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Abstract

In a list of positive integers, let r and s denote the largest and smallest entries. A
list is gap-free if each integer between r and s is present. We prove that a gap-free
even-summed list is graphic if it has at least r + r+s+1

2s terms. With no restriction on

gaps, length at least (r+s+1)2

4s suffices, as proved by Zverovich and Zverovich. Both
bounds are sharp within 1. When the gaps between consecutive values are bounded
by g, we prove a more general length threshold that includes both of these results. As
a tool, we prove that if an even-summed positive list d has no repeated entries other
than r and s (and the length exceeds r), then to prove that d is graphic it suffices to
check only the ℓth Erdős–Gallai inequality, where ℓ = max{k : dk ≥ k}.

1 Introduction

A list of integers is graphic if it is the list of vertex degrees for some graph (with no loops or

multiple edges). We consider only nonincreasing positive lists, writing a list d as (d1, . . . , dn)

with d1 ≥ · · · ≥ dn. Such a list is gap-free if it has entries with all values between the largest

entry r and the smallest entry s; it is even-summed if
∑n

i=1 di is even. We define the gap

at i in a list d to be di − di+1. A list with r = s is graphic if it has even sum and n > r

(realized using edge-disjoint spanning cycles or 1-factors, depending on whether n is odd or

even). The same conclusion also holds when r − s = 1 (see [9]). Among even-summed lists

with largest entry r, smallest entry s, and all gaps at most g, seek seek the least n such that

every such list with length at least n is graphic; we determine it within 1.

Graphic lists have many characterizations. Erdős and Gallai [3] proved in 1960 that a

list d is graphic if and only if it has even sum and satisfies Lk(d) ≤ Rk(d) for each integer k

with 1 ≤ k ≤ n, where Lk(d) =
∑k

i=1 di and Rk(d) = k(k − 1) +
∑n

i=k+1 min{k, di}. In fact,

Zverovich and Zverovich [10] proved that it suffices to check the first ℓ of these inequalities,

where ℓ = max{k : dk ≥ k} (see [5, 4] for a slightly weaker statement). Eggleton [2] (and

later Tripathi and Vijay [8]) proved the stronger statement that it suffices to check only

1



the inequalities for the last index having each value in the list. Values between r and s

are internal values. As a tool in our argument, we prove in Section 3 that if a list has no

repeated internal values (and n > r), then it suffices to check only the ℓth inequality. The

conclusion also holds when there is exactly one instance of two consecutive equal internal

values, and this is sharp.

We approach our problem by finiding a length threshold for lists to satisfy the Erdős–

Gallai inequalities, which we henceforth call the E-G inequalities. We use the Aigner–Triesch

method. In Section 2, we describe the use of this method to prove sufficiency of conditions

for lists to be graphic. The method introduces an order relation P on the set of lists with

fixed sum and reduces the problem to proving that lists that are maximal in P among those

satisfying the condition are graphic. We further reduce the problem by comparing these

maximal lists from the sets with various sums, reducing sufficiency to the study of certain

key lists.

Let Dn(r, s, g) denote the set of nonincreasing nonnegative integer lists with length n,

largest entry r, smallest entry s, and all gaps at most g. The case g = 0 requires only

n > r, as mentioned in the first paragraph, so we henceforth restrict to g > 0 and consider

only r > s. The first and last nonzero gaps in a list are external gaps (they may be at the

same position); gaps between them are internal gaps. A list in Dn(r, s, g) is g-uniform if all

internal and external gaps except possibly the last one equal g. We show in Section 2 that

to prove sufficiency of the length threshold for lists with gaps at most g, it suffices to prove

it sufficient for g-uniform lists. The resulting sharpness examples are g-uniform.

Call a list feasible if it satisfies the E-G inequalities. In terms of r, s, and g, we obtain

a sharp threshold h(r, s, g) such that when n ≥ h(r, s, g), every list in Dn(r, s, g) is feasible;

the argument that proves the threshold sufficient also constructs an infeasible list when n is

smaller. The general expression for h(r, s, g) is obtained in Theorem 4.2. When g divides

r − s, the formula for h(r, s, g) simplifies to

1

s

(⌊

(r + s)2

4

⌋

+

⌈

r + s

2

⌉

−
g

2

⌊

(r − s)2

2g2

⌋)

.

Depending on the parameters r, s, g, the infeasible list given for n = ⌈h(r, s, g)⌉−1 may have

odd sum. In this case, the length threshold sufficient for even-summed lists with specified

maximum, minimum, and bound on gaps to be graphic may be smaller by 1 than the

threshold we give for feasibility. We show that the difference between the threshold lengths

for feasible lists and graphic lists is never more than 1, and we present a family with g = 1

where the thresholds do differ by 1.

2



The extreme cases for g hold particular interest. When g = 1, the threshold for feasibility

reduces to r+ r+s+ǫ
2s

(linear in r), where ǫ = 0 if r+s is even and ǫ = 1 if r+s is odd. This is

the most severe restriction on gaps. The other end of the spectrum is g = r−s, which means

that no gap restriction is imposed. Here the threshold reduces to (r+s+1)2−ǫ′

4s
(quadratic in

r), where ǫ′ = 0 if r + s is odd and ǫ′ = 1 if r + s is even. Zverovich and Zverovich [10]

showed that (r+s+1)2

4s
suffices.

2 Maximal Elements of Pm,n,r,s,g

By the Erdős–Gallai Theorem, a list is graphic if and only if it is feasible and has even

sum. In light of this theorem, using the Aigner–Triesch method [1] to show sufficiency of

conditions for feasibility will also give sufficient conditions for lists to be graphic. This allows

us to ignore the parity of the degree sum in applying this method. Let R be a family of lists

(for example, the graphic lists or the feasible lists). The Aigner–Triesch method for proving

that a condition Q is sufficient for membership in R consists of three steps:

1. Define a poset P on the set of lists (usually with fixed sum) and show that the elements

of P belonging to R form an ideal (a downward-closed set) in P .

2. Determine the maximal elements of P among those satisfying Q.

3. Prove that these maximal elements are in R.

For lists with fixed sum, an order relation often used in applying the Aigner–Triesch

method is the dominance order, which puts d ≤ d′ if
∑k

i=1 di ≤
∑k

i=1 d′
i for all k (trailing

terms are assumed to be 0). For the dominance order on a set of lists with fixed sum, the

proof of Step 1 when R is the family of graphic lists is standard and well known; we present

the corresponding argument in Lemma 2.1 for the family of feasible lists.

When Step 1 holds for a given poset, it also holds for any subposet. Let Pm be the

dominance order on nonincreasing nonnegative integer lists with sum m. After proving

Step 1 for Pm, we will consider subposets of the form Pm,n,r,s,g, fixing the sum m, length n,

largest entry r, positive smallest entry s, and bound g on all gaps. Since g is only a bound

on the largest gap, these subposets are not disjoint. Nevertheless, Step 1 will hold for each

such subposet. The condition Q we want to prove sufficient is a lower bound on the length

n; therefore, in Pm,n,r,s,g all lists or no lists satisfy Q. For Step 2, we prove that Pm,n,r,s,g has

a unique maximal element. We then show that the maximal element of Pm,n,r,s,g is feasible

when the length threshold in terms of the parameters r, s, and g is satisfied. To do this,
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we compare the maximal elements for distinct values of m, thus reducing the problem to

showing feasibility for the maximal element of certain key subposets.

We begin with Step 1 for Pm. All lists are nonincreasing. Shifting a unit from i to j in

a list d produces another nonincreasing list d′ that agrees with d in all positions except i

and j, and in those positions d′
i = di − 1 and d′

j = dj + 1. The unit is shifted later if i < j,

otherwise earlier. To prove Step 1, we show (1) if d covers d′ in Pm, then one unit can be

shifted later in d to obtain d′, and (2) shifting one unit later preserves feasibility.

Lemma 2.1. If d covers d′ in Pm and d is feasible, then d′ is feasible.

Proof. Let i and j be the first and last indices where d and d′ differ. Note that di > d′
i and

dj < d′
j, since d > d′. Choose indices p and q to minimize q − p such that i ≤ p < q ≤ j and

dp > d′
p and dq < d′

q. Form d̂ by shifting a unit from position p to position q in d. Note that

d̂ ∈ Pm, Also, d > d̂ ≥ d′. Since d covers d′, we have d̂ = d′.

Now it suffices to prove that shifting a unit later preserves feasibility. Suppose that d′

is obtained from d by shifting a unit from i to j with i < j. We compare the kth E-G

inequalities for d and d′. Since we shifted a unit later, Lk(d
′) ≤ Lk(d).

The only position that can contribute less to Rk(d
′) than to Rk(d) (smaller by 1) is

position i, and it does so only when di ≤ k < i. Since we shifted later from i to j, also

dj < di ≤ k < j, and hence in this case position j contributes more to Rk(d
′) than to Rk(d).

Thus Rk(d
′) ≥ Rk(d) for all k, and feasibility of d implies feasibility of d′.

Lemma 2.2. The poset Pm,n,r,s,g has a unique maximal element. In it, there is at most one

internal gap that is less than g, and if there is such a gap it is g − 1.

Proof. Let d be a maximal element. If d has at least two internal gaps that are less than g,

then let i and j be the positions of the first and last such gaps. Form d′ by shifting a unit

from j + 1 to i (earlier). The gaps at i and j increase by 1, but they are still at most g.

The gaps at i− 1 and j + 1 decrease by 1, but the choice of i and j implies that they were

external or were equal to g before the shift. In either case, the list d′ is nonincreasing and

belongs to Pm,n,r,s,g. Since d′ > d, this is a contradiction.

Hence at most one internal gap is less than g, say at j. If it is less than g−1, then define

d′ by shifting a unit from j + 1 to j. The gap at j grows by 2, and the gaps at j − 1 and

j + 1 (which were external or equal to g) are smaller by 1. Again d′ ∈ Pm,n,r,s,g and d′ > d.

It remains to prove that only one element of Pm,n,r,s,g can have the properties obtained

above for all maximal elements. Suppose that d and d′ are distinct maximal elements of

Pm,n,r,s,g. Let i be the first index where d and d′ differ, named so that d′
i < di. Let k be the
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last index such that d′
k > s. Since d′

i < di ≤ r, the first nonzero gap in d′ (the external gap)

occurs before i. For j with i ≤ j ≤ k, using the properties of internal gaps shown above, we

conclude that d′
j ≤ d′

i − (j − i)g + 1. Meanwhile, dj ≥ di − (j − i)g; therefore, d′
j ≤ dj. For

j > k, again d′
j = s ≤ dj. These inequalities imply that the sum of terms in d exceeds the

sum in d′, which contradicts d, d′ ∈ Pm,n,r,s,g.

Including the external gaps, the unique maximal element of Pm,n,r,s,g has at most three

gaps that are less than g. We next reduce the problem of proving that the length condition

suffices for feasibility to proving it for g-uniform lists. Recall that a list in Pm,n,r,s,g is g-

uniform if every nonzero gap except possibly the last equals g.

Definition 2.3. From a list d ∈ Dn(r, s, g) whose internal gaps equal g except perhaps for

one g−1, we define g-uniform lists d+, d− ∈ Dn(r, s, g). Let d+ = d− = d when d has at most

one nonzero gap. Otherwise, let the external gaps in d be a and later b, and let c = a + b.

If every internal gap in d is g, then define d+ from d by adding a to each di such that

r > di > s, except that when c > g also add c− g to the first copy of s. Define d− from d by

subtracting g− a from each di such that r > di > s, except that when c < g subtract only b

from the last entry before the first copy of s, making it equal to s.

If d has an internal gap of g − 1 at some position j, then first form d̂+ by adding 1 to

each di such that i ≤ j and r > di, and form d̂− by subtracting 1 from each di such i > j

and di > s. Now all internal gaps in d̂+ and d̂− equal g. Form d+ from d̂+ in the way that

d+ is formed from d above, and form d− from d̂− in the way that d− is formed from d above.

These lists are illustrated below, with c = a + b.

list case change values

d no g−1 . . . , r, r−a, r−a−g, . . . , s+b+g, s+b, s, . . .

d+ a + b ≤ g +a . . . , r, r, r−g, . . . , s+c+g, s+c, s, . . .

d+ a + b > g exception . . . , r, r, r−g, . . . , s+c+g, s+c, s+c−g, . . .

d− a + b ≥ g −(g − a) . . . , r, r−g, r−2g, . . . , s+c, s+c−g, s, . . .

d− a + b < g exception . . . , r, r−g, r−2g, . . . , s+c, s, s, . . .
d g − 1 at j . . . , r, r−a, r−a−g, . . . , s+b+g, s+b, s, . . .

d̂+ +1 or 0 . . . , r, r−a+1, r−a+1−g, . . . , s+b+g, s+b, s, . . .

d̂− 0 or −1 . . . , r, r−a, r−a−g, . . . , s+b+g−1, s+b−1, s, . . .
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The display above shows the construction of d+ and d− term-by-term. When every

internal gap in d equals g, explicitly d+ and d− are g-uniform (the last nonzero gap is a + b

or a + b− g). When d has one internal gap equal to g − 1, the intermediate lists d̂+ and d̂−

eliminate that difficulty. The subsequent changes are as applied previously to a list with no

such gap, so again the final lists d+ and d− are g-uniform.

Our requirement that a = g for a g-uniform list is asymmetric. The proofs could be

carried through with b = g instead. Choosing one alternative for the definition of g-uniform

reduces the set of lists we need to test to prove the length threshold.

Lemma 2.4. Let d be the maximal element of Pm,n,r,s,g. If the g-uniform lists d+ and d−

formed from d in Definition 2.3 are both feasible, then d is feasible.

Proof. Suppose first that every internal gap of d is g. For each k, we compare Lk(d) and

Rk(d) using Lk(d
+) ≤ Rk(d

+) and Lk(d
−) ≤ Rk(d

−). If dk = r, then Lk(d) = Lk(d
−) ≤

Rk(d
−) ≤ Rk(d). If dk = s, then Rk(d) = Rk(d

+) ≥ Lk(d
+) ≥ Lk(d).

Hence we may assume s < dk < r. Let t = |{i : dk ≤ di < r}|; each index i counted here

is at most k, since each internal gap is nonzero. Let t′ = |{i : i > k and s < di < k}|. Note

that t and t′ count disjoint sets of indices. If i > k and di ≥ k, then the index i is not

counted by t or t′.

We compare contributions to the kth E-G inequality. Since dk > s, the computation

of Lk(d
+) is not affected by the exception when a + b > g. The computation of Lk(d

−) is

affected only when dk is the last term before the first s and b < g − a; in that case the

difference is smaller by g − a− b, and we can incorporate this by writing an inequality.

Lk(d
+) = Lk(d) + ta; Lk(d

−) ≥ Lk(d)− t(g − a);

Rk(d
+) ≤ Rk(d) + (t′ + ǫ+)a; Rk(d

−) ≤ Rk(d)− (t′ − ǫ−)(g − a).

To handle the exceptions in Definition 2.3, we set (ǫ+, ǫ−) to (1, 0) if a + b > g, to (0, 1) if

a + b < g, and to (0, 0) if a + b = g. Before considering that, the reason for the inequality

bounding Rk(d
+) is that min{k, d+

i } is taken before contributing to Rk. For Rk(d
−), the

contribution from each index counted by t′ decreases by g − b, and an entry with i > k and

di ≥ k may contribute less to Rk(d
−) than to Rk(d). For the exceptions, if a + b > g, then

Rk(d
+) is larger by a + b − g, which is at most a. If a + b < g, then Rk(d

−) is larger by

g − a− b, which is less than g − a.

These computations and the feasibility of d+ and d− yield two upper bounds on Lk(d):

Lk(d) = Lk(d
+)− ta ≤ Rk(d

+)− ta ≤ Rk(d) + (t′ − t + ǫ+)a;
Lk(d) ≤ Lk(d

−) + t(g − a) ≤ Rk(d
−) + t(g − a) ≤ Rk(d) + (t− t′ + ǫ−)(g − a).
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Both inequalities bound Lk(d), and always one of the additive constants is nonpositive, since

only one of {ǫ+, ǫ−} can be positive. Hence Lk(d) ≤ Rk(d), and we conclude that d is feasible.

Now suppose that every internal gap of d is g except for one g − 1 at position j. Recall

that d̂+ is formed from d by adding 1 to each di such that i ≤ j and r > di. Let us call

the process in Definition 2.3 that produces a g-uniform list by augmenting some entries by a

(and maybe augmenting the first s by a + b− g) the augmentation procedure. By definition,

we obtain d+ from d̂+ using the augmentation procedure. We note that the same list results

from d̂− via the augmentation procedure. Similarly, the same list d− is obtained from both

d̂− and d̂+. Since we are given that d+ and d− are feasible, the preceding argument implies

that d̂+ and d̂− are feasible.

We now compare d with d̂+ and d̂− to show that d is feasible. If k ≤ j, then Lk(d) =

Lk(d̂
−) ≤ Rk(d̂

−) ≤ Rk(d). If k ≥ j, then Rk(d) = Rk(d̂
+) ≥ Lk(d̂

+) ≥ Lk(d). Thus

Lk(d) ≤ Rk(d) for all k, as desired.

Although d+ and d− generally have different sum from d, they have the same length,

maximum, minimum, and bound on gaps. Hence each satisfies the desired length threshold

if and only if d does. We conclude that if satisfying the length threshold suffices to make a

g-uniform list feasible, then it is also sufficient in the larger family Dn(r, s, g).

3 Lists without Internal Repetitions

To simplify our study of g-uniform lists, we reduce the problem of checking feasibility to

checking the ℓ(d)th E-G inequality, where ℓ(d) = max{k : dk ≥ k}. In fact, we prove that

for every list having at most one internal gap equal to 0, it suffices to check only the ℓ(d)th

E-G inequality. Furthermore, this result is sharp.

Example 3.1. For j ≥ 3, let d = (2j, 2j−1, . . . , j+1, j, j, j, 1(j[j−3]/2)). The initial portion is

a strictly decreasing list of j terms before the double repetition. Thus dj = j+1 and dj+1 = j,

so ℓ(d) = j. We have Lj(d) = j(3j+1)/2 and Rj(d) = j(j−1)+3j+j(j−3)/2; equality holds.

Nevetherless, Lj−1(d) = (3j2− j−2)/2 and Rj−1(d) = (j−1)(j−2)+4(j−1)+ j(j−3)/2 =

(3j2 − j − 2)/2− 1, so the list is not feasible.

Similarly, for j ≥ 5, let d = (2j − 1, . . . , j + 1, j, j, j − 1, j − 1, 1(j[j−5]/2+2)). Now there

are j − 1 terms before the first repetition, so again ℓ(d) = j. Now Lj(d) = j(3j − 1)/2 and

Rj(d) = j(j − 1) + 3j − 2 + j(j − 5)/2 + 2; equality holds. However, Lj−2(d) = Rj−2(d) + 1,

so the list is not feasible.
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Recall that in general d is feasible if and only if Lk(d) ≤ Rk(d) for 1 ≤ k ≤ ℓ(d) [10].

Theorem 3.2. Let d be a nonincreasing integer list of length n with largest entry r and

smallest entry s, such that n > r and di+1 = di for at most one index with di /∈ {r, s}. If

Lℓ(d) ≤ Rℓ(d), then d is feasible.

Proof. We reduce Lk(d) ≤ Rk(d) for k ≤ ℓ(d) to Lℓ(d) ≤ Rℓ(d). If k ≤ s, then Lk(d) ≤ kr ≤

k(n − 1) = k(k − 1) + (n − k)k = Rk(d), since min{k, di} = k for all i. Hence it suffices to

show that Lk+1(d) ≤ Rk+1(d) implies Lk(d) ≤ Rk(d) for k with s < k < ℓ(d).

Let j be the last index such that dj > k; since k < ℓ(d), we have dk+1 > k, and hence

j > k. If j > r, then we use min{di, k} = k for i ≤ j to compute

Lk(d) ≤ kr ≤ k(j − 1) = k(k − 1) + k(j − k) ≤ Rk(d).

Now consider j ≤ r. By the choice of j,
∑n

i=k+2 min{k+1, di} = j−k−1+
∑n

i=k+2 min{k, di}.

Thus

Rk(d) = Rk+1(d)− 2k + min{k, dk+1} − (j − k − 1),

which simplifies to Rk(d) = Rk+1(d)− j + 1. Therefore,

Lk(d) = Lk+1(d)− dk+1 ≤ Rk+1(d)− dk+1 = Rk(d) + j − dk+1 − 1.

If dk+1 = r, then we have Lk(d) ≤ Rk(d) since j ≤ r. If dk+1 < r, then since dj > k > s,

the gaps from k + 1 through j − 1 are nonzero, except possibly for one. Hence dk+1 − dj ≥

j − (k + 1)− 1, and thus j − 1− dk+1 ≤ k + 1− dj ≤ 0, which yields Lk(d) ≤ Rk(d).

4 The Length Threshold

In Section 2, we reduced feasibility of the maximal element in Pm,n,r,s,g to showing that two

“nearby” g-uniform lists having the same length but different sum are feasible. Proving

feasibility for g-uniform lists in Dn(r, s, g) implies that all lists in Dn(r, s, g) are feasible.

Since g-uniform lists have no internal repetitions, Theorem 3.2 implies that for feasibility

of a g-uniform list d, it suffices to check only the ℓ(d)th E-G inequality. In this section, we

obtain a sharp threshold h(r, s, g) such that if n ≥ h(r, s, g), then the ℓ(d)th inequality for a

g-uniform list d in Dn(r, s, g) does hold.

Working backward from the first copy of s, the number of steps to reach the last copy of

r in a g-uniform list is ⌈(r − s)/g⌉. With x + 1 being the number of copies of r and y being

the number of copies of s, we thus have n = x + y + z, where z = ⌈(r − s)/g⌉.
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To start the proof, we eliminate easy cases for the value of ℓ(d). Recall that the reduction

to the ℓ(d)th inequality (Theorem 3.2) requires n > r, which is equivalent to the condition

L1(d) ≤ R1(d).

Lemma 4.1. For n > r, if d ∈ Dn(r, s, g), then d is feasible unless x < ℓ(d) ≤ n− y.

Proof. If x ≥ r, then dr+1 = r and ℓ(d) = r. Since it suffices to prove the kth inequality,

where k ≤ ℓ(d) = r, we have Lk(d) = kr = k(k−1)+(r+1−k)k ≤ k(k−1)+(n−k)k ≤ Rk(d),

since min{k, r} = k. Hence d is feasible unless x < r. In this case dx+1 = r > x, which

yields ℓ(d) > x.

As we remarked in proving Theorem 3.2, the kth E-G inequality holds whenever k ≤ s

(if n > r). Hence we have feasibility unless ℓ(d) > s, which requires ds+1 > s. Hence the

number of copies of s is less than n − s; that is, y < n − s. Since dn−y+1 = s < n − y + 1,

we have ℓ(d) ≤ n− y.

We remark that the conditions of Lemma 4.1 cannot be weakened when n = r + 1 and

r > s, since the lists (r(r), r − 1) and (r(s+1), s(r−s)) are not feasible. We can now obtain the

length threshold for feasibility.

Theorem 4.2. Given r, s, g ∈ N with r > s, let z = ⌈(r − s)/g⌉ and b = r − s − g(z − 1).

If n ≥ h(r, s, g), then every list in Dn(r, s, g) is feasible, where

h(r, s, g) =
1

s

(⌊

(r + s)2

4

⌋

+

⌈

r + s

2

⌉

− b
⌊z

2

⌋

+
gz

2
−

g

2

⌈

z2

2

⌉)

.

Furthermore, the bound is sharp; Dn(r, s, g) has an infeasible list when n = ⌈h(r, s, g)⌉ − 1.

Proof. By Lemma 2.4, it suffices to determine the threshold on n so that the g-uniform lists in

Dn(r, s, g) are feasible. There are z nonzero gaps, and only the last can fail to be g; it equals

b. For g-uniform lists, we have reduced the checking of feasibility to checking the ℓ(d)th E-G

inequality (by Theorem 3.2). By Lemma 4.1, we may assume that x < ℓ(d) ≤ n− y, where

d has x + 1 copies of r and y copies of s.

Given the parameters n, r, s, g, a g-uniform list in Dn(r, s, g) is completely determined

by specifying x; hence specifying x also determines ℓ(d). We henceforth abbreviate ℓ(d) to ℓ

and think of ℓ, Lℓ, and Rℓ as functions of x. Our proof is in three steps: we find the value of

ℓ such that the ℓth E-G Inequality is hardest to satisfy, determine the value of x that yields

that value of ℓ, and finally determine the threshold length where that inequality holds.
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r

ℓ

ℓ−1

← x→ ← z → ← y →

⌈

z
2

⌉⌊

z
2

⌋ s

← x+1→

← ℓ→

b

g

g

g↑

↓

Figure 1: A g-uniform list (at the threshold)

To facilitate the explanation of the argument, we illustrate the critical situation in Fig-

ure 1; the height of the ith column is di. The data is (r, s, g) = (19, 3, 5), which produces

(z, b) = (4, 1). The critical choices are (ℓ, x) = (12, 10), and the threshold for n is 26.

Step 1: For each n, the inequality Lℓ ≤ Rℓ is hardest to satisfy when ℓ = ⌈(r + s)/2⌉.

As noted, Lemma 4.1 allows us to assume that x < ℓ ≤ n−y (ignore for now that ℓ is drawn

as x+⌈z/2⌉ in Figure 1). By the definition of ℓ, we have di ≥ ℓ for i ≤ ℓ and di ≤ ℓ for i > ℓ.

Thus Lℓ is the area of the diagram in and above the gray box, while Rℓ is the area of the

diagram in and to the right of the gray box. The list is determined by choosing x; changing

x moves the staircase and also moves ℓ. We study the change in Rℓ − Lℓ as x changes.

Both Lℓ and Rℓ count the area of the gray box; the difference cancels it. The remainder

of Lℓ is an (r − ℓ + 1)-by-ℓ rectangle with an arithmetic sum missing. The remainder of Rℓ

is an y-by-s rectangle plus an arithmetic sum. That is,

Rℓ − Lℓ = ys + (x + z − ℓ)(s + b) + g

(

x + z − ℓ

2

)

− (r − ℓ + 1)ℓ + g

(

ℓ− x

2

)

. (1)

To prove that Rℓ − Lℓ is minimized when x is chosen to make ℓ = ⌈(r + s)/2⌉, we

begin with a formula for ℓ in terms of x. Under the condition x < ℓ ≤ n − y, the value

of ℓ is the largest i such that r − g(i − x − 1) ≥ i. This simplifies to i ≤ r+g(x+1)
g+1

, and

thus ℓ =
⌊

r+g(x+1)
g+1

⌋

. Note that when x increases by 1, usually ℓ increases by 1, but when

r + g(x + 1) ≡ 0 mod (g + 1), the value of ℓ is the same for x and x + 1.

When increasing x by 1 also increases ℓ, the only terms in the formula in (1) that change

are −(r−ℓ+1)ℓ and ys (since n and z are fixed, x+y is fixed). Hence the change is 2ℓ−r−s.

10



When ℓ(x + 1) = ℓ(x), the other terms change. Since x + z − ℓ increases and ℓ − x

decreases, the change is −s + (s + b) + g(x + z − ℓ) − g(ℓ − x − 1), which simplifies to

b + g(z + 2x− 2ℓ + 1). Since zg = r− s− b + g, we can rewrite this as r− s + 2g(x− ℓ + 1).

The condition ℓ(x + 1) = ℓ(x) occurs when r + g(x + 1) ≡ 0 mod (g + 1), so ℓ = r+g(x+1)
g+1

,

and x + 1− ℓ = (ℓ− r)/g. Thus again the change is 2ℓ− r − s.

When x is small, Rℓ−Lℓ decreases as x increases until ℓ reaches ⌈(r + s)/2⌉. Thereafter,

Rℓ−Lℓ increases as x continues to increase. Hence for fixed n all g-uniform lists are feasible

if and only if the list obtained by choosing x to produce ℓ = ⌈(r + s)/2⌉ is feasible.

Step 2: Setting x = ⌈(r + s)/2⌉ − ⌈z/2⌉ yields ℓ(x) = ⌈(r + s)/2⌉. Since ℓ increases by

0 or 1 as x increases, some choice of x produces ℓ(x) = ⌈(r + s)/2⌉. Let λ = ⌈(r + s)/2⌉,

and set x = λ − ⌈z/2⌉. We show that dλ ≥ λ and dλ+1 < λ + 1 for this choice of x. Recall

that di = r − g(i− x− 1) for x < i ≤ x + z. Since λ = x + ⌈z/2⌉ and gz = r − s + g − b,

dλ = r − g(⌈z/2⌉ − 1) ≥ r − g(z − 1)/2

= r − (r − s + g − b)/2 + g/2 = (r + s)/2 + b/2 ≥ λ.

Similarly, if λ + 1 ≤ x + z, then

dλ+1 = r − g ⌈z/2⌉ ≤ r − gz/2

= r − (r − s + g − b)/2 = (r + s)/2− (g − b)/2 < λ + 1.

The inequality λ + 1 ≤ x + z fails if and only if z = 1. In this case, r− s = g and λ = x + 1.

Since r > s, we have x = λ− 1 = ⌈(r + s)/2⌉ − 1 ≥ s. Hence dλ+1 = s ≤ x < x + 2 = λ + 1.

In both cases, we obtain dλ+1 < λ + 1. We have therefore shown that ℓ = λ = ⌈(r + s)/2⌉.

Step 3: n ≥ h(r, s, g) is sufficient for feasibility. Having reduced the problem to studying

the unique g-uniform list of length n with x = ⌈(r + s)/2⌉ − ⌈z/2⌉ and ℓ = ⌈(r + s)/2⌉ (see

Figure 1), it suffices to determine the threshold on n such that Rℓ−Lℓ ≥ 0. We simplify (1)

using y = n− x− z = n− ℓ + ⌊z/2⌋, r − ℓ = ⌊(r − s)/2⌋, and ℓ− x = ⌈z/2⌉ to obtain

Rℓ − Lℓ = (n− ℓ−
⌊z

2

⌋

)s +
⌊z

2

⌋

(s + b) + g

(

⌊z/2⌋

2

)

−

(⌊

r − s

2

⌋

+ 1

) ⌈

r + s

2

⌉

+ g

(

⌈z/2⌉

2

)

= ns−

⌈

r + s

2

⌉(⌊

r + s

2

⌋

+ 1

)

+ b
⌊z

2

⌋

−
gz

2
+

g

2

(⌊z

2

⌋ ⌊z

2

⌋

+
⌈z

2

⌉ ⌈z

2

⌉)

= ns−

⌊

(r + s)2

4

⌋

−

⌈

r + s

2

⌉

+ b
⌊z

2

⌋

−
gz

2
+

g

2

⌈

z2

2

⌉

= ns− sh(r, s, g).

We conclude that if n ≥ h(r, s, g), then every list in Dn(r, s, g) is feasible.
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Step 4: The bound is sharp; that is, when n = ⌈h(r, s, g)⌉ there is an infeasible list in

Dn−1(r, s, g). Since z = ⌈(r − s)/g⌉, always z ≤ r − s. With x set to ⌈(r + s)/2⌉ − ⌈z/2⌉,

we thus have x + z = ⌈(r + s)/2⌉+ ⌊z/2⌋ ≤ r.

Since every list in Dn(r, s, g) is feasible when n = ⌈h(r, s, g)⌉, the first E-G inequality

requires ⌈h(r, s, g)⌉ ≥ r + 1. Furthermore, all lists with length at most r are infeasible.

Therefore, we may assume that ⌈h(r, s, g)⌉ ≥ r + 2. Since x + z ≤ r, the key g-uniform list

at the threshold length has at least two copies of s. Hence the list obtained by deleting one

copy of s belongs to Dn−1(r, s, g) and is infeasible.

The expression for the threshold length simplifies when g | (r − s), in which case b = g.

Corollary 4.3. For g | (r− s), the threshold length for feasibility of all lists in Dn(r, s, g) is

1

s

(⌊

(r + s)2

4

⌋

+

⌈

r + s

2

⌉

−
g

2

⌊

(r − s)2

2g2

⌋)

.

When g = 1, this simplifies to r + r+s+ǫ
2s

, with ǫ = 0 for even r + s and ǫ = 1 for odd r + s.

If g = r − s (and hence there is no gap constraint), then it simplifies to (r+s+1)2−ǫ′

4s
, where

ǫ′ = 0 if r + s is odd and ǫ′ = 1 if r + s is even. Furthermore, the thresholds are sharp.

Proof. For the first statement, set b = g and z = (r − s)/g. For the second and third, set

g = 1 or z = 1. Sharpness was proved in greater generality in Theorem 4.2.

Finally, we return to our motivating question about the threshold length for even-summed

lists to be graphic. It may happen that our infeasible list with n = ⌈h(r, s, g)⌉ − 1 has

odd sum. If all infeasible lists with that length have odd sum, then the threshold will be

⌈h(r, s, g)⌉ − 1. Before exhibiting a family where this occurs, we show that the threshold

never declines by more than 1.

Theorem 4.4. For all r, s, g, the least n such that all even-summed lists in Dn(r, s, g) are

graphic is ⌈h(r, s, g)⌉ or ⌈h(r, s, g)⌉ − 1.

Proof. Let m = ⌈h(r, s, g)⌉. Since every list of length r fails the first E-G inequality, having

length m− 2 be sufficient for even-summed lists to be graphic requires ⌈h(r, s, g)⌉ ≥ r + 3.

Since we have noted that x + z ≤ r at the key value of x, the key g-uniform list with length

m has at least three copies of s.

Deleting one copy of s yields an infeasible list d in Dm−1(r, s, g), meaning that Lℓ(d) −

Rℓ(d) ≥ 1. Deleting another copy of s still retains a copy of s and hence yields an infeasible

list d′ in Dm−2(r, s, g) with Lℓ(d
′)−Rℓ(d

′) ≥ s + 1 ≥ 2.
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Since z = ⌈(r − s)/g⌉ ≤ r − s, we have x = ⌈(r + s)/2⌉ − ⌈z/2⌉ ≥ ⌈(r + s)/2⌉ −

⌈(r − s)/2⌉ = s. Hence there are more than s copies of r in d′. If d′ has even sum, then d′

is the desired infeasible list. If d′ has odd sum, then we decrease the last copy of r by 1 to

obtain a infeasible list with length ⌈h(r, s, g)⌉ − 2 that has even sum.

Determining when the threshold length for feasibility of even-summed lists in Dn(r, s, g)

equals ⌈h(r, s, g)⌉ is messy, because attention must be paid to the exact value of Lℓ −Rℓ at

the key value of x. In lieu of discussing that, we close with an example of a family where the

length threshold for even-summed lists to be graphic is less than the threshold for feasibility.

We will use the Havel–Hakimi Theorem [6, 7], which states that a list d with even sum is

graphic if and only if the list d′ obtained from it by deleting a largest entry k and subtracting

1 from k largest remaining entries is graphic. Call that operation a Havel–Hakimi step.

Theorem 4.5. For n ≥ ⌈h(r, 1, 1)⌉ − 1, every even-summed list in Dn(r, 1, 1) is graphic.

Proof. From Corollary 4.3, h(r, 1, 1) = ⌊3r/2⌋ + 1. Nevertheless, we prove that already

length ⌊3r/2⌋ is sufficient. (Theorem 4.4 implies that no smaller length is sufficient.)

Consider d ∈ Dn(r, 1, 1) with even sum. We use induction on r. For r ≤ 2, lists with

even sum and length at least ⌊3r/2⌋ are graphic. Now consider r > 2. Let d′ be the list

obtained by applying a Havel-Hakimi step to d. Note that d′
1 ∈ {r, r − 1, r − 2} and that

d′ is gap-free. If d′
1 = r, then dr+1 = r and the first computation in Lemma 4.1 shows

that d is graphic. Note that d has at least r − 2 distinct values between r and 1. Hence if

d′
1 = r − 2, then d2 = r − 1 and d′ ∈ Dn′(r − 2, 1, 1) with n′ ∈ {n − 1, n − 2, n − 3}. Since

n′ ≥ n− 3 ≥
⌊

3r
2

⌋

− 3 =
⌊

3(r−2)
2

⌋

, the induction hypothesis implies that d′ is graphic.

Now suppose d′
1 = r − 1, so d2 = r or dr+2 = r − 1. If dr+2 = r − 1, then d′ ∈

Dn−1(r − 1, 1, 1). By the induction hypothesis, d′ is graphic.

Finally, suppose d′
1 = r − 1 and d2 = r. Since d is gap-free, dr ≥ 2. Hence d′ ∈

Dn′(r− 1, 1, 1) with n′ ∈ {n− 1, n− 2}. If n′ = n− 1, then n′ = n− 1 ≥
⌊

3r
2

⌋

− 1 ≥
⌊

3(r−1)
2

⌋

,

and the induction hypothesis applies. If n′ = n − 2, then dr = 2 and dr+1 = 1, and hence

d = (r, r, r−1, ..., 2, 1, 1(⌊r/2⌋−1)). If r is odd, then the degree sum of d is 2r+
(

r
2

)

+(r−1)/2−1,

which is odd, so this case does not occur. If r is even, then

n′ = n− 2 ≥

⌊

3r

2

⌋

− 2 =

⌊

3(r − 1)− 1

2

⌋

=

⌊

3(r − 1)

2

⌋

,

and again the induction hypothesis applies.
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