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Abstract

A card of a graph G is a subgraph formed by deleting one vertex. The Reconstruc-
tion Conjecture states that each graph with at least three vertices is determined by its
multiset of cards. A dacard specifies the degree of the deleted vertex along with the
card. The degree-associated reconstruction number drn(G) is the minimum number of
dacards that determine G. We show that drn(G) = 2 for almost all graphs and deter-
mine when drn(G) = 1. For k-regular n-vertex graphs, drn(G) ≤ min{k+2, n−k+1}.
For vertex-transitive graphs (not complete or edgeless), we show that drn(G) ≥ 3, give
a sufficient condition for equality, and construct examples with large drn. Our most
difficult result is that drn(G) = 2 for all caterpillars except stars and one 6-vertex
example. We conjecture that drn(G) ≤ 2 for all but finitely many trees.

1 Introduction

The well-known Graph Reconstruction Conjecture of Kelly [7, 8] and Ulam [22] has been
open for more than 50 years. It asserts that every graph with at least three vertices can
be (uniquely) reconstructed from its “deck” of vertex-deleted subgraphs. Here the deck of a
graph G is the multiset of unlabeled induced subgraphs formed by deleting one vertex from
G, and these subgraphs are cards in the deck. The conjecture has been proved for many
special classes, and many properties of G may be deduced from the deck. Nevertheless, the
full conjecture remains open. Surveys of results on reconstruction include [3, 4, 9, 10].

Usually, a graph is determined by less than its full deck. Introduced by Harary and
Plantholt [6], the reconstruction number of a graph G, denoted rn(G), is the minimum
number of cards from the deck of G that suffice to determine G, in the sense that no graph
not isomorphic to G has this multiset in its deck (a graph may have many copies of a single
card in its deck). The Reconstruction Conjecture is the statement that rn(G) is well defined
for each graph G with at least three vertices (with rn(G) ≤ |V (G)|). Reconstruction numbers
are known for various classes of graphs; see [1, 6, 11, 12, 14, 15].

Motivated by reconstruction questions for directed graphs, Ramachandran [18] proposed
a variation. A degree-associated card (or dacard) of a graph (or digraph) is a pair (C, d)
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consisting of a card C in the deck and the degree (or in/out-degree pair) d of the deleted
vertex. The multiset of dacards is the dadeck (the degree-associated deck). Ramachan-
dran [21] defined the degree-associated reconstruction number drn(G) of a graph G to be
the minimum number of dacards that suffice to determine G. We abbreviate the term
to degree-reconstruction number. Ramachandran studied it for complete graphs, edgeless
graphs, cycles, complete bipartite graphs, and disjoint unions of identical graphs.

Each dacard provides more information than the corresponding card, so drn(G) ≤ rn(G)
for every graph G. Supplying the degree of the missing vertex is equivalent to supplying the
total number of edges in the graph with the card. In contrast, a single card never determines
|E(G)|. The usual counting argument for determining |E(G)| from the deck uses all the
cards, although Myrvold [16] showed that for an n-vertex graph the number of edges and
the vertex degrees can be determined from n − 1 cards (if n ≥ 7). The point here is that
since the full deck determines the total number of edges, the full deck provides the same
information as the full dadeck, but a partial dadeck generally carries more information than
the corresponding partial deck.

In this paper we continue the study of degree reconstruction numbers. Myrvold [13] and
Bollobás [2] proved that rn(G) = 3 for almost every graph. From this result, we conclude in
Section 2 that drn(G) ≤ 2 for almost every graph. We prove that drn(G) = 1 if and only if
G or its complement G has an isolated vertex or a vertex of degree 1 whose deletion leaves
a vertex-transitive graph. We also prove that drn(G) ≤ min{k + 2, n − k + 1} when G is a
k-regular graph with n vertices.

In Section 3 we study vertex-transitive graphs. For a vertex-transitive graph G, we prove
that drn(G) ≥ 3 when G is not complete or edgeless, and we give a sufficient condition
for equality. We prove that this condition holds for the Petersen graph, the k-dimensional
hypercube, and the cartesian product of a complete graph with an edge. The condition is
sufficient but not necessary, since it fails for the n-vertex cycle Cn, even though drn(Cn) = 3
for n ≥ 4. Also, if G has nonadjacent vertices with distinct neighborhoods, and G(m) arises
from G by expanding each vertex into a set of m independent vertices, then drn(G(m)) =
rm + 2, where r is the maximum number of vertices in G having the same neighborhood.
As a special case, drn(tKm,m) = m + 2 for t > 1 (Ramachandran [21]), where Km,m is the
complete bipartite graph with parts of size m, and tG denotes the disjoint union of t copies
of G. These results suggest a natural extremal problem for drn.

Conjecture 1.1. If G is an n-vertex graph, then drn(G) ≤ n/4 + 2 (equality for 2Kn/4,n/4).

In Sections 4–6 we study trees. Section 4 gives sufficient conditions for drn(G) = 2 when
G is a tree. These aid subsequently in computing drn(G) when G is a caterpillar, which is a
tree whose non-leaf vertices form a path. If G is a caterpillar, then drn(G) = 2 unless G is
a star or the 6-vertex tree with four leaves and maximum degree 3. This is our longest and
most difficult result. We consider special families of caterpillars in Section 5 and complete
the general proof in Section 6. Our study of caterpillars is motivated by the following:

Conjecture 1.2. If G is a tree, then drn(G) ≤ 2, with finitely many exceptions.
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In many reconstruction arguments, reconstructibility is proved first for special subfamilies
where the general argument does not work; this occurs for example in the classical argument
for reconstruction of trees. Our proof for caterpillars has this form, where the proof in Section
6 works because we may exclude the special subfamilies treated in Section 5. Similarly, our
result for caterpillars could be a steppingstone to a full proof of Conjecture 1.2.

Conjecture 1.2 is supported by known results about reconstruction of trees. For a family
F of graphs, the F-reconstruction number or class reconstruction number of a graph G in F
is the minimum number of cards from its deck needed to determine G given the knowledge
that G ∈ F ; that is, G is the only graph in F having this multiset of cards in its deck. For
the family T of trees, Harary and Lauri [5] proved that the class reconstruction number of
every tree T is at most 3 (the result of Myrvold [15] that rn(T ) ≤ 3 strengthens this), and
they conjectured that the class reconstruction number of every tree is at most 2.

Recently, Welhan [23] obtained a structural condition on a tree T that is sufficient for
the class reconstruction number of T to be 2. The condition holds, for example, for all trees
having no vertices of degree 2. Furthermore, he notes that among these trees, all except
a two-parameter family are class reconstructible from two cards such that one of the cards
arises by deleting a leaf. If G has a dacard that is a tree with the deleted vertex having
degree 1, then G must be a tree. Hence the dacards corresponding to his two cards imply
that drn(G) ≤ 2 when G is such a tree. This and our result for caterpillars, which can have
many vertices of degree 2, together provide support for Conjecture 1.2.

We summarize terminology and notation used throughout the paper. Our graphs are
“simple” (no loops or multiedges). For a graph G, the vertex set and edge set are V (G) and
E(G). The (open) neighborhood NG(v) and closed neighborhood NG[v] of a vertex v in G
are defined by NG(v) = {u ∈ V (G) : uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}. Let dG(v) or
simply d(v) denote the degree in G of vertex v, which equals |NG(v)|. The maximum and
minimum vertex degrees are ∆(G) and δ(G). A vertex v in G is isolated if dG(v) = 0, a leaf
if dG(v) = 1, and dominating if NG[v] = V (G). Given S ⊆ V (G), the subgraph G[S] induced
by S is the graph with vertex set S in which two vertices are adjacent if and only if they are
adjacent in G. For v ∈ V (G), write G − v for G[V (G) − v].

2 Small reconstruction numbers and regular graphs

As mentioned earlier, Bollobás [2] and Myrvold [13] determined the reconstruction numbers
of almost all graphs.

Theorem 2.1 ([2, 13]). Almost every graph has reconstruction number 3 (and hence is
reconstructible). Furthermore, for almost every graph, any two cards in the deck determine
everything about the graph except whether the two corresponding deleted vertices are adjacent.

The reconstruction number of any graph is at least 3, since G − u and G − v are cards
for both G and G′, where G and G′ differ only on whether the edge uv is present. Thus,
the previous result is sharp. Converting two cards to dacards adds the degree information,
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which determines the last unknown bit of information without introducing another dacard.
This immediately yields our first observation:

Corollary 2.2. For almost every graph G, drn(G) ≤ 2.

Our next aim is to characterize the graphs G such that drn(G) = 1. Let G denote the
complement of a graph G.

Lemma 2.3. For any graph G, drn(G) = drn(G).

Proof. Let v be a vertex in an n-vertex graph G. Since dG(v) = n− 1− dG(v) and G − v =
G − v, it follows that (C, d) is a dacard of G if and only if (C, n − 1 − d) is a dacard of G.
Since also G and G determine each other, we conclude that the dacards of G from a vertex
subset S determine G if and only if the dacards of G from S determine G. �

Note that drn(G) = 1 if and only if G has a dacard that does not occur in the dadeck of
any other graph. We next determine all dacards of this type.

Theorem 2.4. The dacard (C, d) belongs to the dadeck of only one graph (up to isomor-
phism) if and only if one of the following holds:

(1) d = 0 or d = |V (C)|;
(2) d = 1 or d = |V (C)| − 1, and C is vertex-transitive;
(3) C is complete or edgeless.

Proof. Sufficiency. In each case listed, all graphs formed by adding to C a vertex with d
neighbors in C lie in the same isomorphism class.

Necessity. If (C, d) is a dacard for only one graph, then the same isomorphism class is
produced no matter what set of d vertices is chosen for the neighborhood of the added vertex
v. Since isomorphic graphs have the same number of triangles, and the number of triangles
after adding v is the number of triangles in C plus the number of edges in C induced by the
vertices made adjacent to v, we conclude that all d-vertex induced subgraphs of C have the
same number of edges. It is a well-known exercise (see Exercise 1.3.35 on page 50 of [24])
that if 1 < d < |V (C)| − 1, then this property forces C to be complete or edgeless, as in (3).

Since d ∈ {0, |V (C)|} is covered by (1), the remaining case is d ∈ {1, |V (C)| − 1}. Since
(C, d) determines G if and only if (C, |V (G)| − 1 − d) determines G, we may assume d = 1.
We conclude that C is regular, since otherwise giving v one neighbor would make (C, d) a
dacard for a graph with maximum degree ∆(C) and a graph with maximum degree ∆(C)+1.

When C is regular of degree 0 or 1, it is vertex-transitive. For larger degree, every
automorphism of the resulting graph G fixes v, since it is the only vertex of degree 1. Since
attaching v to any vertex yields the same graph, C must therefore have automorphisms
taking each vertex to any other. Hence C is vertex-transitive. �

Interpreting the statement of Theorem 2.4 in terms of the reconstructed graph, we obtain
the following corollary.
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Corollary 2.5. A graph G satisfies drn(G) = 1 if and only if G or G has an isolated vertex
or has a leaf whose deletion leaves a vertex-transitive graph.

Together, Corollaries 2.2 and 2.5 imply that almost always drn(G) = 2. Graphs with
vertices of degree at most 1 are rare; it is a standard elementary result about random graphs
that almost all graphs (and their complements) have minimum degree at least 2. Thus
almost no graphs are determined by one dacard.

Next we consider regular graphs. Every regular graph G is reconstructible, since the
degree list can be determined from the deck, and then in any card the vertices of minimum
degree must be the neighbors of the missing vertex. Although one dacard gives the degree
of the missing vertex and hence the total number of edges, it does not give the degree list
and does not determine G. Nevertheless, we obtain an upper bound on drn(G).

Theorem 2.6. If G is a k-regular graph on n vertices, then drn(G) ≤ min{k +2, n−k +1}.

Proof. Since the complement of a k-regular graph is (n − 1 − k)-regular, by Lemma 2.3 it
suffices to prove that drn(G) ≤ k + 2.

Let H be a graph that shares k + 2 dacards with G. Let (C, k) be one shared dacard, so
C = H−u for some u ∈ V (H). Since C also arises by deleting one vertex from the k-regular
graph G, the graph C has k vertices of degree k − 1 and n − 1 − k vertices of degree k.

Attaching u to the k vertices of degree k−1 in C forms a copy of G. If H 6∼= G, then some
vertex v ∈ NH(u) has degree k in C and hence degree k+1 in H. With ∆(H) = k+1 > ∆(G),
each vertex of degree k in H whose deletion produces a card of G must be adjacent in H to
every vertex of degree k+1 in H. There can be at most k+1 such vertices, which contradicts
the assumption of k + 2 shared dacards with G. Hence H ∼= G. �

Ramachandran [21] proved that drn(tKm,m) = m + 2 when t > 1. Since tKm,m is
m-regular, these graphs prove sharpness of the upper bound in Theorem 2.6. Ramachan-
dran [21] proved for k, t ≥ 2 that if G is a connected k-regular graph on n vertices, where
n ≥ 3, then drn(tG) ≤ n − k + 2.

In comparing drn and rn for regular G, an argument like that above yields rn(G) ≤
b + 1, where b is the upper bound in Theorem 2.6. We have observed that almost always
drn(G) = 2 = rn(G) − 1. Nevertheless, drn(G) and rn(G) can differ greatly: for t,m > 1,
Ramachandran [21] proved that drn(tKm) = 3 even though rn(tKm) = m+2 (Myrvold [14]).

Since two cards never determine whether the two deleted vertices are adjacent, always
rn(G) ≥ 3. Hence the parameters differ by more than 1 when drn(G) = 1. This case and the
family {tKm} are the only infinite families we presently know consisting of graphs G such that
drn(G) 6= rn(G)−1. Isolated examples include the 4-vertex path P4 and two small trees with
degree-reconstruction number 3 presented in Section 4; Myrvold [15] proved that rn(G) = 3
for every tree with more than two vertices other than P4, while drn(P4) = 2 = rn(P4) − 2.
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3 Vertex-transitive graphs

For a regular graph G that is also vertex-transitive, we obtain sharper results on drn(G).
A graph is vertex-transitive if and only if its cards are pairwise isomorphic. Since vertex-
transitive graphs are regular, Theorem 2.6 provides an upper bound. We will prove further
lower and upper bounds and give sufficient conditions for equality in the bounds.

Since drn(G) = 2 almost always, higher values require some sort of special structure.
When the dacards are identical, the only flexibility is how many to use; one may therefore
expect vertex-transitive graphs to be harder to reconstruct from dacards. As noted above,
drn(tKm,m) = m + 2 when t > 1, and drn(tKm) = 3. By setting t = 2 in the latter example
and applying drn(G) = drn(G), also drn(Km,m) = 3. We prove next that 3 is a lower bound.

Definition 3.1. A clone of a vertex x in a graph is a vertex having the same closed neigh-
borhood as x. When G is edge-transitive, let G− denote the (unlabeled) graph formed by
deleting any edge of G.

As we have noted, the cards of a vertex-transitive graph G are pairwise isomorphic. Given
a dacard (C, d) of G, we refer to other dacards of G as “copies” of (C, d). We usually start
with C obtained as G − v for some v ∈ V (G), but we may also describe the structure of C
as an unlabeled graph. We use G + H to denote the disjoint union of graphs G and H (in
the sense of isomorphism classes).

Theorem 3.2. If G is vertex-transitive and is not complete or edgeless, then drn(G) ≥ 3.

Proof. Let (C, d) be a dacard of G, where C = G−v. To show that drn(G) > 2, we construct
a graph H not isomorphic to G that has at least two copies of (C, d) in its dadeck.

If every neighbor of v in G is a clone of v, then G is a disjoint union of complete graphs.
That is, G = tKr with t ≥ 2 and r ≥ 2, where r = d+1. In this case, C = (t− 1)Kr +Kr−1.
Let H = (t−2)Kr +K−

r+1 +Kr−1. Now H has two copies of (C, d) in its dadeck, and H 6∼= G.
Otherwise, choose u ∈ NG(v) with NG[u] 6= NG[v]. Form H by adding to G−v a clone u′

of u. Now H − u ∼= H − u′ ∼= C and dH(u) = dH(u′) = d. However, with x ∈ NG(u)−NG[v]
and y ∈ NG(v) − NG[u], we have dH(x) = d + 1 and dH(y) = d − 1; hence H ≇ G. �

We will later give sufficient conditions for equality in the lower bound drn(G) ≥ 3.
Although the n-vertex cycle Cn does not satisfy those conditions, it does achieve the bound.
This easy example (stated in Ramachandran [21] as being in the inaccessible [20]) will be
useful later and illustrates the technique for proving upper bounds on drn(G). Let Pn denote
the n-vertex path.

Example 3.3. If n ≥ 4, then drn(Cn) = 3. Theorem 3.2 provides the lower bound. The
dacards of Cn are copies of (Pn−1, 2). For the upper bound, let H be a graph having three
such dacards; H is constructed from Pn−1 by adding a vertex x with two neighbors in Pn−1.
Thus H consists of a cycle plus pendant paths from at most two vertices. If there is at least
one nontrivial pendant path, then there are at most two vertices whose deletion leaves a
path. We conclude that H ∼= Cn. �
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Since drn(tKm,m) = m + 2 when t > 1, Theorem 3.2 can be arbitrarily weak. We extend
that example, computing drn(G) on a more general family of vertex-transitive graphs that
contains both tKm,m and some connected graphs; tKm,m arises when the base graph is tK2.

Definition 3.4. An expansion of a base graph G is a graph H obtained by replacing each
vertex of G with an independent set such that two vertices of H are adjacent if and only if
the vertices of G they replaced were adjacent. The m-fold expansion G(m) is the expansion
of G in which each vertex expands into an independent set of size m. A twin of a vertex v
is a vertex having the same open neighborhood as v. A twin-set in a graph is a maximal
vertex subset consisting of vertices with identical open neighborhoods.

A twin-set in a graph is an independent set, while a set of clones is a clique.

Theorem 3.5. Let G be a vertex-transitive graph that is not a complete graph and has no
twins. If m ≥ 2, then drn(G(m)) = m + 2.

Proof. Let V (G) = {v1, . . . , vn}. In G(m), each vertex vi of G becomes an independent
set Vi. Vertices in Vi have the same neighborhood, but vertices in distinct such sets have
different neighborhoods, since G has no twins. Hence V1, . . . , Vn are the twin-sets in G. If
G is k-regular (and vertex-transitive), then G(m) is km-regular and vertex-transitive, and its
twin-sets have size m. Every vertex neighborhood in G(m) is a union of twin-sets.

Lower bound. Since G is not complete, it has nonadjacent vertices vi and vj. Fix x ∈ Vi,
and let C = G(m) − x. Construct H by adding to G(m) − x a vertex u with neighborhood
N(Vj); this makes Vj ∪{u} a twin-set in H. Since x /∈ N(Vj), we have dH(u) = km. In G(m)

every set of m + 1 vertices contains two with distinct neighborhoods, but in H the m + 1
vertices in Vj ∪ {u} have the same neighborhood. Hence H ≇ G(m), but the m + 1 dacards
for Vj ∪ {u} in H are copies of (C, km). Thus drn(G(m)) ≥ m + 2.

Upper bound. Again let C = G(m) − x for some x ∈ V (G(m)). Since m ≥ 2, there are
n twin-sets and n distinct vertex neighborhoods in C; one twin-set has size m − 1, and the
others have size m. Let H be a graph having m + 2 dacards that are copies of (C, km). Let
u be a vertex of H yielding one such dacard, and let U be the twin-set of size m−1 in H−u.
Since |U | = m− 1, among the vertices yielding this dacard is a vertex v not in U . Since the
twin-set containing v has size m in H − u, in H − {u, v} there remain n distinct twin-sets.

If NH−v(u) is not a vertex neighborhood in H−{u, v}, then replacing u shows that H−v
has more than n distinct vertex neighborhoods, which contradicts H−v ∼= C. Thus NH−v(u)
is a vertex neighborhood in H −{u, v}, which means that H − v is obtained from H −{u, v}
by augmenting one twin-set T to form T ′.

If T 6= U , then H is an expansion of G having twin-sets of sizes m+1, m−1, and the rest
of size m. Deleting a vertex from H so that the resulting twin-sets have the same sizes as in
C requires deleting a vertex of T ′. Since |T ′| = m+1, the dacard (C, km) cannot occur m+2
times for H. We conclude that T = U and H ∼= G(m), which implies drn(G(m)) ≤ m + 2. �

In a vertex-transitive graph, the twin-sets all have the same size.
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Corollary 3.6. If G is a vertex-transitive graph other than a complete multipartite graph,
then drn(G(m)) = rm + 2 for every m ≥ 2, where r is the size of each twin-set in G.

Proof. Collapsing the twin-sets of G into single vertices yields a vertex-transitive graph G0

having no twins, and G = G
(t)
0 . Since G is not a complete multipartite graph, G0 is not a

complete graph. Hence Theorem 3.5 applies to G0, and drn(G(m)) = drn(G
(rm)
0 ) = rm+2.�

We next study sharpness in the lower bound of Theorem 3.2. We give a sufficient condition
for drn(G) = 3 in the family of vertex-transitive graphs and show that hypercubes and some
other graphs satisfy it.

Definition 3.7. A vertex-transitive graph G with card C is coherent if for all x, y ∈ V (G),
the only way to form a graph isomorphic to C by adding a new vertex z to G − {x, y} is to
make z adjacent to NG−y(x) or NG−x(y).

Coherence prevents the deletion of vertices x and y from G in such a way that a graph
isomorphic to the card C can be recreated by adding a vertex adjacent to some subset of
NG(x) ∪ NG(y) other than the full neighborhood of x or y.

Theorem 3.8. Let G be a vertex-transitive graph that is not complete or edgeless. If G is
coherent and has no clones or twins, then drn(G) = 3.

Proof. Let k be the degree of each vertex in G, and let C = G − x. Given the lower bound
in Theorem 3.2, it suffices to show that if some graph H has vertices u, v, and w of degree
k whose deletion yields cards isomorphic to C, then H ∼= G.

Let S be the set of vertices of degree k − 1 in H − u. Since H − u ∼= C = G − x,
we may name the vertices of H − u so that H − u = G − x yielding NG(x) = S. Now
H − {u, v} = G − {x, v}. The card H − v is obtained by adding u and appropriate edges
to H − {u, v}; doing this adds u and appropriate edges to G − {x, v} to produce a graph
isomorphic to C. By coherence, NH−v(u) is NG−v(x) or NG−x(v).

If NH−v(u) = NG−x(v), then |NH(u) ∩ NH(v)| is k − 1 or k, depending on whether
v ∈ NG(x). Since dH(u) = k, this makes u and v clones or twins in H and hence also in
H − w. Since H − w ∼= C = G − x, adding a vertex x′ and appropriate edges to H − w
yields a graph isomorphic to G. Since dH−w(u) = dH−w(v) and G is regular, x′ must be made
adjacent to neither or both of {u, v}. Now u and v are clones or twins in a graph isomorphic
to G, which is forbidden.

Thus NH−v(u) = NG−v(x). Since dH(u) = dG(x), we have NH(u) = S and H ∼= G. �

Although tKm,m and tKm are coherent, tKm,m has twins and tKm has clones. Since
drn(tKm) = 3, the condition in Theorem 3.8 is not a necessary condition. Similarly, the cycle
Cn has no clones or twins and satisfies drn(Cn) = 3 (Example 3.3), but it is not coherent
for n ≥ 6. For vertices x and y separated by distance at least 3 in Cn, adding adding a
vertex adjacent to one neighbor of each of {x, y} in distinct components of Cn −{x, y} is an
“incoherent” way to obtain the card Pn−1.

Thus Theorem 3.8 does not apply to these graphs. Before applying it to other graphs,
we show that coherence is preserved by repeated disjoint union.
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Proposition 3.9. If G is a coherent connected vertex-transitive graph, then tG is coherent.

Proof. Every connected vertex-transitive graph is 2-connected. If x and y lie in the same
component of tG, then the needed property follows from the coherence of G. If they do not,
then what remains of each of those components is connected, since G is 2-connected. Thus
a vertex added to turn tG−{x, y} into a graph isomorphic to a card of tG must restore one
of the components of G, which requires it to be adjacent to the neighborhood of the vertex
deleted from that component. �

We apply coherence to several natural examples.

Example 3.10. If G is the Petersen graph, then drn(G) = 3. Nonadjacent vertices in G
have exactly one common neighbor, and adjacent vertices have none; hence G has no twins
or clones. It therefore suffices to check coherence. Let C be a card. There are only two types
of vertex pairs in G; adjacent or nonadjacent.

Deleting adjacent vertices x and y leaves four vertices with degree 2. Any two of them
that had no common neighbor in {x, y} have a common remaining neighbor. Adding a vertex
adjacent to both of them creates a 4-cycle and hence cannot form C.

Deleting nonadjacent vertices x and y leaves one vertex w with degree 1 and four vertices
with degree 2 that induce 2K2. A vertex added to form C must be adjacent to w and to one
vertex from each edge of this 2K2. To avoid creating a 4-cycle, only two of the four such
choices are allowable, and these yield the vertex neighborhoods of x and y. �

We next consider the k-dimensional hypercube Qk, the graph with vertex set {0, 1}k in
which two vertices are adjacent if and only if they differ in exactly one coordinate. From the
definition, vertices at distance 2 in Qk have exactly two common neighbors.

Theorem 3.11. If k ≥ 2, then drn(Qk) = 3.

Proof. The lower bound follows from Theorem 3.2. Since Q2
∼= K2,2, we have drn(Q2) = 3,

so we may assume k ≥ 3. Since Qk has no clones or twins, it suffices by Theorem 3.8 to
show that Qk is coherent. Let C be a card of Qk. Given x, y ∈ V (Qk), let F = Qk − {x, y},
and let S = NQk−y(x) and S ′ = NQk−x(y). Let z be a vertex added to F to obtain a graph
C ′ isomorphic to C; we must show that NC′(z) ∈ {S, S ′}.

The vertex z cannot have neighbors in both partite sets of F , since C is bipartite. Also
it has no neighbor with degree k in F , since ∆(C) ≤ k. Hence NC′(z) ∈ {S, S ′} when x and
y lie in opposite partite sets.

Now consider x and y in the same partite set. Since δ(C) = k − 1 and ∆(C) = k, we
have S ∩S ′ ⊆ NC′(z) ⊆ S ∪S ′. If NC′(z) /∈ {S, S ′}, then z has neighbors in both S −S ′ and
S ′ − S. Since dC′(z) = k = |S| = |S ′|, there also exist w ∈ S − S ′ and w′ ∈ S ′ − S outside
NC′(z). Now dC′(w) = dC′(w′) = k − 1. Since C ′ ∼= C, adding to C ′ a vertex adjacent to all
vertices of degree k − 1 produces a graph Q′ isomorphic to Qk. Since dQ′(w,w′) = 2, these
vertices have two common neighbors in Q′, and only one remains in C ′. Since w,w′ /∈ NC′(z),
the common neighbor lies in F . However, since F = Qk − {x, y}, the distance between w
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and w′ as vertices of Qk is 2. Since w ∈ S − S ′ and w′ ∈ S ′ − S, neither x nor y is a
common neighbor of w and w′. Hence w and w′ still have two common neighbors in F . The
contradiction yields NC(z) ∈ {S, S ′}. �

The cartesian product G�H of graphs G and H is the graph with vertex set V (G)×V (H)
such that (u, v) and (u′, v′) are adjacent precisely when u = u′ and vv′ ∈ E(H) or when
v = v′ and uu′ ∈ E(G). The hypercube Qk is the cartesian product of k factors isomorphic
to K2. We have not generalized Theorem 3.11 to all cartesian products of complete graphs
but can prove it for Kk�K2. A k-clique in a graph is a set of k pairwise adjacent vertices.

Theorem 3.12. If k ≥ 2, then drn(Kk�K2) = 3.

Proof. Again the lower bound is from Theorem 3.2. Since K2�K2 = C4, Example 3.3 yields
drn(K2�K2) = 3. Since the complement of K3�K2 is C6, and always drn(G) = drn(G) by
Lemma 2.3, Example 3.3 also yields drn(K3�K2) = 3.

Hence we may assume that G ∼= Kk�K2 with k ≥ 4. Let C be a card of G. Since G has
no clones or twins, by Theorem 3.8 it suffices to show that G is coherent. Given u, v ∈ V (G),
let F = G − {u, v}, and let S = NG−v(u) and S ′ = NG−u(v). Let z be a vertex added to
F to form a graph C ′ isomorphic to C; we need NC′(z) ∈ {S, S ′}. Let A and B be the two
k-cliques in G. Note that G is k-regular. By symmetry, we have two cases.

Case 1: u, v ∈ A. Vertices remaining in A have degree k − 2 in F , and the neighbors of
u and v in B have degree k − 1 in F . Since δ(C) = k − 1 and ∆(C) = k, we conclude that
NC′(z) contains all of A − {u, v} and the neighbor of u or v in B. Hence NC′(z) ∈ {S, S ′}.

Case 2: u ∈ A, v ∈ B. Since k ≥ 4, the only (k − 1)-cliques in F are A − u and B − v.
Since C has a k-clique, z must be adjacent to all of A − u or B − v. Since C has exactly
k vertices of degree k − 1, z has no other neighbor if uv ∈ E(G) and is adjacent to the
remaining vertex of degree k − 2 in F if uv /∈ E(G). In either case, NC′(z) ∈ {S, S ′}. �

Similar arguments can be made for other families of vertex-transitive graphs. For exam-
ple, drn(Ck�K2) = 3 for k ≥ 3.

Question 3.13. Which vertex-transitive graphs are coherent? Which vertex-transitive graphs
have coherent cartesian products with K2?

4 Trees

When G is not vertex-transitive, the problem of determining drn(G) becomes harder in two
ways, because there are more choices of r-sets of dacards. To prove drn(G) ≤ r, we must
find such a set that determines G; for vertex-transitive graphs there was only one choice.
This increases the difficulty of finding the proof but not necessarily its length. To prove
drn(G) ≥ r, on the other hand, the larger family of (r − 1)-sets of dacards does increase the
length of proof, because we must ensure for every choice of r − 1 dacards of G that some
graph not isomorphic to G also has those dacards.
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With this in mind, we turn next to the study of trees. We conjectured in Section 1
that only finitely many trees other than stars fail to have degree-reconstruction number 2
(Prince [17] proved the weaker statement that drn(T ) = 2 for almost every tree T ). Since
Corollary 2.5 implies that stars are the only trees determined by one dacard, we do not
encounter the difficulty of proving lower bounds, and the task is only to provide for each
tree a pair of dacards that determine it.

We noted in Section 1 that the recent results of Welhan [23] do this for trees with no
vertices of degree 2. In the remainder of this paper we prove it for caterpillars, which may
have many such vertices.

Reconstructing a tree includes showing that every reconstruction of the given cards (or
dacards) is a tree. We noted in Section 1 that a dacard (G − v, 1) in which G − v is a tree
forces G to be a tree. Since we will reconstruct from two dacards, it is useful also to have a
condition on two dacards that forces every reconstruction to be a tree.

Lemma 4.1. Let G be a graph with dacards (F, 2) and (F ′, 2). If F and F ′ are forests with
two components, and the components of F do not have the same sizes as those of F ′, then
G is a tree.

Proof. Among the four trees in F and F ′, by symmetry we may assume that the largest is
in F ′. By the hypothesis, those in F are strictly smaller. If G is not a tree, then G arises
from F by adding a vertex adjacent to two vertices in the same component of F . Now G
has no induced subtree as large as the larger tree in F ′, contradicting that F ′ is a card. �

The condition of distinct sizes is important. For example, Pn has two copies of the dacard
(Pa+Pn−1−a, 2) with a < n/2. When n ≥ 4, the graph Pa+Cn−a is a non-tree reconstruction
from these two dacards. (Recall that G + H denotes the disjoint union of G and H.)

Armed with Lemma 4.1, we start by proving drn(Pn) ≤ 2. We need this when proving
the bound for more general families of caterpillars, because some of the general arguments
that work for those families are not valid for the special case of paths. In particular, we may
want to use a dacard from a leaf, but that does not work for paths.

Proposition 4.2. If n ≥ 4, then drn(Pn) ≤ 2, and only ǫ pairs of dacards determine Pn,
where ǫ = 1 when n is even and ǫ = 2 when n is odd.

Proof. For n = 4, we use dacards (P3, 1) and (P1+P2, 2). The first forces every reconstruction
to be a tree. Hence the vertex missing from the second has a neighbor in each component,
and P4 is the only reconstruction. (When two copies of the same dacard are used, K1,3 or
P1 + K3 is an alternative reconstruction.)

For n ≥ 5, the dacards (Pn−1, 1) and (Pa+Pn−1−a, 2) do not determine Pn for any a (except
a = 2 when n = 5), since the tree formed by appending one edge to Pn−1 at an appropriate
place shares these dacards. Consider the dacards (Pa+Pn−1−a, 2) and (Pb+Pn−1−b, 2), where
1 ≤ a ≤ b ≤ ⌊(n − 1)/2⌋. We have noted the alternative reconstruction Pa + Cn−a when
a = b, so consider a < b. Let G be a graph having these dacards corresponding to vertices
u and v, respectively. By Lemma 4.1, G is a tree.
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If G is not a path, then the dacards imply that G has a vertex w of degree 3, and every
such vertex is adjacent to both u and v. Hence G consists of three paths emanating from
w. If a + b ≤ n − 4, then making the paths from w through u and v have lengths a + 1 and
b + 1 provides an alternative reconstruction, since there remains a vertex for the third path.

With a < b ≤ ⌊(n − 1)/2⌋, we have a+ b ≤ n− 3 when n is even, a+ b ≤ n− 2 when n is
odd. If a + b ≥ n − 3, then there do not remain enough vertices to give w a third neighbor,
so the alternative reconstruction does not exist. Hence the unique reconstruction is Pn for
b = ⌊(n − 1)/2⌋ and a = b − 1, and also for b = (n − 1)/2 and a = b − 2 when n is odd. �

We considered all pairs of dacards, instead of just presenting one pair that works, in order
to emphasize that our later general arguments fail for Pn; it must be treated separately.

For the desired bound drn(T ) ≤ 2 for trees, we actually know of only two exceptions, the
trees H1 and H2 in Figure 1.

H1 H2

Figure 1: Two trees requiring three dacards.

Example 4.3. drn(H1) = 3. Since Myrvold [15] proved that every tree with at least three
vertices other than P4 has reconstruction number 3 (in fact, rn(P4) = 4), the observation
that always drn(G) ≤ rn(G) provides the upper bound.

For the lower bound, we show that any two dacards of H1 are dacards for another graph.
Each dacard is a copy of (P3 + 2K1, 3) or (S, 1), where S arises from K1,3 by subdividing
one edge. There are three ways to take two dacards; two of the first, two of the second, and
one of each. For these three cases, respectively, other graphs having the same two dacards
are the graph obtained from 2K1 + K4 by deleting one edge, the tree obtained from K1,4 by
subdividing one edge, and the tree obtained from K1,3 by subdividing one edge twice. �

The argument for H2 is similar but longer, since it has three types of dacards. We omit
it, since our goal is to prove that H1 is the only caterpillar T such that drn(T ) > 2.

In the remainder of this section, we develop a sufficient condition for drn(T ) ≤ 2 when
T is a tree (Theorem 4.6). This will help in the proof for caterpillars, because we will not
need to select dacards explicitly for caterpillars satisfying this condition.

The weight w(u) of a vertex u in a tree T is the maximum number of vertices in a single
component of T − u; all leaves in an n-vertex tree have weight n − 1. A centroid of a tree
is a vertex of minimum weight. Myrvold [15] used centroids extensively in studying the
reconstruction number of trees. To keep our presentation self-contained, we include short
proofs of some elementary observations.

Lemma 4.4 ([15]). An n-vertex tree T has one centroid or two adjacent centroids. It has
one when the minimum vertex weight is less than n/2, two when it equals n/2.
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Proof. If w(v) > n/2, then the neighbor of v in the largest component of T − v has smaller
weight, so centroids have weight at most n/2.

If w(v) < n/2, then the neighbor of v in each component of T − v has weight greater
than n/2, as do all other vertices of those components, so v is the only centroid.

If w(v) = n/2, then the neighbor of v in the largest component of T − v also has weight
n/2, and all other vertices have larger weight. �

A tree is unicentroidal or bicentroidal when it has one or two centroids, respectively.

Lemma 4.5 ([15]). Let v be the centroid in a unicentroidal tree T . If ℓ is a leaf in T , then
v is a centroid in T − ℓ.

Proof. Let T have n vertices. By Lemma 4.4, w(v) < n/2. The weight of v in T − ℓ is at
most (n− 1)/2, since deleting ℓ just reduces one component of T − v. By Lemma 4.4, v is a
centroid in T − ℓ. �

Theorem 4.6. If T is a unicentroidal tree having a leaf ℓ adjacent to the centroid, and T −ℓ
is unicentroidal, then drn(T ) ≤ 2.

Proof. Let T ′ = T − ℓ, and let T̂ be the card obtained by deleting the centroid of T . We use
the dacards (T ′, 1) and (T̂ , d). Note that ℓ is an isolated vertex in T̂ . By Lemma 4.5, the
degree of the centroid in T ′ is d − 1.

Let G be a graph having these dacards, from vertices u and v, respectively. By the first
dacard, G is a tree. Lemma 4.4 and the sizes of components in T̂ then make G unicentroidal
with centroid v. By Lemma 4.5, v is also the centroid in T ′. Thus v has degree d − 1 in
T ′, and T̂ has d components (including an isolated vertex), so G arises from T ′ by adding u
adjacent to the centroid. Hence G ∼= T . �

5 Caterpillars of special form

To show that drn(T ) ≤ 2 when T is a caterpillar other than H1, we find for each such
caterpillar two dacards that determine it. There is a particular choice of two dacards that
generally works (generated by a particular leaf and its neighbor), but this choice fails for
paths. The general choice also fails for several other classes of caterpillars. In this section we
find special pairs of dacards to permit reconstruction for caterpillars in these classes. These
choices also fail for paths, which is why we treated paths separately.

This approach of successively excluding special subfamilies until a general argument
handles the remaining graphs in the desired family is typical of reconstruction arguments.
It is the method in the original proof by Kelly [8] of reconstructibility of trees. It may be
that caterpillars themselves similarly form a special class whose exclusion permits a general
argument for reconstructibility of trees from two dacards.

The skeleton of a tree T is the subtree obtained by deleting all leaves from T . Caterpillars
are the trees whose skeletons are paths, and the skeleton of a caterpillar is called its spine.
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We use 〈v1, . . . , vs〉 to denote a path with vertices v1, . . . , vs in order. We use C(a1, . . . , as) to
denote a caterpillar with spine 〈v1, . . . , vs〉 formed by attaching ai leaf neighbors to vi for each
i ∈ {1, . . . , s}. We call (a1, . . . , as) the spine list. Note that C(a1, . . . , as) ∼= C(as, . . . , a1)
and that always a1 and as are both positive. Where convenient, we denote a repeated string
in this notation by enclosing it in parentheses and writing its multiplicity as an exponent.
For example, C(a, b, c, d, b, c, d, b, c, d, e, f) = C(a, (b, c, d)3, e, f).

Our aim in this section is to prove that drn(T ) ≤ 2 when T is a caterpillar having
the form C(1, 0, a3, . . . , as−2, 0, 1). Note that every path has this form. We begin with a
technical lemma that will restrict the form of caterpillars with special symmetry properties.
A palindrome is a list unchanged under reversal.

Lemma 5.1. Let B = (b1, . . . , bs). If (b1, . . . , bs) and (b3, . . . , bs) are palindromes, then either
B is constant, or s is odd and B alternates two values. If (b1, . . . , bs−1) and (b2, . . . , bs) are
palindromes, then either B is constant, or s is even and B alternates two values.

Proof. In the first case, alternating use of the palindrome requirements for (b1, . . . , bs) and
(b3, . . . , bs) yields b1 = bs = b3 = bs−2 = b5 = bs−4 = · · · , and similarly b2 = bs−1 = b4 =
bs−3 = b6 = bs−5 = · · · . If s is even, then the two lists index the same (all) positions, in
opposite order, and hence B must be constant. For odd s, the two sets are disjoint and may
have different values.

The proof of the second case is similar. �

In the remainder of the paper, T = C(a1, . . . , as), with spine 〈v1, . . . , vs〉, where vi is
adjacent to ai leaves in T . In the rest of this section, a1 = as = 1 and a2 = as−1 = 0. By
Proposition 4.2, drn(Ps+2) = 2. Since Ps+2 is the subcase a3 = · · · = as−2 = 0, we may
exclude that and let r = min{i : ai > 0 and 3 ≤ i ≤ s− 2}. To show drn(T ) ≤ 2, we present
two dacards that determine T . Let D1 and D2 be the dacards for leaves adjacent to v1 and
vr; we have D1 = (C1, 1) and D2 = (C2, 1), where

C1 = C(1, 0r−3, ar, . . . , as−2, 0, 1),

C2 = C(1, 0r−2, ar − 1, ar+1, . . . , as−2, 0, 1).

Let G be a graph reconstructed from dacards D1 and D2, with vertices u and v being the
corresponding deleted vertices. Since dG(u) = dG(v) = 1, either card forces G to be a tree.
We show that G ∼= T , with some exceptions where we will later use other dacards. We write
diam(G) for the diameter of G, which is the maximum distance between vertices in G.

Lemma 5.2. If T = C(1, 0, a3, . . . , as−2, 0, 1) and T is not a path, then the dacards D1 and
D2 determine T unless T satisfies one of the following conditions:

(1) T = C(1, 0p, 1, 0q, 1) with p, q ≥ 1;
(2) T = C(1, 0p+1, k, (α), k − 1, 0p, 1) with k ≥ 1, p ≥ 0, and (α) a palindrome.

Proof. From D2 it follows that G is a tree with diameter at least s+1. Since diam(G−u) = s
and s ≥ 5, it follows that u is adjacent in G to an endpoint of a longest path in G − u.
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Hence G is T or is C(L) with L = (1, 0r−3, ar, . . . , as−2, 0, 0, 1). Suppose the latter. Since
G− v ∼= C2, and both G and C2 have spines with s vertices, decreasing one term of L yields
the spine list L′ for C2 or its reverse, L′′. We use subscripts to index terms in these lists.

Case 1: Decreasing some Li by 1 yields L′.

index = 1, . . . , r−1, r, r+1, . . . , s−3, s−2, s−1, s

T = C(1, 0r−3, 0, ar, ar+1, . . . , as−3, as−2, 0, 1)

G = C(L) = C(1, 0r−3, ar, ar+1, ar+2, . . . , as−2, 0, 0, 1)

C2 = C(L′) = C(1, 0r−3, 0, ar−1, ar+1, . . . , as−3, as−2, 0, 1)

Since Lr−1 = ar > 0 = L′

r−1, changing L into L′ by decreasing one Li requires i = r − 1 and
ar = 1. Since no other change is allowed, we obtain ar − 1 = ar+1 = · · · = as−2 = 0. Hence
T = C(1, 0r−2, 1, 0s−r−1, 1), as in (1).

Case 2: Decreasing some Lj by 1 yields L′′.

index = 1, . . . , r−1, r, r+1, . . . , s−3, s−2, s−1, s

T = C(1, 0r−3, 0, ar, ar+1, . . . , as−3, as−2, 0, 1)

G = C(L) = C(1, 0r−3, ar, ar+1, ar+2, . . . , as−2, 0, 0, 1)

C2 = C(L′′) = C(1, 0, as−2, . . . , ar+1, ar−1, 0r−3 , 0, 1)

index = 1, 2, 3, . . . , s−r, s−r+1, . . . , s−1, s

We first restrict j. By construction, 3 ≤ r ≤ s − 2. Since Li = ai+1 for 2 ≤ i ≤ s − 2, we
have Lr−1 + Ls−r+1 = ar + as−r+2. Since L′′

s−r+1 = ar − 1, and L′′

i = L′

s+1−i = as+1−i for
i 6= s − r + 1, we have L′′

r−1 + L′′

s−r+1 ≤ as−r+2 + ar − 1. Hence j ∈ {r − 1, s − r + 1}.
Since Li = 0 for 2 ≤ i ≤ r − 2, we have j ≥ r − 1. Since only position j changes,

L′′

i = Li = 0 for 2 ≤ i ≤ r − 2. If s − r + 1 ≤ r − 2, then ar − 1 = L′′

s−r+1 = 0 and
T = C(1, 0r−2, 1, 0s−1−r, 1), which satisfies description (1).

If s − r + 1 = r − 1, then as+1−i = L′′

i = 0 for 2 ≤ i ≤ r − 2. We obtain T =
C(1, 0r−2, ar, 0

r−3, 1) and G = C(1, 0r−3, ar, 0
r−2, 1), and hence G ∼= T .

Finally, consider s− r+1 > r−1. Now ai+1 = Li = L′′

i = as+1−i for r ≤ i ≤ s− r. Hence
(ar+1, . . . , as−r+1) is a palindrome; write it as (α). If j = r − 1, then as−r+2 = Ls−r+2 =
L′′

s−r+2 = ar−1, but if j = s−r+1 then as−r+2 = ar. Also ai+1 = Li = L′′

i = 0 for s−r+2 ≤
i ≤ s− 3. Thus T = C(1, 0r−2, k, (α), k′, 0r−3, 1) and G = C(1, 0r−3, k, (α), k′, 0r−2, 1), where
k = ar ≥ 1 and k′ ∈ {k, k − 1}. If k′ = k, then G ∼= T ; otherwise, description (2) holds. �

Since C(a1, . . . , as) ∼= C(as, . . . , a1) for every caterpillar by reversing the spine, we have
shown that a caterpillar of the form C(1, 0, a3, . . . , as−2, 0, 1) is determined by the stated
choice of dacards taken from one end or the other unless under both directions the caterpillar
has one of the exceptional forms listed. In these cases, the dacards used in Lemma 5.2 do
not determine T . Our argument to handle these exceptional forms has exceptions itself,
covered in the next three results. In all exceptional cases, we find two dacards that work.
We consider first the type (1) exceptional form in Lemma 5.2.

15



Proposition 5.3. If T = C(1, 0p, 1, 0q, 1), where p, q ≥ 0, then drn(T ) ≤ 2.

Proof. Here T has one vertex of degree 3, and it has one leaf neighbor. Use the resulting
dacards (Pp+2+K1+Pq+2, 3) and (Pp+q+5, 1). Let G be a graph with these dacards generated
by vertices v and u, respectively. First (Pp+q+5, 1) forces G to be a tree. Since G − u is a
path, v is the only vertex of degree 3 in G. Hence v has a neighbor in each component of
Pp+2 + K1 + Pq+2, and that neighbor cannot have degree 3 in G. We obtain G ∼= T . �

Among the type (2) lists (1, 0p+1, k, (α), k − 1, 0p, 1), we consider several special cases.

Proposition 5.4. If T = C(1, 0p+1, (2, 0)q, 1, 0p, 1), where p, q ≥ 1, then drn(T ) ≤ 2.

Proof. Let j = p + 3 + 2 ⌊q/2⌋. The spine vertex vj has degree 4. Consider the dacards
obtained by deleting vj or an adjacent leaf ℓ. Since T − ℓ is a tree with 2p + 4q + 6 vertices,
every reconstruction G is a tree with 2p + 4q + 7 vertices. Note that T − vj consists of two
isolated vertices and two caterpillars. Regardless of the parity of q, the caterpillars have
p + 3 + 2q and p + 1 + 2q vertices.

Let u and v be the leaf and non-leaf vertices deleted from G to obtain these dacards.
Since p + 3 + 2q < (2p + 4q + 7)/2, Lemma 4.4 implies that v is the centroid of G. The
tree G− u has 2p + 4q + 6 vertices and is bicentroidal, with vj and one of its neighbors each
having weight p + 2q + 3. By Lemma 4.5, v is one of these two vertices. Since these vertices
have degrees 3 and 2 in G−u, and dG(v) = 4, the graph G is obtained by making u adjacent
to the one centroidal vertex having degree 3 in G − u, which is vj. Thus G ∼= T . �

Proposition 5.5. If T = C(1, 0p, 1q, 0p, 1), where p ≥ 1 and q ≥ 0, then drn(T ) ≤ 2.

Proof. If q = 0, then T is a path, and Proposition 4.2 applies. If q = 1, then Proposition 5.3
applies. Now consider q ≥ 2. Note that s = 2p + q + 2, so diam(T ) = 2p + q + 3.

Let x be the leaf adjacent to vp+2. Consider the dacards obtained by deleting vp (with
degree 2) and x. Note that T −x = C(1, 0p+1, 1q−1, 0p, 1) and T − vp = Pp +C(2, 1q−1, 0p, 1).
Let G be a reconstruction from these two dacards, with G− u ∼= T − x and G− v ∼= T − vp.
As usual, the leaf dacard forces G to be a tree. Since diam(G − u) = 2p + q + 3 = diam T ,
the two neighbors of v in G must be endpoints of longest paths in the two components of
G− v. Hence G ∼= T or G = C(2, 1q−1, 02p+1, 1), depending on which end of the longest path
in the non-path component in G − v is adjacent to v.

In the latter case, since the spine endpoints in G − u each have only one leaf neighbor,
u must be adjacent in G to the spine vertex having two leaf neighbors. Now G − u ∼=
C(1q, 02p+1, 1). Since p ≥ 1 and q ≥ 2, this graph is not isomorphic to T −x, a contradiction.
Hence this case does not arise, and G ∼= T . �

We now have the tools to prove the main result of this section.

Theorem 5.6. If T = C(1, 0, a3, . . . , as−2, 0, 1), then drn(T ) = 2.
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Proof. By Proposition 4.2, we may assume that T is not a path. In Lemma 5.2, we proved
that the dacards for the leaves adjacent to v1 and the next spine vertex having a leaf neighbor
determine T unless both T and its reverse description C(as, . . . , a1) have the forms specified
in Lemma 5.2. If the description is as in (1) of Lemma 5.2, then T is a path plus one edge,
and Proposition 5.3 yields drn(T ) ≤ 2.

Hence we may assume that both T and the reverse description T ′ are as in (2) of
Lemma 5.2. Letting L be the spine list of T , we thus have

L = (1, 0p+1, k, (α), k − 1, 0p, 1) = (1, 0q, ℓ − 1, (β), ℓ, 0q+1, 1)

for some palindromes (α) and (β) and integers p, q, k, ℓ such that p, q ≥ 0 and k, ℓ ≥ 1.
If k ≥ 2, then the last nonzero entry of L before as is both as−p−1 and as−q−2, so q = p−1

and ℓ = k − 1. Hence

L = (1, 0p+1, k, (α), k − 1, 0p, 1) = (1, 0p−1, k − 2, (β), k − 1, 0p, 1),

which implies that (ap+4, . . . , as−p−2) and (ap+2, . . . , as−p−2) are both palindromes and that
k = 2. Since ap+2 = 0 6= 2 = ap+3, Lemma 5.1 yields T = C(1, 0p+1, (2, 0)s/2−p−2, 1, 0p, 1),
where s is even and p ≥ 1. Since L contains at least one 2, Proposition 5.4 yields drn(T ) ≤ 2.

By reversing L, the same argument holds when ℓ ≥ 2. Finally, when k = ℓ = 1,

L = (1, 0p+1, 1, (α), 0p+1, 1) = (1, 0q+1, (β), 1, 0q+1, 1).

Since ap+3 = 1 and a2 = · · · = aq+2 = 0, we have p ≥ q. Since as−q−2 = 1 and as−p−1 =
· · · = as−1 = 0, we have q ≥ p. Thus p = q, and (ap+4, . . . , as−p−2) and (ap+3, . . . , as−p−3) are
palindromes. Since ap+3 = as−p−2 = 1, Lemma 5.1 implies that ap+3 = · · · = as−p−2 = 1, so
T = C(1, 0p+1, 1s−2p−4, 0p+1, 1). By Proposition 5.5, again drn(T ) ≤ 2. �

6 General caterpillars

Having shown that drn(T ) ≤ 2 whenever T has the form C(1, 0, a3, . . . , as−2, 0, 1), we may
exclude such caterpillars (and stars) from our study of general caterpillars. In the general
case, we will use the dacards obtained by deleting the first spine vertex v1 and one of its leaf
neighbors. These determine T except in some cases. Again we handle the exceptional cases
separately, using other dacards. The next three propositions handle these cases. Note that
setting k = 0 in the first would yield a path.

Proposition 6.1. If T = C(k + 1, km, k + 1), where k,m ≥ 1, then drn(T ) = 2.

Proof. The cards obtained by deleting leaf neighbors of v1 and v2 are C(km+1, k + 1) and
C(k + 1, k − 1, km−1, k + 1). Let G share these dacards, with u and v being the respective
added vertices of degree 1; G must be a tree. Since the ends of the spine in G− v both have
degree k+2, G has two vertices at distance m+1 having degree at least k+2. In G−u there
is only one vertex of degree k + 2 at distance m + 1 from a vertex of degree at least k + 1;
these two are the ends of the spine in G − u. Hence G must arise from G − u by making u
adjacent to the spine endpoint with lower degree, yielding G ∼= C(k + 1, km, k + 1). �
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Note that for C(k + 1, km, k + 1), the dacards for a spine endpoint and one of its leaf
neighbors are shared also by C(km, k + 1, k + 1). Similarly, in the next proposition, the
dacards for C(2, 0s−2, 2) generated by a spine endpoint and one of its leaf neighbors are
shared also by C(1, 0s−4, 1, 0, 2).

A branch vertex is a vertex with degree at least 3. Let the broom Bk be the caterpillar
formed by giving two leaf neighbors to one end of Pk, and call the other end of the path the
tip of Bk when k > 1. Note that B1

∼= P3, and that T below reduces to H1 when s = 2.

Proposition 6.2. If T = C(2, 0s−2, 2), where s ≥ 3, then drn(T ) = 2.

Proof. Let p = ⌈s/2⌉. Note that vp is a centroid and vp−1 is not. We use their dacards.

C1 = T − vp C2 = T − vp−1 D1 D2

s ≥ 5 Bp−1 + Bs−p Bp−2 + Bs−p+1 (C1, 2) (C2, 2)
s ∈ {3, 4} P3 + Bs−2 2K1 + Bs−1 (C1, 2) (C2, 3)

Let G have dacards D1 and D2, where C1 = G − u and C2 = G − v. If s ≥ 5, then
Lemma 4.1 implies that G is a tree. For s ∈ {3, 4}, again G is a tree, because D1 forbids
isolated vertices, and then D2 gives v a neighbor in each component of G− v. It remains to
determine which tree G is.

Case 1: s ≥ 5 and uv ∈ E(G). Since dG(v) = 2, vertex v is a leaf in G − u, and G − v
arises from G− u by deleting the leaf v in Bp−1 + Bs−p and attaching u to one vertex in the
other component of G − u. Since G − v = Bp−2 + Bs−p+1, we conclude that v is the tip of
Bp−1, and u is adjacent to the tip of Bs−p in G − u. Now G ∼= T .

Case 2: s ≥ 5 and uv /∈ E(G). Since uv /∈ E(G), we have dG−u(v) = 2. Hence G− u− v
has three components: a path P and two brooms. Since G− v consists of two brooms, with
different sizes from those in G − u, we conclude that u is adjacent in G − u − v to one end
of P and the tip of the broom not containing v. Since p = ⌈s/2⌉, the components of G − v
and G − u differ in size by at most 2. Therefore, P is a single vertex, and u is adjacent to
the tips of both brooms in G − u. Again G ∼= T .

Case 3: s = 3. Here C1 = 2P3, so ∆(G) ≤ 3. Hence v cannot be adjacent to the center
of Bs−p+1 (which equals K1,3). With v adjacent to a leaf of Bs−p+1, we have G ∼= T .

Case 4: s = 4. Here T = C(2, 0, 0, 2), with C1 = P3 + K1,3 and C2 = 2K1 + B3. Since
the neighbor of u in component K1,3 of G − u cannot attain degree 3 in G, vertex v must
be the center of P3 in G − u, adjacent to u. If u now is adjacent to the center of K1,3, then
∆(G − v) = 4. Hence u is a adjacent to a leaf of K1,3 in G − u, and G ∼= T . �

Proposition 6.3. If T = C(k+2, (0, k)m, 0, k+2), with k ≥ 0 and m ≥ 1, then drn(T ) ≤ 2.

Proof. The case k = 0 is given by Proposition 6.2, so we may assume that k ≥ 1. Now T is
unicentroidal and has a leaf adjacent to the centroid whose deletion leaves a unicentroidal
subtree. By Theorem 4.6, drn(T ) = 2. �
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Most caterpillars are determined by the dacards corresponding to an end of the spine
and one of its leaf neighbors. Our final lemma proves that this holds except for caterpillars
in four special classes. The proof of the theorem then uses the earlier lemmas to handle the
exceptional classes. We have noted explicitly that the general choice fails for C(2, 0s−2, 2),
which has Type 2 below, and for C(k + 1, km, k + 1), which has Type 3.

Lemma 6.4. If T = C(a1, . . . , as), then the dacards for an endpoint of the spine and one of
its leaf neighbors determine T unless T is one of the following four types:

(1) T = C(1, 0, a3, . . . , as) with s ≥ 3;
(2) T = C(2, (0, 0)m, (1, 0)n, 2) with m,n ≥ 0;
(3) T = C(k + 1, km, (k + 1)n) with k,m, n ≥ 1;
(4) T = C(k + 2, (0, k)m, (0, k + 1)n, 0, k + 2) with k, n ≥ 0 and m ≥ 1.

Proof. Since drn(K1,t) = 1, we may assume that s ≥ 2. Recall that a1, as ≥ 1. Specify the
dacards by deleting a leaf neighbor ℓ of v1 and by deleting v1. Let T1 = T − ℓ, and let T2

be the nontrivial component of T − v1. The dacards are (T1, 1) and (a1K1 + T2, a1 + 1). Let
G be a graph sharing these dacards, with u and v being the corresponding deleted vertices.
The dacard (T1, 1) implies that G is a tree. Let x be the neighbor of u in G.

We list four events; always (U1 or U2) and (V1 or V2) occurs. Note that if U1 and V1
occur, then T is Type 1, so we may exclude this event.

U1: a1 = 1, diam T1 = s, T1 = C(a2 + 1, a3, . . . , as).
U2: a1 > 1, diam T1 = s + 1, T1 = C(a1 − 1, a2, . . . , as).
V1: a2 = 0, diam T2 = s − 1, T2 = C(a3 + 1, a4, . . . , as).
V2: a2 > 0, diam T2 = s, T2 = C(a2, a3, . . . , as).

We prove that G ∼= T unless T has one of the specified Types.

Claim: G is a caterpillar. Suppose otherwise. Since G− u is the caterpillar T1, vertex x
is a leaf neighbor in G− u of an internal vertex of the spine of G− u, so diam G = diam T1.
If v = x, then diam T2 = diam T1, so U1 and V2 occur. Thus T1 = C(a2 + 1, a3, . . . , as), and
we obtain T2 from T1 by deleting x, which decreases some value in {a3, . . . , as−1}. Allowing
for reversal, we now have {a2 + 1, as} = {a2, as}, which is impossible.

If v 6= x, then reducing G − v to a caterpillar plus isolated vertices requires v to be an
endpoint of the spine of T1, with x being a leaf neighbor of the spine neighbor of v. Again
diam T2 = diam T1, so a1 = 1 and G − v ∼= G − x. We obtain the same contradication.

Since dG(v) = a1 + 1 > 1 and G − v is a caterpillar plus isolated vertices, v is an
endpoint of the spine of G. We consider cases depending on the diameter of T1 and whether
diam G = diam T1. We also consider the location of x and v relative to the description of
G− u as T1. These give a spine list L for T2, which we compare with the spine list L′ for T2

from event V1 or V2. The two lists must be the same (L = L′) or reversed (“L‖L′”).

Case 1: diam G > diam T1 = s + 1. Here U2 occurs, so a1 > 1. Since diam G > diam T1,
x is a leaf neighbor of an endpoint of the spine of T1. Hence G = C(1, a1 − 2, a2, . . . , as) or
G = C(a1−1, a2, . . . , as−1, as−1, 1). Since dG(v) > a1 > 1 and v is an endpoint of the spine,
the second description is forbidden, and v 6= x. Now dG(v) = as + 1, so as = a1.
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Since deleting v can only reduce the diameter of G by 2, and diamT2 ≤ s, we have
as−1 = 0, and diamT2 = s. Now L = (1, a1 − 2, a2, . . . , as−2 + 1), and L′ = (a2, . . . , as). If
L‖L′, then 1 = as = a1 > 1, a contradiction.

If L = L′, then 1 = a2 = a4 = · · · and a1 − 2 = a3 = a5 = · · · . Since as−1 = 0, we cannot
have s odd. With s even and a1 = k + 2, the spine list of T is (k + 2, (1, k)s/2−1, 2), but now
as = a1 requires k = 0, so T is Type 2 with m = 0 and n = s/2 − 1.

Case 2: diam G > diam T1 = s. Here U1 occurs, so a1 = 1 and T1 = C(a2 +1, a3, . . . , as).
Again x is a leaf neighbor of an endpoint of the spine of T1. Hence G = C(1, a2, a3, . . . , as)
or G = C(a2 +1, a3, . . . , as−1, as − 1, 1). In the first case, already G ∼= T . In the second case,
since dG(v) = 2, we may have v = x; otherwise, a2 = 0. If a2 = 0, then T is Type 1.

Hence v = x and a2 > 0 (Event V2), so L′ = (a2, . . . , as) and diam T2 = s. Now deleting
v from G reduces the diameter only by 1, so as > 1 and L = (a2 + 1, a3, . . . , as−1, as − 1).
The first entry forbids L = L′. If L‖L′, then a2 = as − 1 and (a3, . . . , as−1) is a palindrome.
Now the spine list for G is the reverse of the spine list for T , so G ∼= T .

Case 3: diam G = diam T1 = s. Here x is on the spine of T1, and a1 = 1. If a2 = 0,
then G is Type 1, so we may assume a2 > 0. Hence V2 occurs, so diam T2 = s. However,
this contradicts G − v ∼= T2, since deleting an endpoint v of the spine of a caterpillar with
diameter s reduces the diameter of the nontrivial component below s.

Case 4: diam G = diam T1 = s + 1. Here x is on the spine of T1, and a1 > 1. The spine
list for G is obtained from (a1 − 1, a2, . . . , as) by increasing position j by 1, for one value j.
If j = 1, then G ∼= T , so assume j > 1. Now the endpoint of the spine that corresponds to
position 1 in the spine list has degree a1 in G, so this vertex cannot be v.

Hence we may assume that v corresponds to the other end of the spine list of G. If
j ≤ s− 1, then dG(v) = as + 1 = a1 + 1, so a1 = as. The spine list L′ for T2 obtained from T
is A: (a2, a3, . . . , as) or B: (a3 + 1, a4, . . . , as) with a2 = 0. The spine list L for T2 obtained
from G starts with a1−1, so L‖L′ requires a1−1 = as, contradicting a1 = as. Hence L = L′.

The spine list L for T2 obtained from G arises from A: (a1 − 1, a2, . . . , as−1) or from B:
(a1 − 1, a2, . . . , as−3, as−2 + 1) (with as−1 = 0) by increasing position j by 1, except that
j = s − 1 and as−1 = 0 yields L = (a1 − 1, a2, . . . , as−2, 1), which is forbidden since L = L′

then requires 1 = as = a1, contradicting a1 > 1.
Since L and L′ have equal length, both are A or both are B. In case A, a1−1 = a2 =

· · · = aj = aj+1−1 = · · · as−1, and T is Type 3 with k = a1−1, m = j−1, and n = s− j. In
case B with j odd, a1−2 = a3 = a5 = · · · = aj = aj+2−1 = · · · and 0 = a2 = a4 = · · · . If s is
even, then 0 = a2 = as−2 = as−1 = a1−1, and G is Type 1. If s is odd, then the first equality
ends with as − 2, and T is Type 4 with a1 − 2 = k, m = (j − 1)/2, and n = (s − j)/2 − 1.
With j even, instead we have a1−2 = a3 = · · · and 0 = a2 = a4 = · · · = aj = aj+2−1 = · · · .
If s is odd, then a1 − 2 = as − 1, contradicting as = a1. If s is even, then by both strings of
equalities and as = a1, we conclude that T is Type 2 with m = j/2 and n = (s − j)/2 − 1.

Finally, if j = s, then v = x and a1 = dG(v) = as +1, and the spine list L for T2 obtained
from G is (a1−1, a2, . . . , as−1) or is (a1−1, a2, . . . , as−3, as−2 +1) with as−1 = 0. The lengths
of L′ and L must be equal. Thus in the first case L = L′ yields a1 − 1 = a2 = · · · = as and
G ∼= T (by reversal), but L‖L′ requires a1 − 1 = as + 1, which contradicts a1 = as + 1. In
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the second case, L = L′ yields 0 = a2 = a4 = · · · and a1 − 2 = a3 = a5 · · · . If s is even,
then 0 = a2 = as−2 = as − 1 = a1 − 2 = as−1, and T is Type 1 (reversed). If s is odd, then
a1 − 2 = as−2 = as − 1 and 0 = a2 = as−1, and G ∼= T (reversed). Finally, L‖L′ confirms
a1 − 1 = as and requires a2, . . . , as−1 to be a palindrome; again G ∼= T (by reversal). �

Theorem 6.5. If T is a caterpillar that is neither H1 nor a star, then drn(T ) = 2.

Proof. Let T = C(a1, . . . , as). Recall that T ∼= T ′, where T ′ = C(as, . . . , a1). Hence the
choice of two dacards taken from one end or the other in T uniquely determines T unless
both T and T ′ have a Type listed in Lemma 6.4.

Suppose first that T is Type 1. If T ′ also is Type 1, then T = C(1, 0, a3, . . . , as−2, 0, 1),
and drn(T ) ≤ 2 by Theorem 5.6. Since all other Types have as > 1, the reversal of a Type
1 caterpillar cannot be Type 2, 3, or 4. This completes the proof when T (or T ′) is Type 1.

Suppose next that T is Type 2. Since s has different parity in Type 2 and Type 4,
T ′ is not of Type 4. If T ′ is Type 2 or Type 3, then either T = C(2, 2) and T ∼= H1,
or T = C(2, (0, 0)m, 2) with m ≥ 1, in which case drn(T ) ≤ 2 by Proposition 6.2. This
completes the proof when T (or T ′) is Type 2.

If T and T ′ are both Type 3, then T = C(k +1, km, k +1) with k,m ≥ 1, and drn(T ) ≤ 2
by Proposition 6.1. Since the spine list is all positive for Type 3 and not for Type 4, T and
T ′ cannot be one of each.

Finally, if T and T ′ are Type 4, then n = 0. Now drn(T ) ≤ 2 by Proposition 6.3. �

Building on our result, one could seek a choice of two dacards that determines T when
T is not a caterpillar, with few exceptions or exceptional families that can be reconstructed
from other pairs of dacards. This could be a route to a proof of Conjecture 1.2.
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