Alternating 4-cycles in graphs

Michael D. Barrus

Department of Mathematics Brigham Young University

September 17, 2012

Joint work with Douglas B. West

Alternating 4-cycle (A₄)

M. D. Barrus (BYU)

M. D. Barrus (BYU)

...and degree sequences

2-switches

Theorem (Fulkerson–Hoffman–McAndrew, 1965)

deg(G) = deg(H) iff 2-switches transform G into H.

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes-Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes-Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes-Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes-Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes–Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes-Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

M. D. Barrus (BYU)

...and graph classes

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes-Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

M. D. Barrus (BYU)

...and graph classes

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes–Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

Questions

What structural properties of a graph can we tie to the **existence** and **location** of alternating 4-cycles?

How do these affect the degree sequence?

The A_4 -structure of a graph

Hypergraph H

$$V(H) = V(G), \qquad E(H) = \{A \subseteq V(G) : G[A] \cong 2K_2 \text{ or } C_4 \text{ or } P_4\}$$

Characterizations in terms of the A₄-structure

• Threshold graphs (Chvátal–Hammer, 1973) No *A*₄'s present.

Matrogenic graphs (Földes–Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.

Characterizations in terms of the A₄-structure

- Threshold graphs (Chvátal–Hammer, 1973) No A₄'s present.
 The A₄-structure has no edges.
- Matrogenic graphs (Földes–Hammer, 1976)
 Vertex sets of A₄'s are circuits of a matroid on V.
 No 5 vertices induce exactly 2 or 3 edges in the A₄-structure.
- Matroidal graphs (Peled, 1977)
 Edge sets of A₄'s are circuits of a matroid on *E*.
 No 5 vertices induce more than 1 edge in the A₄-structure.

Graphs with a common A₄-Structure

What properties does the A₄-structure determine?

M. D. Barrus (BYU)

Matchings

A *nontrivial matching* is a set of at least two pairwise non-intersecting edges.

Theorem

Let G and H be triangle-free graphs with the same vertex set V. If G and H have the same A_4 -structure and $W \subseteq V$, then W is the vertex set of a nontrivial matching in one of these graphs if and only if it is in the other.

Corollary

Two triangle-free graphs with the same A_4 -structure have maximum matchings of the same size.

M. D. Barrus (BYU)

Matchings

A *nontrivial matching* is a set of at least two pairwise non-intersecting edges.

Theorem

Let G and H be triangle-free graphs with the same vertex set V. If G and H have the same A_4 -structure and $W \subseteq V$, then W is the vertex set of a nontrivial matching in one of these graphs if and only if it is in the other.

Corollary

Two triangle-free graphs with the same A_4 -structure have maximum matchings of the same size.

M. D. Barrus (BYU)

Matchings

A *nontrivial matching* is a set of at least two pairwise non-intersecting edges.

Theorem

Let G and H be triangle-free graphs with the same vertex set V. If G and H have the same A_4 -structure and $W \subseteq V$, then W is the vertex set of a nontrivial matching in one of these graphs if and only if it is in the other.

Corollary

Two triangle-free graphs with the same A_4 -structure have maximum matchings of the same size.

M. D. Barrus (BYU)

The *chromatic number* of a graph is the minimum number of colors needed to properly color the graph.

Perfect graphs

The *clique number* is the size of largest set of pairwise adjacent vertices.

A graph is *perfect* if in every induced subgraph the chromatic number equals the clique number.

Theorem

If G and H have the same A_4 -structure, then G is perfect iff H is perfect.

P₄ and modules

A *module* is a vertex subset *S* such that each vertex outside *S* is joined to *S* by either all possible edges or no edges.

Theorem

- An induced P₄ intersects a module in exactly 0, 1, or 4 vertices.
- (Seinsche, 1974) In a graph G every induced subgraph on at least 3 vertices contains a nontrivial module iff G is P₄-free.

Modules

A *module* S is a vertex subset such that no alternating path of length 2 begins and ends in S and has its midpoint outside S.

Strict modules

Define a **strict module** to be a vertex subset *S* such that no (**possibly closed**) alternating path of length 2 **or 3** begins and ends in *S* and has its midpoints outside *S*.

This is equivalent to not having alternating paths of *any* length begin and end in *S*.

A₄ and strict modules

Lemma

An A₄ intersects a strict module in exactly 0 or 4 vertices.

Theorem

In a graph G every induced subgraph on at least 2 vertices has a nontrivial strict module if and only if G is A_4 -free, i.e., threshold.

Strict modules and graph structure

Strict modules and graph structure

Lemma

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Strict modules and graph structure

Lemma

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Strict modules and graph structure

Lemma

The vertices which dominate a strict module form a clique, and those which are nonadjacent to the strict module form an independent set.

Iterate to get a "strict modular decomposition"?

M. D. Barrus (BYU)

Alternating 4-cycles in graphs

Decomposition

Canonical decomposition

Theorem (Tyshkevich–Chernyak, 1978; Tyshkevich, 2000)

Every graph F can be represented as a composition

$$F = (G_k, A_k, B_k) \circ \cdots \circ (G_1, A_1, B_1) \circ F_0$$

of indecomposable components. Here the (G_i, A_i, B_i) are indecomposable splitted graphs and F_0 is an indecomposable graph. This decomposition is unique up to isomorphism of components.

Canonical decomposition

Theorem (Tyshkevich–Chernyak, 1978; Tyshkevich, 2000)

Every graph F can be represented as a composition

$$F = (G_k, A_k, B_k) \circ \cdots \circ (G_1, A_1, B_1) \circ F_0$$

of indecomposable components. Here the (G_i, A_i, B_i) are indecomposable splitted graphs and F_0 is an indecomposable graph. This decomposition is unique up to isomorphism of components.

Where did this come from?

Previous motivation for canonical decomposition

Just seemed to show up...

- Matrogenic graphs (Földes–Hammer, 1976; Tyshkevich, 1984)
- Unigraphs (Tyshkevich–Chernyak, 1978–1979)
- Box-threshold graphs (Tyshkevich–Chernyak, 1985)
- Pseudo-split graphs (Blázsik et al., 1993)

In each case, indecomposable components restricted to certain classes.

Structural properties lead to degree sequence characterizations.

M. D. Barrus (BYU)

A₄ and strict modules

Lemma

An A₄ intersects a strict module in exactly 0 or 4 vertices.

Theorem

In a graph G every induced subgraph on at least 2 vertices has a nontrivial strict module if and only if G is A_4 -free, i.e., threshold.

A₄ and canonical decomposition

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_4 -structure is connected.

Hence the components of the A_4 -structure and of the canonical decomposition partition the vertex set in the same way.

Motivation for canonical decomposition

- Graph classes (matrogenic, unigraphs, etc.)
- Strict modular decomposition
- Components of the *A*₄-structure

A₄ and canonical decomposition: a proof

Theorem

A graph is indecomposable in the canonical decomposition if and only if its A_4 -structure is connected.

Hence the components of the A_4 -structure and of the canonical decomposition partition the vertex set in the same way.

Beginnings

Lemma

The graphs $2K_2$, C_4 , and P_4 are all indecomposable. Therefore, connected A_4 -structure \implies indecomposable.

Lemma

In an indecomposable graph G with more than 1 vertex, every vertex belongs to an alternating 4-cycle.

Forbidden:

Lemma

More on disjoint A₄s

Corollary

Any two vertices which both belong to induced $2K_2$'s or C_4 's have distance at most 3 in the A_4 -structure.

Lemma

The \rightarrow relation is consistent among pairs of A₄s from different components of the A₄-structure.

Putting it all together

Lemma

The \rightarrow tournament on the A₄-components of a graph is acyclic.

Putting it all together

Lemma

The \rightarrow tournament on the A₄-components of a graph is acyclic.

Having a source implies the graph is decomposable.

 \therefore not A_4 -connected \implies decomposable.

Putting it all together

Lemma

The \rightarrow tournament on the A₄-components of a graph is acyclic.

Having a source implies the graph is decomposable.

 \therefore A₄-connected \iff indecomposable.

Questions

What structural properties of a graph can we tie to the **existence** and **location** of alternating 4-cycles?

How do these affect the degree sequence?

Degree sequence connections

Theorem (Erdős–Gallai, 1960)

Let $d = (d_1, ..., d_n)$ be a list of nonnegative integers with even sum, arranged in descending order. d is the degree sequence of a simple graph if and only if for all k,

$$\sum_{i\leq k} d_i \leq k(k-1) + \sum_{i>k} \min\{k, d_i\}.$$

Theorem (B, 2013)

Let d be the degree sequence of G. The graph G is canonically indecomposable if and only if $d_n > 0$ and no Erdős–Gallai inequality holds with equality.

Moreover, by examining the values k for which the kth inequality is an equality, we can determine the sizes of the "cells" in the canonical decomposition.

Corollary

Knowing which Erdős–Gallai inequalities hold with equality (and the multiplicity of 0 as a term in d) is equivalent to knowing the vertex sets of the A_4 -structure components.

Future applications of the A₄-structure

Characterizations of graph/degree sequence properties

- Graph classes (threshold, matrogenic, etc.)
- Matchings
- Perfection
- Strict modules/canonical decomposition
- Erdős–Gallai inequalities
- ?

Graphs with a common A₄-Structure

What other properties does the A_4 -structure determine?

M. D. Barrus (BYU)

Graphs with a common A₄-Structure

What other properties does the A_4 -structure determine? Which graphs have the same A_4 -structure?

M. D. Barrus (BYU)

Alternating 4-cycles in graphs

The rightmost A_4 -component may only be transposed if it has a split realization.

Which graphs have the same A_4 -structure as a split graph?

A₄-split graphs

Theorem

A graph is A_4 -split iff each canonical component is. For an indecomposable graph G with A_4 -structure H, the following are equivalent:

- (i) G is A₄-split.
- (ii) *H* is balanced and satisfies the bipartite restriction property.
- (iii) G is $\{C_5, P_5, house, K_2 + K_3, K_{2,3}, P, \overline{P}, K_2 + P_4, P_4 \lor 2K_1, K_2 + C_4, 2K_2 \lor 2K_1\}$ -free.
- (iv) G is split, or G or \overline{G} is a disjoint union of stars.

(v) G is A_4 -separable.

Future applications of the A₄-structure

Characterizations of graph/degree sequence properties

- Graph classes (threshold, matrogenic, etc.)
- Matchings
- Perfection
- Strict modules/canonical decomposition
- Erdős–Gallai inequalities
- ?

Antimagic labelings of graphs

Magic square: equal sums along each row, column, and main diagonal.

Antimagic labelings of graphs

Magic square: equal sums along each row, column, and main diagonal.

Antimagic graph labeling: edges labeled with $1, \ldots, |E(G)|$, all vertex sums distinct.

Conjecture (Hartsfield–Ringel, 1990): Every connected graph other than K_2 has an antimagic labeling.

Antimagic labelings of graphs

Magic square: equal sums along each row, column, and main diagonal.

Antimagic graph labeling: edges labeled with $1, \ldots, |E(G)|$, all vertex sums distinct.

Conjecture (Hartsfield–Ringel, 1990): Every connected graph other than K_2 has an antimagic labeling.

Theorem (Alon et al., 2004)

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Possible A₄-structure help?

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Possible *A*₄-structure help? True conjecture: how to label!

Theorem (B, 2010)

If connected G ($\ncong K_2$) is split or canonically decomposable, then G has an antimagic labeling.

Pf. sketch:

Possible *A*₄-structure help? True conjecture: how to label!

False conjecture: counterexample!

Future applications of the A₄-structure

Characterizations of graph/degree sequence properties

- Graph classes (threshold, matrogenic, etc.)
- Matchings
- Perfection
- Strict modules/canonical decomposition
- Erdős–Gallai inequalities
- ?