemma

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Iterate to get a "strict modular decomposition"?

Decomposition

Canonical decomposition

Theorem (Tyshkevich-Chernyak, 1978; Tyshkevich, 2000)

Every graph F can be represented as a composition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

of indecomposable components. Here the $\left(G_{i}, A_{i}, B_{i}\right)$ are indecomposable splitted graphs and F_{0} is an indecomposable graph. This decomposition is unique up to isomorphism of components.

Canonical decomposition

Theorem (Tyshkevich-Chernyak, 1978; Tyshkevich, 2000)

Every graph F can be represented as a composition

$$
F=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ F_{0}
$$

of indecomposable components. Here the $\left(G_{i}, A_{i}, B_{i}\right)$ are indecomposable splitted graphs and F_{0} is an indecomposable graph. This decomposition is unique up to isomorphism of components.

Where did this come from?

Previous motivation for canonical decomposition

Just seemed to show up...

- Matrogenic graphs (Földes-Hammer, 1976; Tyshkevich, 1984)
- Unigraphs (Tyshkevich-Chernyak, 1978-1979)
- Box-threshold graphs (Tyshkevich-Chernyak, 1985)
- Pseudo-split graphs (Blázsik et al., 1993)

In each case, indecomposable components restricted to certain classes.

Structural properties lead to degree sequence characterizations.

A_{4} and strict modules

Lemma

An A_{4} intersects a strict module in exactly 0 or 4 vertices.

Forbidden:

Theorem

In a graph G every induced subgraph on at least 2 vertices has a nontrivial strict module if and only if G is A_{4}-free, i.e., threshold.

A_{4} and canonical decomposition

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_{4}-structure is connected.
Hence the components of the A_{4}-structure and of the canonical decomposition partition the vertex set in the same way.

Motivation for canonical decomposition

- Graph classes (matrogenic, unigraphs, etc.)
- Strict modular decomposition
- Components of the A_{4}-structure

A_{4} and canonical decomposition: a proof

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_{4}-structure is connected.
Hence the components of the A_{4}-structure and of the canonical decomposition partition the vertex set in the same way.

Beginnings

Lemma

The graphs $2 K_{2}, C_{4}$, and P_{4} are all indecomposable. Therefore, connected A_{4}-structure \Longrightarrow indecomposable.

Forbidden:

Lemma

In an indecomposable graph G with more than 1 vertex, every vertex belongs to an alternating 4-cycle.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~S}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

Disjoint $A_{4} \mathrm{~s}$

Lemma

If A and B are disjoint alternating 4 -cycles in G such that no third alternating cycle in G intersects each, then either A induces P_{4}, with its interior vertices dominating B and the endpoints isolated from B (denote this by $A \rightarrow B$), or vice versa.

More on disjoint $A_{4} \mathrm{~s}$

Corollary

Any two vertices which both belong to induced $2 K_{2}$'s or C_{4} 's have distance at most 3 in the A_{4}-structure.

Lemma

The \rightarrow relation is consistent among pairs of $A_{4} s$ from different components of the A_{4}-structure.

Putting it all together

Lemma

The \rightarrow tournament on the A_{4}-components of a graph is acyclic.

Putting it all together

Lemma

The \rightarrow tournament on the A_{4}-components of a graph is acyclic.

Having a source implies the graph is decomposable.
\therefore not A_{4}-connected \Longrightarrow decomposable.

Putting it all together

Lemma

The \rightarrow tournament on the A_{4}-components of a graph is acyclic.

Having a source implies the graph is decomposable.
$\therefore A_{4}$-connected \Longleftrightarrow indecomposable.

Questions

What structural properties of a graph can we tie to the existence and location of alternating 4-cycles?

How do these affect the degree sequence?

Degree sequence connections

Theorem (Erdős-Gallai, 1960)

Let $d=\left(d_{1}, \ldots, d_{n}\right)$ be a list of nonnegative integers with even sum, arranged in descending order. d is the degree sequence of a simple graph if and only if for all k,

$$
\sum_{i \leq k} d_{i} \leq k(k-1)+\sum_{i>k} \min \left\{k, d_{i}\right\}
$$

Degree sequence connections

Theorem (B, 2013)

Let d be the degree sequence of G. The graph G is canonically indecomposable if and only if $d_{n}>0$ and no Erdős-Gallai inequality holds with equality.
Moreover, by examining the values k for which the k th inequality is an equality, we can determine the sizes of the "cells" in the canonical decomposition.

Corollary

Knowing which Erdős-Gallai inequalities hold with equality (and the multiplicity of 0 as a term in d) is equivalent to knowing the vertex sets of the A_{4}-structure components.

Future applications of the A_{4}-structure

Characterizations of graph/degree sequence properties

- Graph classes (threshold, matrogenic, etc.)
- Matchings
- Perfection
- Strict modules/canonical decomposition
- Erdős-Gallai inequalities
- ?

Graphs with a common A_{4}-Structure

What other properties does the A_{4}-structure determine?

Graphs with a common A_{4}-Structure

What other properties does the A_{4}-structure determine? Which graphs have the same A_{4}-structure?

Obtaining other realizations: decomposable graphs

The rightmost A_{4}-component may only be transposed if it has a split realization.
Which graphs have the same A_{4}-structure as a split graph?

A_{4}-split graphs

Theorem

A graph is A_{4}-split iff each canonical component is. For an indecomposable graph G with A_{4}-structure H, the following are equivalent:
(i) G is A_{4}-split.
(ii) H is balanced and satisfies the bipartite restriction property.
(iii) G is $\left\{C_{5}, P_{5}\right.$, house, $K_{2}+K_{3}, K_{2,3}, P, \bar{P}, K_{2}+P_{4}, P_{4} \vee 2 K_{1}, K_{2}+$ $\left.C_{4}, 2 K_{2} \vee 2 K_{1}\right\}$-free.
(iv) G is split, or G or \bar{G} is a disjoint union of stars.
(v) G is A_{4}-separable.

Future applications of the A_{4}-structure

Characterizations of graph/degree sequence properties

- Graph classes (threshold, matrogenic, etc.)
- Matchings
- Perfection
- Strict modules/canonical decomposition
- Erdős-Gallai inequalities
- ?

Antimagic labelings of graphs

Magic square: equal sums along each row, column, and main diagonal.

Antimagic labelings of graphs

Magic square: equal sums along each row, column, and main diagonal.

Antimagic graph labeling: edges labeled with $1, \ldots,|E(G)|$, all vertex sums distinct.
Conjecture (Hartsfield-Ringel, 1990): Every connected graph other than K_{2} has an antimagic labeling.

Antimagic labelings of graphs

Magic square: equal sums along each row, column, and main diagonal.

Antimagic graph labeling: edges labeled with $1, \ldots,|E(G)|$, all vertex sums distinct.
Conjecture (Hartsfield-Ringel, 1990): Every connected graph other than K_{2} has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Canonical decomposition?

Theorem (Alon et al., 2004)

If $G\left(\nexists K_{2}\right)$ has a vertex which is adjacent to all other vertices, then G has an antimagic labeling.

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

A

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

B

Success

Theorem (B, 2010)

If connected $G\left(\nexists K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Success

Theorem (B, 2010)

If connected $G\left(\not \not K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Possible A_{4}-structure help?

Success

Theorem (B, 2010)

If connected $G\left(\not \neq K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Possible A_{4}-structure help?
True conjecture: how to label!

Success

Theorem (B, 2010)

If connected $G\left(\not \neq K_{2}\right)$ is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Possible A_{4}-structure help?
True conjecture: how to label!
False conjecture: counterexample!

Future applications of the A_{4}-structure

Characterizations of graph/degree sequence properties

- Graph classes (threshold, matrogenic, etc.)
- Matchings
- Perfection
- Strict modules/canonical decomposition
- Erdős-Gallai inequalities
- ?

