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Alternating 4-cycles...

Alternating 4-cycle (A4)

2K2 P4 C4
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...and degree sequences

2-switches

Theorem (Fulkerson–Hoffman–McAndrew, 1965)
deg(G) = deg(H) iff 2-switches transform G into H.
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...and graph classes

Threshold graphs (Chvátal–Hammer, 1973)

No A4’s present.

Matrogenic graphs (Földes–Hammer, 1976)

Vertex sets of A4’s are circuits of a matroid on V .

Matroidal graphs (Peled, 1977)

Edge sets of A4’s are circuits of a matroid on E .
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Forbidden

Also forbidden

M. D. Barrus (BYU) Alternating 4-cycles in graphs Sept. 17, 2013 4 / 34



Questions

What structural properties of a graph can we tie to the existence and
location of alternating 4-cycles?

How do these affect the degree sequence?
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The A4-structure of a graph

Hypergraph H

V (H) = V (G), E(H) = {A ⊆ V (G) : G[A] ∼= 2K2 or C4 or P4}
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Characterizations in terms of the A4-structure

Threshold graphs (Chvátal–Hammer, 1973)

No A4’s present.

Matrogenic graphs (Földes–Hammer, 1976)

Vertex sets of A4’s are circuits of a matroid on V .

Matroidal graphs (Peled, 1977)

Edge sets of A4’s are circuits of a matroid on E .
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Characterizations in terms of the A4-structure

Threshold graphs (Chvátal–Hammer, 1973)

No A4’s present.
The A4-structure has no edges.

Matrogenic graphs (Földes–Hammer, 1976)

Vertex sets of A4’s are circuits of a matroid on V .
No 5 vertices induce exactly 2 or 3 edges in the A4-structure.

Matroidal graphs (Peled, 1977)

Edge sets of A4’s are circuits of a matroid on E .
No 5 vertices induce more than 1 edge in the A4-structure.
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Graphs with a common A4-Structure
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What properties does the A4-structure determine?

M. D. Barrus (BYU) Alternating 4-cycles in graphs Sept. 17, 2013 8 / 34



Matchings

A nontrivial matching is a set of at least two pairwise non-intersecting
edges.

Theorem
Let G and H be triangle-free graphs with the same vertex set V . If G
and H have the same A4-structure and W ⊆ V, then W is the vertex
set of a nontrivial matching in one of these graphs if and only if it is in
the other.

b

a c e

d

b

a c e

d

b

a c e

d

Corollary
Two triangle-free graphs with the same A4-structure have maximum
matchings of the same size.
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Perfect graphs

The chromatic number of a graph is the minimum
number of colors needed to properly color the graph.

The clique number is the size of largest set of
pairwise adjacent vertices.

A graph is perfect if in every induced subgraph the
chromatic number equals the clique number.

Theorem
If G and H have the same A4-structure, then G is perfect iff H is
perfect.
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P4 and modules

2K2 P4 C4
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A module is a vertex subset S such that each
vertex outside S is joined to S by either all
possible edges or no edges.

S
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P4 and modules

2K2 P4 C4

A module is a vertex subset S such that each
vertex outside S is joined to S by either all
possible edges or no edges.

S

Theorem
An induced P4 intersects a module in exactly 0, 1, or 4 vertices.

(Seinsche, 1974) In a graph G every induced subgraph on at least
3 vertices contains a nontrivial module iff G is P4-free.
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Modules

A module S is a vertex subset such that no alternating path of length 2
begins and ends in S and has its midpoint outside S.

S
Forbidden:
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Strict modules

Define a strict module to be a vertex subset S such that no (possibly
closed) alternating path of length 2 or 3 begins and ends in S and has
its midpoints outside S.

S
Forbidden:

This is equivalent to not having alternating paths of any length begin
and end in S.
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A4 and strict modules

Lemma
An A4 intersects a strict module in exactly 0 or 4 vertices.

Forbidden:

Theorem
In a graph G every induced subgraph on at least 2 vertices has a
nontrivial strict module if and only if G is A4-free, i.e., threshold.
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Strict modules and graph structure

Forbidden:
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Strict modules and graph structure

Lemma
The vertices which dominate a strict module form a clique, and those
which are nonadjacent to the strict module form an independent set.
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independent set
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Strict modules and graph structure

Lemma
The vertices which dominate a strict module form a clique, and those
which are nonadjacent to the strict module form an independent set.

clique

independent set

strict module

Iterate to get a “strict modular decomposition”?
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Decomposition
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Canonical decomposition

Theorem (Tyshkevich–Chernyak, 1978; Tyshkevich, 2000)
Every graph F can be represented as a composition

F = (Gk ,Ak ,Bk ) ◦ · · · ◦ (G1,A1,B1) ◦ F0

of indecomposable components. Here the (Gi ,Ai ,Bi) are
indecomposable splitted graphs and F0 is an indecomposable graph.
This decomposition is unique up to isomorphism of components.
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of indecomposable components. Here the (Gi ,Ai ,Bi) are
indecomposable splitted graphs and F0 is an indecomposable graph.
This decomposition is unique up to isomorphism of components.

Where did this come from?
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Previous motivation for canonical decomposition

Just seemed to show up...

Matrogenic graphs (Földes–Hammer, 1976; Tyshkevich, 1984)

Unigraphs (Tyshkevich–Chernyak, 1978–1979)

Box-threshold graphs (Tyshkevich–Chernyak, 1985)

Pseudo-split graphs (Blázsik et al., 1993)

In each case, indecomposable components restricted to certain
classes.

Structural properties lead to degree sequence characterizations.
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A4 and strict modules

Lemma
An A4 intersects a strict module in exactly 0 or 4 vertices.

Forbidden:

Theorem
In a graph G every induced subgraph on at least 2 vertices has a
nontrivial strict module if and only if G is A4-free, i.e., threshold.

M. D. Barrus (BYU) Alternating 4-cycles in graphs Sept. 17, 2013 17 / 34



A4 and canonical decomposition

Theorem
A graph is indecomposable in the canonical decomposition if and only
if its A4-structure is connected.

Hence the components of the A4-structure and of the canonical
decomposition partition the vertex set in the same way.
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Motivation for canonical decomposition

Graph classes (matrogenic, unigraphs, etc.)

Strict modular decomposition

Components of the A4-structure
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A4 and canonical decomposition: a proof

Theorem
A graph is indecomposable in the canonical decomposition if and only
if its A4-structure is connected.

Hence the components of the A4-structure and of the canonical
decomposition partition the vertex set in the same way.
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Beginnings

Lemma
The graphs 2K2, C4, and P4 are all indecomposable. Therefore,
connected A4-structure =⇒ indecomposable.

Forbidden:

Lemma
In an indecomposable graph G with more than 1 vertex, every vertex
belongs to an alternating 4-cycle.
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Disjoint A4s

Lemma
If A and B are disjoint alternating 4-cycles in G such that no third
alternating cycle in G intersects each, then either A induces P4, with its
interior vertices dominating B and the endpoints isolated from B
(denote this by A → B), or vice versa.

A B

A

B
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More on disjoint A4s

Corollary
Any two vertices which both belong to induced 2K2’s or C4’s have
distance at most 3 in the A4-structure.

Lemma
The → relation is consistent among pairs of A4s from different
components of the A4-structure.
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Putting it all together

Lemma
The → tournament on the A4-components of a graph is acyclic.
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Putting it all together

Lemma
The → tournament on the A4-components of a graph is acyclic.

Having a source implies the graph is decomposable.

∴ not A4-connected =⇒ decomposable.
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Questions

What structural properties of a graph can we tie to the existence and
location of alternating 4-cycles?

How do these affect the degree sequence?
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Degree sequence connections

Theorem (Erdős–Gallai, 1960)
Let d = (d1, . . . ,dn) be a list of nonnegative integers with even sum,
arranged in descending order. d is the degree sequence of a simple
graph if and only if for all k,

∑

i≤k

di ≤ k(k − 1) +
∑

i>k

min{k ,di}.
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Degree sequence connections

Theorem (B, 2013)
Let d be the degree sequence of G. The graph G is canonically
indecomposable if and only if dn > 0 and no Erdős–Gallai inequality
holds with equality.

Moreover, by examining the values k for which the kth inequality is an
equality, we can determine the sizes of the “cells” in the canonical
decomposition.

Corollary
Knowing which Erdős–Gallai inequalities hold with equality (and the
multiplicity of 0 as a term in d) is equivalent to knowing the vertex sets
of the A4-structure components.
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Future applications of the A4-structure

Characterizations of graph/degree sequence properties

Graph classes (threshold, matrogenic, etc.)

Matchings

Perfection

Strict modules/canonical decomposition

Erdős–Gallai inequalities

?
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Graphs with a common A4-Structure
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What other properties does the A4-structure determine?
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What other properties does the A4-structure determine?
Which graphs have the same A4-structure?
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Obtaining other realizations: decomposable graphs
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Obtaining other realizations: decomposable graphs
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b
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b

b

The rightmost A4-component may only be transposed if it has a split
realization.

Which graphs have the same A4-structure as a split graph?
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A4-split graphs

Theorem
A graph is A4-split iff each canonical component is. For an
indecomposable graph G with A4-structure H, the following are
equivalent:

(i) G is A4-split.

(ii) H is balanced and satisfies the bipartite restriction property.

(iii) G is {C5,P5,house,K2 + K3,K2,3,P,P,K2 + P4,P4 ∨ 2K1,K2 +
C4,2K2 ∨ 2K1}-free.

(iv) G is split, or G or G is a disjoint union of stars.

(v) G is A4-separable.
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Future applications of the A4-structure

Characterizations of graph/degree sequence properties

Graph classes (threshold, matrogenic, etc.)

Matchings

Perfection

Strict modules/canonical decomposition

Erdős–Gallai inequalities

?
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Antimagic labelings of graphs

2 7 6

9 5 1

4 3 8

15

15

15

151515

15

15

Magic square: equal sums along each
row, column, and main diagonal.
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Antimagic labelings of graphs

2 7 6

9 5 1

4 3 8
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15

151515

15

15

Magic square: equal sums along each
row, column, and main diagonal.

Antimagic graph labeling: edges labeled
with 1, . . . , |E(G)|, all vertex sums distinct.

Conjecture (Hartsfield–Ringel, 1990):
Every connected graph other than K2 has
an antimagic labeling.
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Canonical decomposition?

Theorem (Alon et al., 2004)

If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
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If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
1

4
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Canonical decomposition?

Theorem (Alon et al., 2004)

If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
1

4

2

3

45

56
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Canonical decomposition?

Theorem (Alon et al., 2004)

If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
1

4

2

3
5

95

56
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Canonical decomposition?

Theorem (Alon et al., 2004)

If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
1

4

2

3
6 5

911

56
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Canonical decomposition?

Theorem (Alon et al., 2004)

If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
1

4

2

3
6 5

7

911

126
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Canonical decomposition?

Theorem (Alon et al., 2004)

If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
1

4

2

3
6 5

78

911

1214
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Canonical decomposition?

Theorem (Alon et al., 2004)

If G (≇ K2) has a vertex which is adjacent to all other vertices, then G
has an antimagic labeling.

Pf:
1

4

2

3
6 5

78

26

911

1214
�
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5

4

4

4
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5

4

22

31

5

6
7

8
9

10
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5

4

22

31

5

6
7

8
9

10

17

14

20
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5

4

22

31

5

6
7

8
9

10

11

12

13
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37

45
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5

4

22

31

5

6
7

8
9

10

11

12

13

41

37

45

Possible A4-structure help?
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5

4

22

31

5

6
7

8
9

10

11

12

13

41

37

45

Possible A4-structure help?
True conjecture: how to label!
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Success

Theorem (B, 2010)

If connected G (≇ K2) is split or canonically decomposable, then G has
an antimagic labeling.

Pf. sketch:

B

A

C

A B C
1

2

3

1

5

4

22

31

5

6
7

8
9

10

11

12

13

41

37

45

Possible A4-structure help?
True conjecture: how to label! False conjecture: counterexample!
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Future applications of the A4-structure

Characterizations of graph/degree sequence properties

Graph classes (threshold, matrogenic, etc.)

Matchings

Perfection

Strict modules/canonical decomposition

Erdős–Gallai inequalities

?
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