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Abstract

Inspired by a 1987 result of Hanson and Toft [Edge-colored saturated graphs, J.
Graph Theory 11 (1987), 191–196] and several recent results, we consider the following
saturation problem for edge-colored graphs. An edge-coloring of a graph F is rainbow
if every edge of F receives a different color. Let R(F ) denote the set of rainbow-colored
copies of F . A t-edge-colored graph G is (R(F ), t)-saturated if G does not contain a
rainbow copy of F but for any edge e ∈ E(G) and any color i ∈ [t], the addition of e
to G in color i creates a rainbow copy of F . Let satt(n,R(F )) denote the minimum
number of edges in an (R(F ), t)-saturated graph of order n. We call this the rainbow
saturation number of F .

In this paper, we prove several results about rainbow saturation numbers of graphs.
In stark contrast with the related problem for monochromatic subgraphs, wherein the
saturation is always linear in n, we prove that rainbow saturation numbers have a
variety of different orders of growth. For instance, the rainbow saturation number of the
complete graph Kn lies between n log n/ log log n and n log n, the rainbow saturation
number of an n-vertex star is quadratic in n, and the rainbow saturation number of
any tree that is not a star is at most linear.
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1 Introduction

All graphs considered in this paper are simple. For a positive integer t, we let [t] denote the

set {1, . . . , t}. The degree of a vertex v will be denoted d(v), and the minimum and maximum

degree of a graph G will be denoted δ(G) and ∆(G), respectively. A t-edge-coloring of a graph
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G is a function f : E(G)→ [t], and a graph equipped with such a coloring is a t-edge-colored

graph. In this paper, we do not require edge-colorings to be proper edge-colorings.

Given a family of graphs F , a graph G is F-saturated if no F ∈ F is a subgraph of G,

but for any e ∈ E(G), some F ∈ F is a subgraph of G+ e. The minimum number of edges

in an n-vertex F -saturated graph is the saturation number of F and is denoted sat(n,F).

If F = {F}, then we instead say that G is F -saturated, and write sat(n, F ). Saturation

numbers were introduced by Erdős, Hajnal, and Moon in [3], where they determined the

saturation number of Kk and characterized the n-vertex Kk-saturated graphs of this size.

Since then, saturation numbers have received considerable attention; for more results we

refer the reader to the dynamic survey of Faudree, Faudree, and Schmitt [5].

In [7], Hanson and Toft extended the notion of saturation numbers to edge-colored graphs.

Given a family C of edge-colored graphs, we say that a t-edge-colored graph G is (C, t)-

saturated if G contains no member of C as a (colored) subgraph, but for any edge e ∈ E(G)

and any color i ∈ [t], the addition of e to G in color i creates some member of C. Let

satt(n, C) denote the minimum number of edges in a (C, t)-saturated graph of order n. We

call this the t-edge-colored saturation number of C. Following [6], we will refer to a coloring

of G with this property as a C-threshold coloring.

Let M(H1, . . . , Ht) denote the set containing one copy each of H1, . . . , Ht such that for

each i in [t], all edges in Hi are colored with color i. In [7], Hanson and Toft proved the

following theorem for the saturation number of monochromatic complete graphs.

Theorem 1 (Hanson and Toft [7]). Let t be a positive integer. If ki ≥ 2 is a positive integer

for 1 ≤ i ≤ t and k =
∑
ki, then

satt(n,M(Kk1 , . . . , Kkt)) =

{(
n
2

)
if n ≤ k − 2t(

k−2t
2

)
+ (k − 2t)(n− k + 2t) if n > k − 2t.

It is important to recall that (C, t)-saturated graphs are already edge-colored. However,

for Theorem 1, the condition that the addition of any edge in any color yields a monochro-

matic complete graph bears a striking resemblance to the main ideas of Ramsey theory, in

which the graphs do not have a specified coloring.

Given graphs G and H1, . . . , Ht, we write G → (H1, . . . , Ht) if every t-edge coloring

of G contains a copy of Hi that is monochromatic in color i for some i ∈ [t]. Thus the

Ramsey number r(k1, . . . , kt) is the minimum n such that Kn → (Kk1 , . . . , Kkt). A graph

G is (H1, . . . , Ht)-Ramsey-minimal if G → (H1, . . . , Ht) but G − e 6→ (H1, . . . , Ht) for all

e ∈ E(G). The set of (H1, . . . , Ht)-Ramsey-minimal graphs is denoted Rmin(H1, . . . , Ht).

Hanson and Toft made the following conjecture.
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Conjecture 1. If r = r(k1, . . . , kt) is the standard Ramsey number for complete graphs, then

sat(n,Rmin(Kk1 , . . . , Kkt)) =

{(
n
2

)
if n < r(

r−2
2

)
+ (r − 2)(n− r + 2) if n ≥ r.

The upper bound follows easily from any t-edge-colored clique K of order r− 1 that has

no copy of Kki in color i for any i. Specifically, add n− r + 1 new vertices {v1, . . . , vn−r+1}
to K, adjacent to each vertex in K − v, and for each vertex x ∈ K − v and each vi, give vix

the same color as vx. As the addition of any edge to this graph creates a copy of Kr, any

edge coloring must contain a monochromatic copy of Ki in color i for some i.

A graph that is Rmin(H1, . . . , Ht)-saturated, which is not edge-colored, has an edge col-

oring that does not contain a copy of Hi for any i ∈ [t]. However, the addition of any edge

e to G yields a subgraph G′ such that G′ → (H1, . . . , Ht), so that every t-edge-coloring of

G+ e must contain a monochromatic copy of Hi in color i for some i ∈ [t].

In [2], Chen et al. verified the Hanson–Toft conjecture for sat(n,Rmin(K3, K3)), the first

nontrivial case. They also proved an upper bound on sat(n,Rmin(Kt, Tm)) where Tm is a tree

of order m and determined sat(n,Rmin(K3, P3)). More recently [6], Ferrara, Kim and Yeager

determined sat(n,Rmin(m1K2, . . . ,mkK2)) for m1, . . . ,mk ≥ 1 and n > 3(m1 + . . .+mk−k),

and characterized the saturated graphs of minimum size.

In this paper we consider saturation numbers of edge-colored graphs that are as far from

being monochromatic as possible. An edge-coloring of a graph F is rainbow if every edge of

F receives a different color. Let R(F ) denote the set of rainbow-colored copies of F ; as a

technical detail, note that it is not necessary to specify the set of colors that may be used to

edge-color F in R(F ). In this paper we study satt(n,R(F )), the t-edge-colored saturation

number for rainbow copies of F . Informally we refer to this as the rainbow saturation number

of F .

Observe that for F 6= K2, a monochromatic complete graph does not contain an element

of R(F ) and therefore is vacuously (R(F ), t)-saturated. Also, the empty graph is (R(K2), t)-

saturated. Therefore satt(n,R(F )) is defined whenever F is nonempty.

Note that every noncomplete Rmin(H1, . . . , Hk)-saturated graph necessarily has an

M(H1, . . . , Ht)-threshold coloring. Consequently,

sat(n,M(H1, . . . , Ht)) ≤ sat(n,Rmin(H1, . . . , Ht)).

In [8], Kászonyi and Tuza proved that for any nonempty family of graphs F , sat(n,F) =

O(n), which therefore implies that

sat(n,M(H1, . . . , Ht)) = O(n).
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Our results show that this is unequivocally not the case for rainbow saturation numbers.

In Section 2 we study the rainbow saturation number of complete graphs, proving that

their order of growth lies between n log n/ log log n and n log n. In Section 3, we consider

the rainbow saturation number of some additional graphs, including stars, whose rainbow

saturation numbers are quadratic in n, and paths, whose saturation numbers are at least

linear. In Section 4 we establish linear upper bounds on the rainbow saturation number of

various families of graphs. These include cycles with length at least 4 and trees that are not

stars. Section 5 contains several open questions and conjectures.

2 Complete Graphs

In this section we study the rainbow saturation number of complete graphs. The following

theorem is the main result of this section.

Theorem 2. Let k be a positive integer that is at least 3, and let t be an integer that is at

least
(
k
2

)
. For all n sufficiently large, there exist constants c1 and c2 such that

c1
n log n

log log n
≤ satt(n,R(Kk)) ≤ c2n log n.

Theorem 2 follows immediately from Theorems 3 and 4 below, each of which regards

a broader class of graphs than cliques alone. Theorem 3, which applies to all graphs in

which every edge lies on a triangle, supplies the lower bound. The upper bound follows from

Theorem 4, which applies to all connected graphs that have no independent vertex cut.

Theorem 3. Let F be a graph with the property that every edge in F lies on a triangle. For

every t ≥ |E(F )| there exists a constant c = c(F ) such that

satt(n,R(F )) ≥ cn
log n

log log n
.

Proof. Suppose that G is an (R(F ), t)-saturated graph of order n. We wish to show that G

has Ω
(
n logn

log logn

)
edges. This is a nearly immediate consequence of the following claim.

Claim 1. Let G be an edge-colored graph such that for every pair of nonadjacent vertices x

and y in V (G), there are two internally disjoint rainbow paths of length 2 joining x and y.

For d > t ≥ 3, G contains at most td−1dd vertices of degree at most d.
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Proof. Let X be the set of vertices in G with degree at most d and assume that |X| > td−1dd.

We demonstrate the existence of a pair of nonadjacent vertices x and y in X that are

connected by d−1 internally disjoint monochromatic paths of length 2. This contradicts the

assumption that x and y are also connected by a pair of internally disjoint rainbow paths.

Observe that G is connected, ∆(G[X]) ≤ d, and |X| ≥ d + 2; hence G[X] does not

contain Kd+1. Therefore Brooks’ Theorem [1] implies that G[X] is d-colorable and there is

an independent set S0 ⊆ X such that |S0| > td−1dd−1. For each vertex v ∈ S0 with degree

less than d, add d− d(v) edges joining v to nonneighbors in V (G)−S0. Let G′ be the graph

obtained by adding these edges; observe that nonadjacent vertices in G′ are joined by two

internally-disjoint rainbow paths of length 2.

We iteratively construct two families of nested sets S0 ⊇ S1 ⊇ . . . ⊇ Sd−1 and L0 ⊆ L1 ⊆
. . . ⊆ Ld−1 so that Si and Li satisfy the following four properties for all i ∈ {0, . . . , d− 1}:

(1) Si is an independent set with |Si| > td−1−idd−1−i,

(2) |Li| = i,

(3) every vertex in Li is adjacent to every vertex in Si, and

(4) if x ∈ Li, then every edge joining x to Si has the same color.

Setting L0 = ∅, it is clear that S0 and L0 satisfy properties (1) through (4) for i = 0.

Now assume that Si and Li satisfy properties (1) through (4) for some i ∈ {0, . . . , d−2}.
Pick vi ∈ Si and let Ni = N(vi)−Li. For every s 6= vi in Si, there are two internally disjoint

rainbow s, vi-paths of length 2 in G′. By property (4), every rainbow path of length 2 joining

vi and s must contain a vertex in Ni. Therefore s has at least two neighbors in Ni, and there

are at least 2(|Si|−1) edges joining Si and Ni. Let `i+1 be a vertex in Ni that is joined to Si

with the maximum number of edges all of the same color; call this color ci+1. Let Si+1 be the

set of vertices in Si that are adjacent to `i+1 with an edge of color ci+1. By the Pigeonhole

Principle,

|Si+1| ≥
2(|Si| − 1)

t(d− i)
≥ |Si|

td
>
td−i−1dd−i−1

td
= td−(i+1)−1dd−(i+1)−1,

where the second inequality follows from the fact that |Si| ≥ 1.

Set Li+1 = Li ∪ {`i+1}. Clearly Li+1 satisfies properties (2) and (3). By induction, for

every ` ∈ Li there is a single color on all of the edges joining ` and Si, and consequently Si+1

as well. By definition, all edges joining `i+1 and Si+1 have the same color, and hence Li+1

satisfies condition (4).
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By Property (1), we know that Sd−1 contains at least two vertices. Furthermore, given

two vertices x and y in Sd−1, the d − 1 paths of length 2 joining x and y through Ld−1 are

all monochromatic. Since x and y have degree d in G′, it follows that there is at most one

rainbow path of length 2 joining x and y in G′, and consequently also in G.

To complete the proof of Theorem 3, we observe that since every edge in F lies in a

triangle, nonadjacent vertices in any (R(F ), t)-saturated graph must be joined by at least

two internally disjoint rainbow paths of length 2. Therefore, Claim 1 applies to all (R(F ), t)-

saturated graphs. Let

d =
log n

log log n
.

By Claim 1, G contains at most td−1dd < (td)d vertices of degree at most d. Since t is a

constant, we have that

(td)d =

(
t

log n

log log n

) logn
log logn

= o(n).

It follows that G has n− o(n) vertices of degree at least d, and thus

|E(G)| ≥ 1

2
d(n− o(n)) = Ω

(
n

log n

log log n

)
.

We now construct an n-vertex R(F )-saturated graph with O(n log n) edges when F is

connected and has no independent vertex cut (and so is also 2-connected). In the following,

the base of the logarithm is assumed to be 2.

Theorem 4. Let F be a k-vertex graph that is 2-connected and has no independent vertex

cut. For n sufficiently large and t ≥ |E(F )|,

satt(n,R(F )) ≤ t(k − 2)n dlog ne −
(
t(k − 2) dlog ne+ 1

2

)
.

Proof. We construct an n-vertex (R(F ), t)-saturated graph G with a large (on the order of

n− log n) independent set. Let xy be an edge of F such that d(x) = δ(F ). To build G, we

begin by building a spanning subgraph G′ consisting of many overlapping rainbow copies of

F − xy.

For i ∈ [t] and j ∈ [dlog ne], let Si,j be the (k − 2)-vertex set {v1i,j, . . . , vk−2i,j }. For i ∈ [t],

let Si =
⋃dlogne

j=1 Si,j, and let S =
⋃t

i=1 Si. Let R = {v1, . . . , vn−t(k−2)dlogne}. For each i ∈ [t],

we will build a graph Gi on Si ∪R such that R is an independent set and the addition of an

edge in color i joining any two vertices in R will complete a rainbow copy of F .
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For each i ∈ [t], let (F − xy)i be a rainbow-colored copy of F − xy that does not use

color i. For each j ∈ [dlog ne], place a copy of (F − xy)i − {x, y} on the vertex set Si,j.

To complete Gi we add edges between Si and R as follows. Assign to each v` ∈ R a

binary string (b`,1, . . . , b`,dlogne) of length dlog ne so that the strings are distinct. For each

` ∈ [n− t(k − 2) dlog ne], add edges joining v` to Si,j so that

1. if b`,j = 0, then Si,j ∪ {v`} induces (F − xy)i − {y}, and

2. if b`,j = 1, then Si,j ∪ {v`} induces (F − xy)i − {x}.

That is, if b`,j = 0, then v` plays the role of x with respect to Si,j, and if b`,j = 1, then v`

plays the role of y with respect to Si,j.

To complete the construction of G′, we take the union of G1, . . . , Gt. For distinct v`, v`′ ∈
R, because the binary strings assigned to v` and v`′ are distinct, there is a choice of j such

that Si,j ∪ {v`, v`′} induces (F − xy)i for all i ∈ [t]. It follows that the addition of v`v`′ in

any color i ∈ [t] completes a rainbow copy of F in Gi, and consequently in G′.

We claim that G′ does not contain F as a subgraph, regardless of the edge colors. Recall

that the edge xy was chosen so that d(x) = δ(F ), and thus δ(F − xy) < δ(F ). Therefore if

a vertex in R were to be in a copy of F , the copy of F would necessarily contain vertices in

at least two of the sets Si,j. However, the vertices in R form an independent vertex cut that

separates Si,j and Si′,j′ for all distinct pairs (i, j) and (i′, j′) in [t] × [dlog ne]. Therefore no

vertex in R lies in a copy of F , and it is clear that no Si,j contains a copy of F . Therefore

F is not a subgraph of G′.

We know that the addition of any edge in any color joining two vertices in R completes

a rainbow copy of F . However, there may be nonadjacent vertices u, v ∈ V (G′), either both

in S or with one in S and one in R, and a color i ∈ [t] such that the addition of uv in

color i does not complete a rainbow copy of F . If this is the case, then we iteratively add

such (colored) edges until no such nonadjacent vertices exist. When no such nonadjacent

pairs exist, we have constructed an (R(F ), t)-saturated graph; this graph is G. Since R is

an independent set of size n − t(k − 2) dlog ne in G, it follows that G is a subgraph of the

complete split graph Kt(k−2)dlogne ∨Kn−t(k−2)dlogne, and therefore

|E(G)| ≤ t(k − 2)n dlog ne −
(
t(k − 2) dlog ne+ 1

2

)
.
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3 Rainbow Saturation Numbers of Some Specific Graphs

In this section, we determine satt(n,R(F )) exactly for several classes of graphs and give

upper and lower bounds on others. We begin with a surprising result: there are graphs

whose rainbow saturation numbers are quadratic in n. As discussed in the introduction, for

any graphs H1, . . . , Ht, sat(n,M(H1, . . . , Ht)) = O(n). Hence, the existence of graphs whose

rainbow saturation numbers are quadratic in n illuminates an interesting and fundamental

difference between the monochromatic and rainbow colored saturation problems.

3.1 Stars

Recall that the Kneser graph K(n, k) is the graph with
(
n
k

)
vertices, where each vertex repre-

sents a different k-subset of [n], and two vertices are adjacent if their corresponding subsets

are disjoint. A blow up of a graph is obtained by replacing vertices with independent sets and

replacing edges with complete bipartite graphs between the independent sets corresponding

to the endpoints of the edge.

Theorem 5. If t ≥ k and n ≥ (k + 1)(k − 1)/t, then satt(n,R(K1,k)) = (1 + o(1)) (k−1)
2t

n2.

Proof. The result is immediate for k = 1. We may therefore assume that k ≥ 2, and begin

by characterizing (R(K1,k), t)-saturated graphs. Let G be an n-vertex (R(K1,k), t)-saturated

graph, and observe first that no vertex is incident to edges of k or more colors, since otherwise

G contains a rainbow K1,k. Second, if v is incident to edges of at most k − 2 colors, then

v must have degree n − 1. To see this, suppose not, and let u be a nonneighbor of v. As

u is necessarily adjacent to edges of at least k − 1 different colors, choose any edge incident

to u, of color c; adding the edge uv in color c cannot create a rainbow K1,k at u, as none

previously existed, and also cannot create a rainbow K1,k at v, since v sees at most k − 1

colors. This contradicts our assumption that G was (R(K1,k), t)-saturated. Finally, observe

that if v and w both see color i, then v and w must be adjacent; otherwise, adding vw in

color i cannot create a rainbow K1,k.

By the first two observations, we can partition the vertex set into two parts: A set Q of

vertices of degree n− 1 that see at most k− 2 colors, and a set A of vertices that see exactly

k − 1 colors. By the third observation, A can be partitioned into
(

t
k−1

)
(possibly empty)

cliques according to the set of colors on the edges incident to each vertex. If two such cliques

in A correspond to vertices that are incident to edges of a common color, then the cliques

must be completely joined. Note that if two of the cliques in the partition of A correspond to

vertices to edges with disjoint sets of colors, then these cliques have no edges between them.
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Hence, if we contract each clique in the partition of A to a vertex, then the underlying graph

formed by A is an induced subgraph of the complement of the Kneser graph K(t, k − 1).

Equivalently, the complement of G[A] is a blow up of a subgraph of K(t, k − 1).

We verify that such a graph is (R(K1,k), t)-saturated. Since no vertex sees k colors,

there is no rainbow K1,k. The only missing edges are between cliques in A that correspond

to vertices that are incident to disjoint color sets. If v and w are in different cliques in A

and vw is added in color i, then we may assume without loss of generality that v did not

previously have a neighbor of color i. Now v is incident to edges with k different colors and

hence it is the center of a rainbow K1,k.

Having established the structure of (R(K1,k), t)-saturated graphs, in order to find

satt(n,R(K1,k)), it suffices to minimize the number of edges in any such graph. Observe

that this is equivalent to maximizing the number of edges in the complement of G. Since

K(t, k− 1) does not contain Kbt/(k−1)c+1, it follows that G is Kbt/(k−1)c+1-free. Therefore, by

Turán’s Theorem [10], G contains at most t/(k−1)−1
t/(k−1)

(
n
2

)
edges. Thus

|E(G)| =
(
n

2

)
− |E(G)|

≥
(

1− t/(k − 1)− 1

t/(k − 1)

)(
n

2

)
=
k − 1

t

(
n

2

)
.

Therefore satt(n,R(K1,k)) ≥ k−1
t

(
n
2

)
.

Now, letG consist of bt/(k − 1)c copies ofKn/bt/(k−1)c. Edge-color the copies ofKn/bt/(k−1)c

with pairwise disjoint sets of k− 1 colors so that each vertex is incident to edges with k− 1

distinct colors. This graph is (R(K1,k), t)-saturated and has (1 + o(1))k−1
t

(
n
2

)
edges.

We note that for specific k, n, and t, the exact value of satt(n,R(K1,k)) can be obtained

from the proof of Theorem 5 and Turán’s Theorem. Furthermore, Turán’s Theorem also

implies that all n-vertex (R(K1,k), t)-saturated graphs of minimum size correspond to edge-

colorings of a unique graph.

3.2 Paths

We next consider the rainbow saturation number for paths. We begin with a general lower

bound on satt(n,R(Pk)), where Pk denotes the path of order k, and then show that this

bound is correct for P4.
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Proposition 6. For all k ≥ 4,

satt(n,R(Pk)) ≥ n− 1.

Proof. Let G be an (R(Pk), t)-saturated graph of order n. If no component of G is a tree,

then G has at least n edges, so we may assume that some component of G is a tree. It

suffices to show that G has exactly one such component, so assume by way of contradiction

that T1 and T2 are two components of G that are trees.

Let v be a leaf in T1 with neighbor u, and suppose the edge vu is color i. We claim that

the color i cannot appear on any other edge of T1. Suppose otherwise, that x ∈ T1 is incident

to an edge xy of color i. Adding the edge vx in color i must create a rainbow Pk (call it P )

that contains vx. Since the color i can be used only once, P must begin v, x, w, ..., where

w 6= y. Since T1 is a tree, y cannot appear in P , as P + xy would contain a cycle. Hence

replacing vx with yx yields a rainbow Pk in G, a contradiction.

Now let v′ be a leaf in T2 with neighbor u′, and assume the edge v′u′ is color j. Adding the

edge v′u in color j must create a rainbow Pk. This rainbow Pk must consist of v′u together

with a rainbow Pk−1 beginning at u, since color j cannot be used twice. The rainbow Pk−1

beginning at u cannot contain uv, as T1 is a tree and k ≥ 4, but it must contain an edge of

color i; otherwise, replacing v′u with vu would yield a rainbow Pk. However, this contradicts

the fact that color i cannot appear on any edge other than uv in T1. Therefore G contains

at most one tree component.

Corollary 7. For t ≥ 8, satt(n,R(P4)) = n− 1.

Proof. The lower bound follows from Proposition 6, so it suffices to construct (R(P4), t)-

saturated graphs of order n with n − 1 edges. When n 6≡ 0 (mod 3), a collection of bn
3
c

rainbow triangles and an additional vertex or edge, depending on the value of n mod 3,

suffices. For n ≡ 0 (mod 3), let Hn be K1,5 +
(
n−6
3

)
K3, colored so that K1,5 is rainbow with

colors from [5] and each copy of K3 is rainbow with colors from [t]− [5].

4 Upper bounds

In this section we prove upper bounds on rainbow saturation numbers with constructions

of (R(F ), t)-saturated graphs for various choices of F . First we prove that the rainbow

saturation number for most trees is at most linear in n.
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Theorem 8. Let H be a connected k-vertex graph with k ≥ 5. If H has a vertex v with

d(v) = 1 whose neighbor v′ does not have degree k − 1, there are two vertices u and u′ in

V (H) \ {v, v′} that are not adjacent, and t ≥
(
k−1
2

)
, then

satt(n,R(H)) ≤
⌈

n

k − 1

⌉(
k − 1

2

)
.

In particular, if T is a tree with at least four vertices that is not a star, then

satt(n,R(T )) = O(n).

Proof. Let G be the n-vertex graph formed by partitioning the vertex set into b n
k−1c cliques

of size k−1 and one clique containing the remaining n mod (k−1) vertices. Rainbow color

the edges of each clique. We claim that G is (R(H), t)-saturated. Suppose that the edge xy

is added in color i, where x is in the clique Gx ⊆ G and y is in the clique Gy ⊆ G. Assume by

symmetry that Gx has k−1 vertices; hence Gx contains a rainbow copy of every k−1-vertex

graph. We claim that Gx contains a rainbow copy of H − v avoiding the color i. Set x = v′.

Since Gx is rainbow-colored, Gx contains at most one edge ab with color i. If x = a, then

let b be a nonneighbor of v′ in H. If x 6= a, b, then let a = u and b = u′. All other vertices

of H − v can be assigned arbitrarily to vertices of Gx, and we obtain the needed rainbow

H − v avoiding the color i. Now this together with the edge xy in color i creates a rainbow

copy of H.

Finally, if T is a tree that is not a star, then either T has order at least 5 or T = P4.

Therefore, this construction and Proposition 6 together imply that satt(n,R(T )) = O(n).

Our next construction also provides a linear bound on rainbow saturation numbers for

many graphs. This construction is a natural analogue to the construction used for Theorem 4,

and it too applies to graphs that have no independent vertex cut. However, it also applies

to graphs with girth at least 4 in which some edge has a special relationship with the cycles

of minimum or near-minimum length. In particular, graphs of this type include all cycles of

length at least 4.

Theorem 9. Let F be a k-vertex connected graph satisfying one of the following properties:

1. there is an edge in F that does not lie on a triangle, F is 2-connected, and F does not

have an independent vertex cut;

2. F has finite girth at least 4, (call the girth g), and there is an edge xy in F such that

more than half of the cycles of length g in F contain xy, any cycle of length g passing

through x or y must contain xy, and no cycle of length g + 1 contains xy.
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It follows that satt(n,R(F )) ≤ 2(k − 2)n−
(
2k−3
2

)
. Therefore satt(n,R(F )) = O(n).

Proof. We describe an n-vertex graph G with O(n) edges that is (R(F ), t)-saturated. We

begin by describing a subgraph G′ of G. If F satisfies Condition 1 of the statement of the

theorem, let xy be an edge in F that does not lie on a triangle. If F satisfies Condition 2,

let xy be an edge as described in the condition.

To create G′, let F1 and F2 be two disjoint copies of F − xy. If u ∈ V (F ), then denote

by ui the copy of u in Fi. Let c be a rainbow coloring of the edges of F1 ∪ F2 so that no

color is reused. Create an independent set of size n − 2k, and let R be that independent

set together with x1, x2, y1, and y2. For every neighbor ai of xi in Fi, add an edge of color

c(xiai) connecting ai to each vertex in R. Similarly, for every neighbor bi of yi in Fi, add

an edge of color c(viyi) connecting yi to each vertex in R. Since x and y have no common

neighbors, this coloring is well defined.

Notice first that adding an edge in any color between vertices of R will create a rainbow

copy of F . If the edge uv is added to R in color j, since the color sets of F1 and F2 are

disjoint, then (V (Fi) ∪ {u, v}) − {xi, yi} is the vertex set of a rainbow copy of F for some

i ∈ {1, 2}.
We claim that G′ contains no rainbow copy of F . Observe that the edges of G′[V (Fi)∪R]

have only |E(F )| − 1 colors for i ∈ {1, 2}. Therefore, any rainbow copy of F in G′ would

have to contain vertices from both F1 − {x1, y1} and F2 − {x2, y2}. However, if F satisfies

Condition 1 of the theorem, then such a copy of F would contain an independent vertex cut

in R.

Now suppose that F has girth g and satisfies Condition 2 of the theorem. We will show

that G′ contains fewer rainbow cycles of length g than F has (uncolored) cycles of that

length. Every rainbow path in G′ with endpoints in R and internal vertices in Fi − {xi, yi}
corresponds either to a path in F −xy joining x and y, or to a cycle in F −xy that contains

x or y. Therefore every rainbow path in G′ with endpoints in R contains at least g − 1

edges, and any rainbow cycle containing vertices in both V (F1) and V (F2) contains at least

2(g− 1) edges. Therefore each rainbow cycle of length g in G′ lies in G′[V (Fi)∪R] for some

i ∈ {1, 2}.
We claim that no such rainbow cycle contains any vertex of R. Indeed, if some rainbow

cycle C of length g did contain a vertex from R, by symmetry we may assume that the

vertex is x1, and its neighbors on the cycle belong to F1, with at least one of the neighbors

corresponding to a neighbor of x1 in F1. As previously noted, after leaving x1 the cycle

passes through at least g − 1 edges before encountering another vertex of R; since R is an
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independent set and C has length g, the vertex x1 is the only vertex from R contained in C.

The rainbow cycle then corresponds to a cycle containing x in F ; if both neighbors of x1 in

C correspond to neighbors of x in F , then F has a cycle of length g that does not contain y,

and if instead one of the neighbors of x1 in C corresponds to a neighbor of y in F , then F

has a cycle of length g + 1 containing the edge xy. Both possibilities contradict Condition

2, so no rainbow cycle of length g in G′ contains any vertex of R.

Thus every rainbow cycle of length g in G′ corresponds to a cycle of length g in Fi (for

some i ∈ {1, 2}) that does not contain the edge xiyi. Since xy lies on more than half of the

cycles of length g in F , it follows the number of rainbow cycles of length g in G′ is smaller

than the number of cycles of length g in F . Therefore no rainbow copy of F appears in G′.

Note that G′ may not be (R(F ), t)-saturated, since there may be nonadjacent vertices

u, v ∈ V (G′), either both in V (G′) \ R or with one in V (G) \ R and one in R, and a color

i ∈ [t] such that the addition of uv in color i does not complete a rainbow copy of F . If this

is the case, then we iteratively add such (colored) edges until no such nonadjacent vertices

exist. When no such nonadjacent pairs exist, we have constructed an (R(F ), t)-saturated

graph; this graph is G. Since R is an independent set of size n − 2(k − 2) in G, it follows

that G is a subgraph of the complete split graph K2(k−2) ∨Kn−2(k−2), and therefore

|E(G)| ≤ 2(k − 2)n−
(

2k − 3

2

)
.

5 Conclusions and Open Problems

There are many open questions remaining regarding rainbow saturation numbers of graphs.

We conjecture that the upper bound given by Theorem 4 for complete graphs is the correct

order of growth for the rainbow saturation number of complete graphs.

Conjecture 2. satt(n,R(Kk)) = Θ(n log n).

The quadratic value of satt(n,R(K1,k)) from Theorem 5 depends strongly on the fact

that adding an edge to an (R(K1,k), t)-saturated graph must increase the number of colors

on the edges incident to some vertex in the graph. The next question asks if this is the only

property that will lead to quadratic rainbow saturation numbers.

Question 1. Is there a graph G that is not a star such that satt(n,R(G)) = Θ(n2)?

Throughout this paper, we have taken the number of colors available to be a sufficiently

large number. There is certainly a host of compelling questions to consider when the num-

ber of colors available is small. Observe that satt(n,R(F )) is nonincreasing in t since every
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(R(F ), t)-saturated graph is also (R(F ), t+ 1)-saturated. This motivates the following gen-

eral question.

Question 2. How does satt(n,R(F )) grow as t approaches |E(F )| from above?
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