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Abstract

The residue r(G) of a graph G is the number of zeros left after fully reducing the
degree sequence of G via the Havel–Hakimi algorithm. The residue is one of the
best known lower bounds on the independence number of a graph in terms of
the degree sequence. Though this bound may be arbitrarily weak for graphs in
general, we show that if G is the unique realization of its degree sequence, then
the independence number of G is either r(G) or r(G) + 1, and we characterize
the unigraphs corresponding to each value.

Keywords : Havel-Hakimi algorithm, residue, unigraph, independence number,
canonical decomposition, combinatorial problems

1. Introduction

The residue is a parameter of the degree sequence of a graph, computed by
successive applications of the Havel–Hakimi reduction step. Favaron et al. [1]
showed that the residue of a degree sequence gives a lower bound on the in-
dependence number of any graph having that degree sequence. In fact, among
functions of degree sequences, the residue is one of the best lower bounds cur-
rently known (see [5]). Its precision is limited, however, by the fact that it is
determined solely by the degree sequence, while distinct realizations of a degree
sequence may have different independence numbers. In this paper we study the
residue and independence number of unigraphs, graphs that are the unique re-
alizations of their respective degree sequences. We show that the independence
number of a unigraph can exceed its residue by at most 1, and most often the
two values are the same. As we do so, we show how the residue of a graph be-
haves nicely with respect to the canonical decomposition of a graph, as defined
in [9].

In this paper all graphs are finite and simple. We denote the degree sequence
of a graph G by d(G) and, unless otherwise stated, order its terms (d1, . . . , dn)
so that d1 ≥ · · · ≥ dn. We use superscripts to denote multiple terms with
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the same value; for example, (3, 3, 2, 2, 2, 2) will be written as (32, 24). A list
d of nonnegative integers is graphic if it is the degree sequence of some graph,
and a graph G is a realization of d if d(G) = d. We use α(G) to denote the
independence number of G.

The Havel–Hakimi reduction process was introduced in [3, 4] as a means of
determining whether or not a list d = (d1, . . . , dn) of nonnegative integers with
even sum is graphic. A reduction step on d removes the first term d1, subtracts
1 from the d1 largest remaining terms, and reorders the terms, if necessary, into
descending order. We let d1 denote the list obtained via a reduction step on
d. The Havel–Hakimi Theorem characterizes graphic integer lists in terms of
reduction steps.

Havel–Hakimi Theorem. The list d is graphic if and only if d1 is graphic.

As a corollary we see that d is graphic if and only if it can be reduced to a list
of zeros by successive reduction steps. If s is the smallest number of reduction
steps necessary to reduce d to a list of zeros, then for i ∈ {0, . . . , s} we let di

denote the list resulting from i successive reduction steps on d. The residue of
d, denoted r(d), is the number of zeros in ds; alternatively, r(d) = n − s. The
residue of a graph G, denoted r(G), is defined by r(G) = r(d(G)).

Most proofs of the Havel–Hakimi Theorem (see [14], for example) proceed
inductively and actually prove the following.

Proposition 1.1. If d is a graphic integer list and d1, . . . , ds are the Havel–
Hakimi reductions of d, then there exists a realization G of d and vertices
v1, . . . , vs in G such that deg(G− v1 − · · · − vi) = di for all i ∈ {1, . . . , s}.

For the realization G in Proposition 1.1, r(G) gives a lower bound on α(G).
Perhaps surprisingly, this relationship holds true for all realizations of d.

Theorem 1.2 ([1]; see also [2] and [7]). For any graph G, the residue is at most
the independence number, that is, r(G) ≤ α(G).

For some classes of graphs, this bound is sharp. For instance, the following
result is an easy exercise in induction.

Observation 1.3. A graph has residue 1 if and only if it is a complete graph.

The bound in Theorem 1.2 can also be arbitrarily weak. For example, for
k ≥ 1 the list d =

(

k2k
)

has residue 2, though the complete bipartite graph
Kk,k is a realization of d with independence number k. Note, however, that d

also has a realization G formed by adding the edges of a matching of size k to
2Kk; this realization satisfies r(G) = α(G). Thus in evaluating the value of the
bound in Theorem 1.2, we are led to the following question.

Question 1. If d is a graphic list, then how big can the difference be between
r(d) and min{α(G) : G is a realization of d}?

It is known that the difference in Question 1 can exceed zero; the list (48, 2),
for instance, has residue 2, though it can be verified directly that every realiza-
tion has independence number at least 3. On the other hand, the difference can
be bounded in some cases, as a theorem of Nelson and Radcliffe [6] shows.
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Theorem 1.4 ([6]). If d is a graphic list that is semi-regular (i.e., its maximum
and minimum values differ by at most 1), then d has a realization G such that
r(d) ≤ α(G) ≤ r(d) + 1.

As we saw above, if a degree sequence such as (k2k) has realizations with
widely varying independence numbers, then its residue will differ greatly from
α(G) for some realization G. How good is the residue as an estimator for α,
though, when α cannot differ much among realizations of d?

In this paper we approach this question by limiting the number of realizations
of d. We prove the following.

Theorem 1.5. If G is a unigraph, then r(G) ≤ α(G) ≤ r(G) + 1.

The paper is organized as follows. In Section 2 we give a bound on the
residue that applies to all graphic lists and use it to show that r(G) = α(G)
for any split graph G. In Section 3 we show how the Havel–Hakimi reduction
process interacts with the the canonical decomposition of a graph, as defined by
Tyshkevich [8, 9], and reduce the problem of finding the residue of a graph or
graphic list to finding the residue of its “core.” We conclude in Section 4 with
a proof of Theorem 1.5.

2. A bound on the residue

For any graphic list d = (d1, . . . , dn), define q(d) to be max{k : dk ≥ k}
if d1 > 0 and 0 otherwise. Our first result in this section relates r(d) and
independence numbers of realizations of d to q(d).

Lemma 2.1. If G is any n-vertex graph with degree sequence d, then r(G) ≤
α(G) ≤ n− q(d).

Proof. The first inequality holds by Theorem 1.2. Let W be a subset of V (G)
containing q(d) vertices of highest degree in G. If S is any independent set
containing a vertex w of W , then |S| ≤ n− d(w) ≤ n− q(d), so an independent
set of size greater than n− q(d) can contain no vertex from W . However, since
there are only n− q(d) vertices in V (G) \W , the proof is complete.

A graph is a split graph if its vertex set can be partitioned into disjoint sets
A and B such that A is an independent set and B is a clique. As we will show,
the bounds in Lemma 2.1 hold with equality for split graphs.

If for a graph G there is a list of vertices v1, . . . , vs in G such that deg(G−
v1 − · · · − vi) = di for all i ∈ {1, . . . , s}, and ds is a list of r(d(G)) zeros, we say
that v1, . . . , vs is a list of reducing vertices for G. Proposition 1.1 implies that
for every graphic list there is a realization having a list of reducing vertices.

Proposition 2.2. If G is an n-vertex split graph with degree sequence d, then
r(d) = α(G) = n− q(d).
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Proof. By Lemma 2.1, to prove the equalities it suffices to prove that n−q(d) ≤
r(d).

Let d = (d1, . . . , dn). Choose a partition A,B of V (G) into an independent
set and a clique, respectively, so that |A| is maximized; this implies that every
vertex in B has a neighbor in A. By Proposition 1.1, we may assume that G

has a list S of reducing vertices; let v1, . . . , vs be the vertices of this list, chosen
so as to maximize |S ∩B|.

If S * B, then we may let i be the smallest index such that vi ∈ A. Let
G′ = G− v1 − . . . vi−1 and B′ = B − v1 − · · · − vi−1. By definition vi must be
a vertex of maximum degree in G′, so its degree must be at least as big as that
of a vertex in B′ with highest degree. Furthermore, since G′ is split it is easy
to show that the degree of any vertex in B′ cannot be smaller than the degree
of any vertex in A. It follows that vi has the same degree as every vertex in
B′, and these degrees are all equal to |B′|. It follows further that B′ ∪ {vi} is
a clique, and G′ ∼= K|B′|+1 + cK1 for some nonnegative integer c. Deleting all
vj such that j ≥ i from G′ leaves a collection of isolated vertices, including a
vertex w from B′. One easily sees, however, that replacing vi by w in the list
v1, . . . , vs gives a list of reducing vertices for G that has a larger intersection
with B, a contradiction. Thus S ⊆ B.

Since every vertex in B has a neighbor in A, we have dG(vs) ≥ |B| ≥ |S| = s,
so q(d) ≥ s. This implies that n − q(d) ≤ n − s = r(d), so the proof is
complete.

3. Canonical decomposition and residues

In preparation for our proof of Theorem 1.5 in the next section, we introduce
the canonical decomposition of a graph or graphic list, as defined by Tyshke-
vich [8, 9]. We show how this canonical decomposition affects the residue of a
graph or list.

A splitted graph G(A,B) is a split graph G with a specified partition A,B

of its vertex set such that A is an independent set and B is a clique. We form
the composition G(A,B) ◦ H of a splitted graph G(A,B) and a graph H by
adding to the disjoint union of G and H all edges having an endpoint in B and
an endpoint in the vertex set of H . For example, if H and G are paths with
3 and 4 vertices, and A and B are the unordered pairs of the endpoints and
midpoints of G, respectively, then G(A,B)◦H is shown in Figure 1. If L is a list
of integers, let |L| denote the number of terms in the list. We denote the degree
sequence of a splitted graph by (dB ; dA), where dB and dA are the lists (written
in descending order) of vertex degrees of vertices in B and A, respectively. We
define the composition (dB ; dA) ◦ dC of the degree sequences of a splitted graph
and of a graph to be the list formed by concatenating dA, dB, and dC , adding
|dC | to the values from dB and |dB| to the values from dC , and putting the
result in descending order. Note that (dB ; dA) ◦ dC is the degree sequence of
the composition of a splitted graph with degree sequence (dB; dA) and a graph
with degree sequence dC .
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Figure 1: The composition of P4 and P3

Note also that in a composition G(A,B) ◦ H , the degrees of vertices in A

are strictly less than the degrees of vertices in the vertex set of H , which are in
turn strictly less than the degrees of vertices in B.

A graph is decomposable if it can be expressed as the composition of a
nonempty split graph and a nonempty graph; it is indecomposable otherwise.
Tyshkevich showed that every graph has a unique expression as a composition
Gk(Ak, Bk) ◦ · · · ◦ G1(A1, B1) ◦ G0, where each Gi is indecomposable; this is
the canonical decomposition of the graph, and the graphs Gi are the canonical
components of G. Note that G1, . . . , Gk are split graphs, while the “core” G0

may not be. Note further that the composition operation ◦ is associative, so no
grouping parentheses are needed in a canonical decomposition. Decomposable
and indecomposable graphic lists and the canonical decomposition of a graphic
list are similarly defined, and the analogous uniqueness result holds for graphic
lists. Furthermore, a graph is indecomposable if and only if its degree sequence
is indecomposable.

We now show how residues interact with the canonical decomposition.

Observation 3.1. If d is obtained by adding k zeros to the graphic list c, then
r(d) = k + r(c).

Theorem 3.2. If the graphic list d can be expressed as the composition d =
(dB; dA) ◦ dC , where (dB ; dA) is indecomposable and both (dB; dA) and dC are
nonempty, then r(d) = |dA|+ r(dC).

Proof. Suppose d has Havel–Hakimi reductions d1, . . . , ds. Let G = G1(A,B) ◦
G[C] be a realization of d with a list of reducing vertices v1, . . . , vs. Denote this
set of vertices by S. We claim that |S| ≥ |dB | and {v1, . . . , v|dB |} = B.

Each edge in G must have as an endpoint an element of S, and since G[B]
is a complete graph S must contain at least |B| − 1 vertices of B; since each
vertex in B has a neighbor outside of B, we conclude that |S| ≥ |B| = |dB|.

Note that in G the vertices in B have degrees strictly greater than those of
vertices in C, which are in turn strictly greater than the degrees of vertices in
A. Hence v1 ∈ B. Indeed, suppose the graph H is formed by deleting from G a
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Figure 2: The graph U2

subset of B of size k, and let B′ be the set of vertices remaining in B. During
the deletion each vertex of B′ has its degree reduced by k, as does each vertex
in C. Hence the degrees of vertices B′ are still strictly larger than the degrees
of vertices in C in H .

Thus the only way one of v1, . . . , v|dB | might not lie in B is if after deleting
v1, . . . , vk (with k < |B|) some vertex a of A has degree (in the resulting graph
H) greater than or equal to the maximum degree of a vertex in B′. Since each
vertex in B′ is adjacent to every other vertex in B′, every vertex in C, and at
least one vertex in A, and a only has neighbors in B′, we have a contradiction.

Thus {v1, . . . , v|dB |} = B, and by Observation 3.1,

r(d) = r(G) = r(G − v1 − · · · − v|dB |) = |dA|+ r(dC),

as desired.

Corollary 3.3. If G = G1(A,B) ◦ G0, where V (G0) is nonempty (and where
neither G0 nor G1 need be indecomposable), then r(G) = |A|+ r(G0).

4. Residues of unigraphs

As stated above, a unigraph is a graph that is the sole realization (up to
isomorphism) of its degree sequence. Examples of unigraphs include complete
graphs, graphs of the form mK2, and cycles of length up to 5. In this section we
prove Theorem 1.5 by exploiting a characterization of unigraphs due to Tyshke-
vich and Chernyak [10, 11, 12, 13] (see also [9]). The canonical decomposition
is key in this characterization.

Theorem 4.1 ([9]). G is a unigraph if and only if each of its canonical com-
ponents is a unigraph.

Thus to characterize unigraphs it suffices to characterize indecomposable
unigraphs. For our present purposes, it will suffice to know the nonsplit inde-
composable unigraphs. Let Um denote the graph formed by taking a chordless
4-cycle and m triangles, choosing a vertex in each cycle, and identifying these
vertices to form a connected graph. Figure 2 shows the graph U2.
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Theorem 4.2 ([9], Theorem 4). An indecomposable nonsplit graph H is a un-
igraph if and only if H or H is one of the following: C5; mK2 for m ≥ 2;
mK2 +K1,n for m ≥ 1 and n ≥ 2; or Um for m ≥ 1.

We now prove Theorem 1.5, restated in a more precise version.

Theorem 4.3. If G is a unigraph, then r(G) ≤ α(G) ≤ r(G)+1. Furthermore,
if a unigraph G has canonical decomposition Gk(Ak, Bk) ◦ · · · ◦G1(A1, B1) ◦G0,
then α(G) = r(G) + 1 if and only if G0

∼= Um for some m ≥ 1.

Proof. Theorem 1.2 provides the first inequality.
We claim that in the composition of a splitted graphH(A,B) and a graph J ,

we have α(H(A,B) ◦ J) = |A|+α(J). Indeed, the union of A with a maximum
independent set of J gives an independent set of the desired size. However, any
independent set larger than this would have to include either more than α(J)
vertices of J or at least one vertex of B, which would dominate all vertices of
J ; either case yields a contradiction. It follows that

α(G) = α(Gk(Ak, Bk) ◦ · · · ◦G1(A1, B1) ◦G0) =
k

∑

i=1

|Ai|+ α(G0).

By Corollary 3.3, we likewise have

r(G) = r(Gk(Ak, Bk) ◦ · · · ◦G1(A1, B1) ◦G0) =
k

∑

i=1

|Ai|+ r(G0);

hence α(G) − r(G) = α(G0)− r(G0).
Hence to complete the proof we need only examine the residue and indepen-

dence number of G0, indecomposable and (by Theorem 4.1) a unigraph. If G0

is split, then α(G) − r(G) = α(G0) − r(G0) = 0 by Proposition 2.2. Assume
henceforth that G0 is nonsplit. We examine the cases outlined in Theorem 4.2.
Let ω(H) denote the clique number of a graph H .

Case: G0 is C5. It is straightforward to check that r(G0) = α(G0) = 2.
Case: G0 is mK2, where m ≥ 2. One verifies that α(G0) = m. Furthermore,

each Havel–Hakimi reduction on d(G0) deletes one 1 from the list and changes
a remaining 1 to a 0, so r(G0) = m as well.

Case: G0 is mK2, where m ≥ 2. We have α(G0) = ω(mK2) = 2. By
Theorem 1.2 and Observation 1.3, r(G0) = 2.

Case: G0 is mK2 + K1,n, where m ≥ 1 and n ≥ 2. In this case α(G0) =
m+n, and d(G0) = (n, 12m+n). One Havel–Hakimi reduction on d(G0) produces
(12m, 0n), so r(G0) = m+ n.

Case: G0 is mK2 +K1,n, where m ≥ 1 and n ≥ 2. Here α(G0) = ω(mK2 +
K1,n) = 2. By Theorem 1.2 and Observation 1.3, r(G0) = 2 as well.

Case: G0 is Um, where m ≥ 1. By inspection, α(G0) = m+2. Furthermore,
d(G0) = (2m+ 2, 22m+3), and if d is this list, then d1 = (2, 12m+2) = d(mK2 +
K1,2), which we showed above to have residue m+2. Hence r(G0) = α(r(G0)).
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Case: G0 is Um, where m ≥ 1. We have α(G0) = ω(Um) = 3. We now
show that r(Um) = 2 by induction on m. Note that d(U1) = (35, 1); it is easy
to verify that the residue is 2. Assume now that r(Um−1) = 2. If d = d(Um),
we have

d = ((2m+ 1)2m+3, 1);

d1 = (2m+ 1, (2m)2m+1, 1);

d2 = ((2m− 1)2m+1, 1)

= d(Um−1),

so r(G0) = r(d) = r(d2) = 2 by the inductive hypothesis.
We have examined all possible isomorphism classes of G0 and found that

0 ≤ α(G0) − r(G0) ≤ 1, with equality in the second inequality if and only if
G0

∼= Um for some m ≥ 1. This concludes the proof.

Degree sequences of unigraphs, therefore, join the semi-regular graphic lists
as a class of graphic lists in which every element has a realization whose inde-
pendence number exceeds the residue by at most 1. The author is aware of no
graphic list π where every realization of π has independence number at least
r(π) + 2; hence we conclude with the following refinement of Question 1.

Question 2. Does there exist a constant K such that for every graphic list π
there is a realization G of π such that α(G) ≤ r(π) +K?
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