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Abstract

We give characterizations of the structure and degree sequence of hereditary
unigraphs, those graphs for which every induced subgraph is the unique realiza-
tion of its degree sequence. The class of hereditary unigraphs properly contains
the threshold and matrogenic graphs, and the characterizations presented here
naturally generalize those known for these other classes of graphs.

The degree sequence characterization of hereditary unigraphs makes use of
the list of values k for which the kth Erdős–Gallai inequality holds with equality
for a graphic sequence. Using the canonical decomposition of Tyshkevich, we
show how this list describes structure common among all realizations of an
arbitrary graphic sequence.

Keywords: chair, Erdős–Gallai inequalities, degree sequence, hereditary graph
class, unigraph

1. Introduction

Unigraphs are those graphs such as C5 or 3K2 that are the unique graphs
(up to isomorphism) having their respective degree sequences. Relatively few
graphs satisfy this requirement, but those that do comprise a number of inter-
esting classes. For example, edgeless graphs and complete graphs are unigraphs.
These trivial examples are included in the class of threshold graphs, which were
defined by Chvátal and Hammer [8] in connection with set-packing problems
and independently discovered by several other authors in varying contexts (see
Chapter 1 in [21] for a summary). Matroidal graphs and matrogenic graphs
were introduced by Peled [23] and Földes and Hammer [10], respectively, as
graphs for which certain edge or vertex subsets form the circuits of a matroid.
These classes satisfy the following inclusions:

complete

edgeless

}
⊂ threshold ⊂ matroidal ⊂ matrogenic ⊂ unigraph. (1.1)

Graphs in these classes have been well studied; for surveys of results, see [6]
and [21].
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One interesting thing to note is that the proper subfamilies of unigraphs
in (1.1) are all hereditary (i.e., closed under taking induced subgraphs), while
the class of unigraphs itself is not. For example, the unique graph with degree
sequence (4, 2, 2, 2, 2, 2) contains two nonisomorphic induced subgraphs with
degree sequence (3, 2, 2, 2, 1). This difference in the families has immediate
consequences. For example, Borri et al. [5] presented a recognition algorithm
for unigraphs that generalizes the one for matrogenic graphs found by Marchioro
et al. [22]; however, the proof of the latter relied on the hereditary property of
matrogenic graphs, and the proof in [5] required a different approach to handle
the non-hereditary nature of the unigraphs.

Motivated by this contrast, we might ask how far a hereditary class may en-
large the class of matrogenic graphs while staying within the family of unigraphs.
The class of hereditary unigraphs, defined in [1], is the maximal hereditary class
containing only unigraphs; it may be thought of as the union of all hereditary
families of unigraphs.

In this paper we show that the hereditary unigraphs generalize important
properties possessed by graphs in the hereditary classes in (1.1). In particular,
these latter classes all have three specific types of characterizations, in terms
of forbidden induced subgraphs, strict requirements on vertex adjacencies, and
degree sequences. We will see that these same types of characterizations exist
for hereditary unigraphs.

Every hereditary family is characterized by a list of forbidden induced sub-
graphs, and this list is known for each of the hereditary families in (1.1). Com-
plete graphs and edgeless graphs forbid 2K1 and K2, respectively. Threshold
graphs (also known as nested split graphs) are precisely the graphs containing no
induced subgraph in {2K2, C4, P4} [8]. Matrogenic graphs [10] and matroidal
graphs [23] have characterizations in terms of ten and eleven forbidden sub-
graphs, respectively, each having five vertices. In [1] the author provided a list
of forbidden subgraphs for the hereditary unigraphs. (Notation and definitions
will be given later in the paper.)

Theorem 1.1 ([1]). A graph is a hereditary unigraph if and only if it contains
no element of

{P5, P5,K2 +K3,K2,3, 4-pan, co-4-pan, 2P3, 2P3,

K2 + P4,K2 + P4,K2 + C4,K2 + C4, R,R, S, S}

as an induced subgraph.

Hereditary unigraphs also have characterizations in terms of their structure
and degree sequences. We present these in Theorems 4.5, 6.2, and 6.3 and show
how they are natural generalizations of the characterizations for threshold and
matrogenic graphs, which we recall later.

Our structural results will begin with the class of graphs containing no in-
duced subgraph in {2K2, C4, chair}, where the chair (also known as the fork)
is the tree with degree sequence (3, 2, 1, 1, 1). This class properly contains the
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threshold graphs and was shown in [2] to contain only unigraphs. We show that
these graphs and their complements may be assembled from building blocks
known as spiders by “expanding” vertices according to certain rules. In re-
laxing these rules to allow more varied expansions while maintaining a class
with a degree sequence characterization, we arrive at the family of hereditary
unigraphs.

Graph families containing only unigraphs necessarily have degree sequence
characterizations; to recognize membership of a graph G in such a family F , one
could simply check for the degree sequence of G in a (potentially infinitely long)
list of the degree sequences of graphs in F . However, the structural conditions
satisfied by graphs in the families in (1.1) lead to much more satisfying charac-
terizations of their degree sequences. The same will be true in our description
of the degree sequences of hereditary unigraphs.

Interestingly, our characterization is closely related to the well known Erdős–
Gallai inequalities [9] for determining when a list of nonnegative integers is the
degree sequence of a graph. Given a degree sequence (d1, . . . , dn) with its terms
in descending order and a nonnegative integer k ≤ n, the kth Erdős–Gallai
inequality is

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min{k, di}.

In order for a list of nonnegative integers with even sum to be the degree se-
quence of a graph, it must satisfy each of the Erdős–Gallai inequalities. Thresh-
old graphs and split graphs have degree sequence characterizations requiring
one or more of the inequalities to further hold with equality ([13] and [14]; see
Section 5). In characterizing the degree sequences of hereditary unigraphs we
study the list of integers k for which the kth inequality holds with equality.
Using the canonical decomposition of Tyshkevich [25], we describe what this
list reveals about the structure of an arbitrary graph having a specified degree
sequence.

We proceed as follows: In Sections 2 through 4 we describe the structure
of hereditary unigraphs. In Section 2 we recall the canonical decomposition of
a graph as described by Tyshevich [25] and then characterize the structure of
{2K2, C4, chair}-free graphs and their complements, showing how they may be
obtained via vertex expansions in spiders. In Section 3 we explore these ex-
pansions further, arriving at a larger hereditary class with a degree sequence
characterization. In Section 4 we relate this class to the hereditary unigraphs to
obtain a structural characterization of the latter. In Section 5 we use the canon-
ical decomposition to study the equalities among the Erdős–Gallai inequalities
of a degree sequence. We conclude in Section 6 by characterizing the degree
sequences of hereditary unigraphs.

All graphs considered in this paper will have no loops or multiple edges. We
use V (G) and E(G) to denote the vertex set and edge set of a graph G. Given
a vertex u in V (G), we denote the neighborhood of u (that is, the set of vertices
adjacent to u in G) by NG(u). Given a subset W of V (G), we use G[W ] to
denote the induced subgraph of G with vertex set W . We adopt the convention
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Figure 1: The chair and kite.

that when listing the degree sequence (d1, . . . , dn) of a graph, the terms will
always appear in descending order, and in place of α copies of a sequence term
k, we may write kα. We denote the complement of G by G. The disjoint union
of graphs G and H will be denoted by G+H, and the disjoint union of m copies
of a graph G will be indicated by mG. The join of G and H will be denoted
by G ∨H. Complete graphs, cycles, and paths with n vertices will be denoted
respectively by Kn, Cn, and Pn. The complete bigraph with partite sets of sizes
m and n will be denoted Km,n. The 4-pan is defined as the graph obtained by
attaching a vertex of degree 1 to a 4-cycle, and the co-4-pan is the complement
of the 4-pan. The graphs R, R, S, S mentioned in Theorem 1.1 will be defined
in Section 3 and illustrated in Figures 3 and 4.

2. {2K2, C4, chair}-free graphs and their complements

Given a set F of graphs, we say a graph G is F-free if G contains no in-
duced subgraph isomorphic to an element of F . In this section we describe the
structure of {2K2, C4, chair}-free graphs and {2K2, C4, kite}-free graphs, where
the chair is the tree shown in Figure 1 together with its complement, the kite.
In a sense to be made more precise in later sections, graphs in these classes are
prototypical hereditary unigraphs.

We begin by recalling some relevant results.

Theorem 2.1 (Blázsik et al. [4]). A graph G is {2K2, C4}-free if and only if
its vertex set may be partitioned into sets A, B, and C such that

(i) A is an independent set and B is a clique;

(ii) C is empty, or G[C] ∼= C5;

(iii) each vertex in C is adjacent to every vertex in B and to no vertex in A.

A graph is split if its vertex set may be partitioned into a clique and an
independent set; in the {2K2, C4}-free graph in the last result, G[A ∪ B] is a
split graph. Indeed, we have the following.

Theorem 2.2 (Földes and Hammer [11]). A graph is split if and only if it is
{2K2, C4, C5}-free.

Because of the similarity of their vertex set partitions and forbidden sub-
graph characterization to those possessed by the split graphs, {2K2, C4}-free
graphs are known as pseudo-split graphs.
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A

B

V (H)

Figure 2: The compositions (G,A,B) ◦H and (G,A,B) ◦ (G,A,B) ◦H.

The decomposition presented in Theorem 2.1 is generalized and refined con-
siderably by the canonical decomposition of R. I. Tyshkevich. This decomposi-
tion provides a unifying framework for the characterizations of {2K2, C4, chair}-
free graphs, the hereditary families in (1.1), and the full family of hereditary
unigraphs. Our brief presentation here follows [25].

Given a split graph with a partition of V (G) into an independent set A and
a clique B, we call the triple (G,A,B) a splitted graph. Two splitted graphs
(G,A,B) and (G′, A′, B′) are isomorphic if there exists a graph isomorphism
ϕ : V (G)→ V (G′) such that ϕ(A) = A′. Given a splitted graph (G,A,B) and
a graph H on disjoint vertex sets, we define the composition of (G,A,B) and H
to be the graph (G,A,B)◦H formed by adding to G+H all edges uv such that
u ∈ B and v ∈ V (H). For example, when H = K3 and G = P4, with A the set of
endpoints and B the set of midpoints of G, the composition (G,A,B)◦H is the
graph on the left in Figure 2 (here heavy lines denote all possible edges between
vertex sets). On the right we show (G,A,B)◦ ((G,A,B)◦H). The composition
of two splitted graphs may also be thought of as a splitted graph, where the
independent set and clique are the unions of the independent sets and of the
cliques, respectively. The operation ◦ is associative, so in the future we will
omit grouping parentheses when performing multiple compositions. Observe
that in a composition (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦G0, each vertex in Bi is
adjacent to every vertex in

⋃
j<i V (Gj), each vertex in Ai is adjacent to none

of the vertices in
⋃
j<i V (Gj), and only the rightmost graph in the composition

can fail to be a split graph.
A graph is decomposable if it can be written as a composition (G,A,B) ◦H

where G and H both have at least one vertex. Otherwise, it is indecomposable.
Maximal indecomposable induced subgraphs of a graph are called its indecom-
posable (or canonical) components. Tyshkevich showed the following:

Theorem 2.3 (Tyshkevich [24, 25]). Every graph G can be expressed as a
composition

G = (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦G0 (∗)

of indecomposable components. Here the (Gi, Ai, Bi) are indecomposable splitted
graphs and G0 is an indecomposable graph. (If G is indecomposable, then k = 0.)
Graphs G and G′ expressed as (∗) and

G′ = (G′`, A
′
`, B

′
`) ◦ · · · ◦ (G′1, A

′
1, B

′
1) ◦G′0

are isomorphic if and only if G0
∼= G′0, k = `, and (Gi, Ai, Bi) ∼= (G′i, A

′
i, B
′
i)

for 1 ≤ i ≤ k.
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Since (∗) is the unique expression of G as a composition of indecomposable
components, up to isomorphism of the components, we call (∗) the canonical
decomposition of G.

Note that if a graphH is decomposable, then we may express it as (H1, A,B)◦
H0 for some induced subgraphs H1 and H0. Then H = (H1, B,A) ◦H0, so H
is decomposable as well. This leads us to the following.

Observation 2.4. If G has canonical decomposition (Gk, Ak, Bk)◦· · ·◦(G1, A1, B1)◦
G0, then the canonical decomposition of G is (Gk, Bk, Ak)◦· · ·◦(G1, B1, A1)◦G0.

In [3] West and the author gave a useful tool for recognizing canonically
indecomposable graphs.

Theorem 2.5 ([3]). A graph G is canonically indecomposable if and only if
for every pair u, v of distinct vertices in G, there exists a sequence of induced
subgraphs H1, . . . ,Ht of G such that

(i) u is a vertex of H1, and v is a vertex of Ht;

(ii) consecutive subgraphs in the sequence have at least one common vertex;

(iii) each Hi is isomorphic to 2K2, C4, or P4.

We now use the canonical decomposition in characterizing the {2K2, C4, chair}-
free graphs. In light of the conditions of the canonical decomposition and The-
orem 2.1, the following is immediate.

Corollary 2.6. Let G be a graph with canonical decomposition (Gk, Ak, Bk) ◦
· · · ◦ (G1, A1, B1) ◦G0.

(a) G is split if and only if G0 is split.

(b) G is {2K2, C4}-free if and only if G0 is split or G0 is isomorphic to C5.

Chair-free split graphs have been studied before; we present the result of
Brandstädt and Mosca [7].

A module M in a graph G is a subset of V (G) with the property that every
vertex not in M is adjacent to either all or none of the vertices of M . We say
that G is prime if each of its modules consists of a single vertex or is equal to
V (G).

Definition 2.7. A (prime) spider is a graph whose vertex set admits a partition
into sets A, B, and C such that

(i) A is an independent set, B is a complete graph, and |A| = |B| ≥ 2;

(ii) |C| ≤ 1, and a vertex in C is adjacent to every vertex in B and to no
vertex in A;

(iii) there is a bijection f : A → B such that either (a) each vertex v in A is
adjacent only to f(v), or (b) each vertex v in A to adjacent to all vertices
of B except f(v).

We call vertices in A the feet and vertices in B the body vertices of the
spider. The vertex in C, if it exists, is called the head ; if C is empty, the spider
is headless.
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Theorem 2.8 ([7]). If a chair-free split graph is prime and has more than one
vertex, then it is a prime spider.

The split canonical components of a {2K2, C4, chair}-free graph need not be
prime, in general, so we extend this result. We first give some definitions.

Let H and J be graphs, and let v be a vertex of J . To substitute H for v
is to take the disjoint union of H and J − v and add all edges of the form uw
where u ∈ V (H) and w ∈ NJ(v). A top-expanded spider is a graph that can be
obtained by substituting complete graphs for body vertices in a headless spider.
A bottom-expanded spider is a graph obtained by substituting edgeless graphs
for feet in a headless spider. Note that the complement of a bottom-expanded
spider is a top-expanded spider.

A module is proper if it does not contain all vertices of G. Given a graph G
and a module M , to contract M to a single vertex is to replace the vertices of
M by a vertex having the same neighbors among V (G) \M that vertices in M
had; alternatively, we may delete all but one of the vertices of M from G.

Theorem 2.9. A graph G with canonical decomposition G = (Gk, Ak, Bk)◦· · ·◦
(G1, A1, B1)◦G0 is {2K2, C4, chair}-free if and only if G0 is split or C5, and each
split indecomposable component having more than one vertex is a top-expanded
spider.

Proof. Let G be a graph with canonical decomposition (Gk, Ak, Bk) ◦ · · · ◦
(G1, A1, B1) ◦ G0. By Corollary 2.6, G is {2K2, C4}-free if and only if G0 is
isomorphic to C5 or split. By Theorem 2.5, the chair is indecomposable. It fol-
lows that G is {2K2, C4, chair}-free if and only if G0 is isomorphic to C5 or split
and each canonical component Gi is chair-free. Observing that K1 and C5 are
chair-free, as is any top-expanded spider, it suffices to show that each split Gi
having more than one vertex is a top-expanded spider if it is {2K2, C4, chair}-
free.

Henceforth assume that Gi is a chair-free split canonical component of G
having more than one vertex. Since P4 is self-complementary, it follows from
Theorems 2.2 and 2.5 that both Gi and Gi are connected. By the modular
decomposition theorem of Gallai [12] the maximal proper modules of Gi are
disjoint. Contracting each maximal proper module to a single vertex yields a
prime graph G∗i that is split and chair-free and has more than one vertex. By
Theorem 2.8, G∗ is a prime spider. Let A,B,C be a partition of V (G∗) as in
Definition 2.7.

Note that Gi may be obtained by substituting suitable graphs for vertices
of G∗i . However, each vertex a of A is the endpoint of an induced P4 in G∗i ;
substituting a graph with two or more vertices for a creates either a chair or 2K2,
neither of which is induced in Gi. Since each vertex b in B is a midpoint for an
induced P4 in Gi, substituting a non-complete graph for b creates an induced
C4, which Gi does not contain. Finally, note that if C contains a vertex c,
then Gi = (Gi[A

′ ∪ B′], A′, B′) ◦ G′, where A′ and B′ are the sets of vertices
whose contracted versions respectively belong to A and to B in G∗i , and G′ is
the induced subgraph of Gi whose vertices were contracted to the vertex c in
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R R

Figure 3: The graphs R and R.

forming G∗i . Since Gi is indecomposable, this is a contradiction unless C = ∅.
Thus Gi is a top-expanded spider, as claimed.

Since {2K2, C4} and {chair, kite} are pairs of complementary graphs, the
{2K2, C4, kite}-free graphs are precisely the complements of the {2K2, C4, chair}-
free graphs. Since C5 is also self-complementary, by Observation 2.4 and Corol-
lary 2.6 the indecomposable kite-free split graphs are precisely the complements
of the indecomposable chair-free split graphs.

Corollary 2.10. A graph G with canonical decomposition G = (Gk, Ak, Bk) ◦
· · · ◦ (G1, A1, B1)◦G0 is {2K2, C4, kite}-free if and only if G0 is split or C5, and
every split indecomposable component is a bottom-expanded spider.

3. More general vertex expansions

In this section we introduce graph families generated by relaxing some of
the conditions in the results from the previous section. One family in particular
will be useful in studying the structure of hereditary unigraphs in Section 4.

By Theorem 2.9 and Corollary 2.10, pseudo-split graphs that forbid both
the chair and the kite have canonical components that are each one of C5, a
single vertex, or a headless spider. Removing the chair from the list of forbidden
subgraphs permits the expansion (into cliques) of body vertices in the canon-
ical components that are spiders; if we instead remove the kite from the list
of forbidden subgraphs, we may expand feet vertices of the spiders into inde-
pendent sets. Removing both the chair and the kite from the list results in the
complete class of pseudo-split graphs, including graphs that cannot be created
by expanding vertices in spiders. Let G be the class of graphs that may be
obtained from {2K2, C4, chair, kite}-free graphs when both types of expansion
are simultaneously allowed, that is, when complete graphs are substituted for
body vertices and edgeless graphs are substituted for feet vertices in arbitrary
spider canonical components.

Theorem 3.1. The class G is precisely the set of {2K2, C4, R,R}-free graphs,
where R and R are the graphs shown in Figure 3.

Proof. LetG be a graph with canonical decompositionGk(Ak, Bk)◦· · ·◦G1(A1, B1)◦
G0.

Suppose first that G0 is split or isomorphic to C5, and that each indecompos-
able split component Gi is isomorphic to K1 or can be obtained from a headless
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spider by substituting complete graphs for body vertices and edgeless graphs
for feet vertices. Neither R nor R has this form; it follows that neither can be
induced in Gi. Since R and R are also indecomposable, we conclude that G is
{2K2, C4, R,R}-free.

Suppose instead that G is {2K2, C4, R,R}-free. By Corollary 2.6, G0 is split
or isomorphic to C5. Let (Gi, Ai, Bi) be a splitted canonical component such
that Gi � K1. Consider the modules of Gi that are wholly contained in Ai or
in Bi. Form G′i by contracting to single vertices the maximal elements of this
collection under subset inclusion. Then G′i is a split graph having a partition
A′i, B

′
i into an independent set and a clique, where these are the sets resulting

from Ai and Bi after the modules are contracted. Suppose that G′i induces
the chair on vertices a, b, c, d, e, with a, b, c ∈ A′i and d, e ∈ B′i, with e adjacent
to a, and d adjacent to b and c. Because of the module contractions, {b, c} is
not a module in G′i. Assume c is adjacent to a vertex x in B′i to which b is
not. Recalling that A′i is an independent set and B′i is a clique, we find that
G′i[{a, b, c, d, e, x}] is isomorphic to R or R, depending on whether x is adjacent
to a. This is a contradiction, since G′i is an induced subgraph of Gi, which was
assumed to be {R,R}-free. Thus G′i is chair-free.

Since {2K2, C4, R,R} is self-complementary, and Gi is also a split indecom-
posable graph, when we contract the modules in its independent set Bi and
clique Ai, we get the graph G′i. This graph is also chair-free by the argument
above, so G′i is kite-free.

Since Gi is indecomposable and has at least two vertices, it follows that
G′i is also indecomposable and has at least two vertices. Since G′i is also
{2K2, C4, chair, kite}-free, from Theorem 2.9 and Corollary 2.10 we conclude
that G′i is isomorphic to a headless spider. Since the modules contracted to
form G′i were subsets of Ai or Bi, the graph Gi may be obtained from G′i by
substituting edgeless graphs for vertices in A′i and complete graphs for vertices
in B′i, as claimed.

By Theorem 1.1 and the comments in Section 1, the {2K2, C4, chair}-free
graphs and {2K2, C4, kite}-free graphs are unigraphs, so they have degree se-
quence characterizations. One might wonder whether the {2K2, C4, R,R}-free
graphs can also be recognized from their degree sequences. This is not the case:
the graph R, which does not belong to the class, shares its degree sequence
with the graph S shown in Figure 4, which does belong to the class. Instead,
we might ask which degree sequences are forcibly {2K2, C4, R,R}-free, that is,
having only realizations that are {2K2, C4, R,R}-free, and which graphs have
these degree sequences.

Alternatively, in the interest of finding a graph class with a degree se-
quence characterization that contains both the {2K2, C4, chair}-free graphs and
{2K2, C4, kite}-free graphs, we could look at the graphs whose canonical compo-
nents are each either {2K2, C4, chair}-free or {2K2, C4, kite}-free (though which
is the case may differ from component to component). As we will see in Sec-
tions 5 and 6, properties of the canonical decomposition imply that these graphs
are recognizable from their degree sequences.
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S S

Figure 4: The graphs S and S.

As it happens, these questions have the same answer, and the graph class
involved is just what we need to characterize hereditary unigraphs in the next
section.

Theorem 3.2. The following are equivalent for a graph G:

(a) d(G) is forcibly {2K2, C4, R,R}-free;

(b) G is pseudo-split, and every canonical component of G is either chair-free
or kite-free.

(c) G is {2K2, C4, R,R, S, S}-free;

Proof. We prove that both (a) and (b) are equivalent to (c).
(a) ⇒ (c): Since d(G) is forcibly {2K2, C4, R,R}-free, G induces none of

these four subgraphs. If G induces S, then since this graph has the same degree
sequences as R, we may delete the edges in the copy of S and replace them with
edges from a copy of R so that the modified graph has the same degree sequence
as G but induces R. This is a contradiction, so G is S-free, and similarly G is
S-free as well.

(c) ⇒ (a): Note that in Theorem 1.1, each of the forbidden subgraphs
for hereditary unigraphs induces 2K2, C4, R, R, S, or S. Hence if G is
{2K2, C4, R,R, S, S}-free, then it is a unigraph, and (a) follows trivially.

(b) ⇒ (c): Since G is pseudo-split, it is {2K2, C4}-free. Since each canon-
ical component of G is either chair-free or kite-free, and each of R, R, S, and
S induces both the chair and the kite, none of these can be induced within a
canonical component of G. Observe now by Theorem 2.5 that R,R, S, S are all
indecomposable, and hence if G were to contain any of these as an induced sub-
graph, then it would so within one of its canonical components, a contradiction.

(c) ⇒ (b): G is pseudo-split, by assumption. If G has a nonsplit canonical
component, then by Corollary 2.6 this component is C5, which is both chair-free
and kite-free. Let (Q,A,B) be a splitted canonical component of G that induces
both the chair and the kite, with vertices as labeled in Figure 5. We do not
initially assume that the vertex sets of the two induced subgraphs are disjoint,
and for clarity in the figure, we omit the rest of the edges having an endpoint
in the clique B. We present the rest of the proof through a series of facts.

Fact 1: If a vertex in B \ {d, e} has a neighbor among {a, b, c}, then it is
adjacent to to all three of these vertices. Likewise, if a vertex in A \ {v, w} has
a neighbor among {x, y, z}, then it is adjacent to all three of these vertices.

Proof. Let t be a vertex of B \ {d, e} adjacent to at least one vertex of
{a, b, c}. Let Q′ = Q[{a, b, c, d, e, t}]. One can verify that unless t is adjacent to
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Figure 5: The chair and kite from Theorem 3.2.

all of {a, b, c}, then Q′ is isomorphic to one of R, R, S, or S. Note now that
{2K2, C4, R,R, S, S} is a self-complementary set of graphs, and in (Q,B,A) the
vertex sets formerly inducing the chair and the kite now induce the kite and
the chair, respectively. This symmetry (which we will refer to as “complement
symmetry” in the paragraphs that follow) and the arguments above imply that
in Q any vertex in A \ {v, w} is adjacent to either all or none of {x, y, z}.

Fact 2: The intersections {a, b, c}∩{v, w} and {d, e}∩{x, y, z} each contain
at most one vertex.

Proof. Every vertex in {a, b, c} \ {v, w} has a neighbor and a nonneighbor in
{d, e}; by Fact 1, we cannot have {d, e} ⊆ {x, y, z}. By complement symmetry,
this implies that {v, w} * {a, b, c}.

Fact 3: The sets {a, b, c, d, e} and {v, w, x, y, z} are disjoint.
Proof. Suppose first that {d, e}∩ {x, y, z} = {u} for some u. If u has both a

neighbor r and a nonneighbor s in {a, b, c}\{v, w}, then by Fact 1, r is adjacent
to all of {x, y, z}, and s is adjacent to none of these vertices. However, this is
a contradiction, since Fact 1 implies that any vertex in {x, y, z} \ {u} must be
adjacent to both or neither of r and s. Thus u cannot have both a neighbor
and a nonneighbor in {a, b, c} \ {v, w}, and it follows that a ∈ {v, w}. Hence
{a, b, c} ∩ {v, w} is nonempty, and by complement symmetry we conclude that
z ∈ {d, e}.

If a = v, then since v is adjacent to z we have z = e. Since b and c are not
adjacent to e, Fact 1 implies that b and c are not adjacent to x or y. If dw /∈
E(Q), then Q[{b, c, d, w, x, y}] ∼= S, and if dw ∈ E(Q), then Q[{b, d, e, v, w, x}] ∼=
R, both contradictions. Hence a 6= v.

Thus a = w, and since w is not adjacent to z, we have z = d. Since
b and c are adjacent to d, Fact 1 implies that b and c are adjacent to both
x and y. If ve /∈ E(Q), then Q[{b, d, e, v, w, x}] ∼= R, and if ve ∈ E(Q), then
Q[{b, c, e, v, x, y}] ∼= S. These contradictions imply that {d, e}∩{x, y, z} = ∅. By
complement symmetry we find that {a, b, c}∩{v, w} = ∅, so in fact {a, b, c, d, e}
and {v, w, x, y, z} are disjoint.

Fact 4: For any induced 4-vertex path P having a nonempty intersection
with an induced chair C in Q, there is an induced chair in Q containing all
vertices in V (P ) \ V (C).

Proof. Let p, q, r, s be the vertices of the path P , in order, so p, s ∈ A and
q, r ∈ B. For convenience, without loss of generality we will assume that C is
the chair with vertex set {a, b, c, d, e}. We first show that if p ∈ {a, b, c}, then
we may assume that q ∈ {d, e}. If not, then by Fact 1, q is adjacent to all of
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{a, b, c}, so s /∈ {a, b, c}. Now if r has two nonneighbors in {a, b, c}, then Q
contains an induced chair with vertices q, r, s, and the two nonneighbors of r.
Otherwise, r has two neighbors and one nonneighbor (namely, p) in {a, b, c}, so
Fact 1 implies r = d and hence p = a. Since Q[{a, b, d, e, q, s}] � R, we see that
s is adjacent to e. Then Q[{b, c, e, q, s}] is a chair, as claimed in the fact. By a
symmetric argument, we may also assume that if s ∈ {a, b, c}, then r ∈ {d, e}.

If {q, r} = {d, e}, then Q induces a chair on the vertices d, e, p, s and any
vertex in {a, b, c} \ {p, s}. By symmetry we may assume that q /∈ {d, e}. By the
previous paragraph, p /∈ {a, b, c}, and since {p, q, r, s}∩{a, b, c, d, e} is nonempty,
r ∈ {d, e}. If either q or r has a neighbor in {a, b, c}\{s} that the other doesn’t,
then that vertex induces a chair with {p, q, r, s}. By Fact 1, q is adjacent to all
or none of {a, b, c}; since r has both a neighbor and a nonneighbor in {a, b, c},
the only way to avoid a chair is to have {a, b, c} \ {s} = {b, c}, so s = a and
hence r = e. By Fact 1, q is not adjacent to b or c. Since G[{a, b, d, e, p, q}] � R,
p is not adjacent to d. We then have a chair with vertex set {b, c, d, p, q}, as
claimed.

Fact 5: Q is chair-free or kite-free.
Proof. Since Q is a canonically indecomposable split graph, and no split

graph can contain an induced 2K2 or C4, Theorem 2.5 implies that for any
pair t, u of vertices in Q, there is a sequence H1, . . . ,H` of induced 4-vertex
paths such that t ∈ V (H1), u ∈ V (H`), and V (Hi) ∩ V (Hi+1) is nonempty
for i = 1, . . . , ` − 1. Suppose that t ∈ {a, b, c, d, e} and u ∈ {v, w, x, y, z}.
Inductively applying Fact 4 to each of the paths Hi, we conclude that u belongs
to an induced chair. However this contradicts Fact 3, which implies that no
induced chair and kite can have intersecting vertex sets.

4. Hereditary unigraphs

Our results on expansions in spiders now lead us to a structural characteri-
zation of hereditary unigraphs.

In [25], Tyshkevich used the canonical decomposition to describe the struc-
ture of arbitrary unigraphs. We recall here the list of non-split indecomposable
unigraphs. Let Us denote the graph formed by merging together one vertex
from each connected component of C4 + sK3; note that Us is the only graph
with degree sequence (s+ 2, 22s+3).

Theorem 4.1 ([25]).

(a) A graph is a unigraph if and only if each of its canonical components is.
(b) An indecomposable non-split graph G is a unigraph if and only if G or G

is one of the following: C5, rK2 for r ≥ 2, K1,r + sK2 for r ≥ 2 and
s ≥ 1, or Us for s ≥ 1.

Note that both the 4-pan and the co-4-pan have degree sequence (3, 2, 2, 2, 1),
and both are induced in Us for all s ≥ 1.

The forbidden subgraph characterization of hereditary unigraphs allows us
to adapt statement (a) of Theorem 4.1 to hereditary unigraphs. Let F denote
the set of forbidden subgraphs in Theorem 1.1.
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Lemma 4.2. A graph is a hereditary unigraph if and only if each of its canonical
components is.

Proof. If G has a canonical component that is not a hereditary unigraph, then
that component (and hence G) contains an induced subgraph from F ; thus G
is not a hereditary unigraph.

Conversely, if G is not a hereditary unigraph, then it contains some element
of F as an induced subgraph H. Applying Theorem 2.5, we see that each
element of F is indecomposable. Hence H must be induced in a single canonical
component of G, preventing that component from being a hereditary unigraph.

Thus to characterize the structure of hereditary unigraphs it suffices to char-
acterize the canonical components that are F-free. When a canonical component
is non-split, Theorem 4.1 yields an immediate result.

Corollary 4.3. An indecomposable non-split graph G is a hereditary unigraph
if and only if G or G is one of the following: C5, rK2 for r ≥ 2, or K1,r + sK2

for r ≥ 2 and s ≥ 1.

Of the forbidden subgraphs listed in Theorem 1.1, only R, R, S, and S are
split. Theorems 1.1, 2.2, 2.9, and 3.2 and Corollary 2.10 then yield the following:

Corollary 4.4. The following are equivalent for an indecomposable split graph
G:

(a) G is a hereditary unigraph;

(b) G is {R,R, S, S}-free;

(c) G is chair-free or kite-free;

(d) G is isomorphic to K1 or is a top-expanded spider or a bottom-expanded
spider.

Pulling these results together yields a complete structural characterization
of hereditary unigraphs:

Theorem 4.5. A graph G with canonical decomposition G = (Gk, Ak, Bk) ◦
· · · ◦ (G1, A1, B1) ◦ G0 is a hereditary unigraph if and only if each of its split
canonical components with more than one vertex is a top-expanded spider or a
bottom-expanded spider, and G0 or G0 is either split or isomorphic to C5, rK2

for r ≥ 2, or K1,r + sK2 for r ≥ 2 and s ≥ 1.

We return briefly to the example families of hereditary unigraphs listed
in (1.1). Threshold graphs are precisely the {2K2, C4, P4}-free graphs [8]. By
Theorem 2.5, these graphs (including the complete and edgeless graphs) have
canonical decompositions where the indecomposable components each contain
a single vertex. Though matrogenic graphs and matroidal graphs were defined
separately, in terms of matroids in slightly different contexts, these classes’
forbidden subgraph characterizations [10, 23] show that matroidal graphs are
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precisely the C5-free matrogenic graphs. Based on the work of Földes and Ham-
mer and Peled, as well as results of Marchioro et al. [22] and Tyshkevich [26],
we recall the following characterization of the structure of matrogenic graphs.
A net is a headless prime spider satisfying condition iii(a) in Definition 2.7; its
complement is a headless prime spider satisfying condition iii(b).

Theorem 4.6. A graph G with canonical decomposition G = (Gk, Ak, Bk)◦· · ·◦
(G1, A1, B1)◦G0 is matrogenic if each split canonical component with more than
one vertex is a net or the complement of a net, and G0 is split or isomorphic
to one of C5, rK2, or rK2 for r ≥ 2.

Note that the canonical decompositions of complete, edgeless, threshold,
matroidal, and matrogenic graphs clearly satisfy the hypotheses of Theorem 4.5.
In particular, matrogenic graphs are simply hereditary unigraphs where the
possibilities for G0 are restricted, and the canonical components with more than
one vertex are simply headless prime spiders (rather than having been obtained
from prime spiders by substituting cliques or independent sets of size at least 2
for body vertices or feet).

5. Erdős–Gallai equalities and the canonical decomposition

Having characterized the structure of hereditary unigraphs in Theorem 4.5,
in the remainder of the paper we turn to the degree sequences of these graphs.
In preparation for our main result (Theorem 6.3), in this section we describe
the relationship between the canonical decomposition and the Erdős–Gallai in-
equalities. For convenience, we abbreviate the latter as EG-inequalities.

As mentioned in the introduction, threshold graphs and split graphs have de-
gree sequence characterizations in terms of equalities among the EG-inequalities.
Given a degree sequence d = (d1, . . . , dn), let EG(d) denote the list of nonneg-
ative integers k for which the kth EG-inequality holds with equality, ordered
from smallest to largest. We adopt the convention that when the starting value
of a sum’s index exceeds the ending value, the value of the sum is 0; hence
EG(d) begins with 0 for every d. Henceforth, let m(d) = max{i : di ≥ i− 1}.

Theorem 5.1. Let G be a graph with degree sequence d = (d1, . . . , dn), and let
m = m(d).

(a) (Hammer et al. [13]) G is threshold if and only if

k∑
i=1

di = k(k − 1) +

n∑
i=k+1

min{k, di}

for k = 1, . . . ,m(d).

(b) (Hammer and Simeone [14]; Tyshkevich et al. [24, 31]) G is split if and
only if

m∑
i=1

di = m(m− 1) +

n∑
i=m+1

di.
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(c) (Maffray and Preissmann [20]) G is pseudo-split if and only if G is split
or

q∑
i=1

di = q(q + 4) +

n∑
i=q+6

di

and
dq+1 = dq+2 = dq+3 = dq+4 = dq+5 = q + 2,

where q = max{i : di ≥ i+ 4}.

Thus d is the degree sequence of a split graph if and only if m(d) is a term
of EG(d). Furthermore, as we will note later in Corollary 5.5, if the kth EG-
inequality holds with equality, then k ≤ m(d), so d is the degree sequence of a
threshold graph if and only if EG(d) = (0, 1, . . . ,m(d)). The first equality in
Theorem 5.1(c) is equivalent, in light of the other hypothesis, to the requirement
that EG(d) contain q as a term. The form of the characterization in (c), i.e.,
requirements on both EG(d) and on specific terms of the degree sequence, will
appear in our characterization of the degree sequences of hereditary unigraphs
in Section 6.

All threshold graphs having at least two vertices are canonically decompos-
able, as are pseudo-split graphs inducing C5 (other than C5 itself). We now
show that, as with the threshold and split graphs, canonically decomposable
graphs can be recognized from their degree sequences by computing EG(d).
Before giving our result, we note that Tyshkevich [25] provided necessary and
sufficient conditions for a degree sequence to belong to a decomposable graph.
The conditions closely follow an instance of the Fulkerson–Hoffman–McAndrew
criteria for testing if a degree sequence is graphic. These latter criteria are equiv-
alent to the EG-inequalities for sequences of nonnegative integers with even sum
(Chapter 3 of [21] discusses these and several other such criteria and proves their
collective equivalence). Our purpose for defining and using EG(d) is to make
clear how our characterization of hereditary unigraphs in Section 6 relates to
the characterizations in Theorem 5.1 and those known for other classes. Us-
ing EG(d) will also allow us to present the degree sequence characterization of
hereditary unigraphs in a more straightforward way, rather than forcing us to
first determine the degree sequences of the canonical components of a graph.

We begin with a few observations on the canonical decomposition.

Observation 5.2. Suppose that G is a graph with canonical decomposition
(G`, A`, B`) ◦ · · · ◦ (G1, A1, B1) ◦G0, where A0 and B0 partition V (G0) into an
independent set and clique, respectively, if G0 is split. Consider the list

B`, . . . , B0, A0, . . . , A`

if G0 is split, and the list

B`, . . . , B1, V (G0), A1, . . . , A`

if G0 is not split. Let u and v be vertices from distinct sets in the list. If the
set containing u precedes the set containing v in the list, then dG(u) ≥ dG(v).
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The converse is true as well unless dG(u) = dG(v), in which case the canonical
components containing u and v are both isomorphic to K1.

Call a canonically indecomposable graph nontrivial if it has more than one
vertex. By Theorem 2.5, in a nontrivial indecomposable graph H each vertex
belongs to an induced subgraph of H isomorphic to 2K2, C4, or P4. This leads
to the following.

Observation 5.3. Every vertex in a nontrivial canonically indecomposable
graph has both a neighbor and a non-neighbor in the graph. If (H,A,B) is
a splitted indecomposable graph, then each vertex of A has both a neighbor and
a nonneighbor in B, and each vertex of B has both a neighbor and a nonneighbor
in A.

Lemma 5.4. Let Q be a set of vertices of G, and let Q = V (G)−Q. Then∑
q∈Q

dG(q) = |Q|(|Q| − 1) +
∑
p∈Q

min{|Q|, dG(p)}

if and only if G = (G[P ∪Q], P,Q) ◦G[T ], where P consists of all vertices of G
with degree less than |Q|, and T = V (G)− P −Q.

Proof. Let |Q,Q| denote the number of edges having an endpoint in each of Q
and Q. Observe that

∑
q∈Q dG(q)−|Q|(|Q|−1) is a lower bound on |Q,Q|, where

equality holds if and only if every pair of vertices in Q is adjacent. Observe also
that

∑
p∈Q min{|Q|, dG(p)} is an upper bound for |Q,Q|, with equality holding

if and only if those vertices in Q whose degree is less than |Q| (i.e., vertices in
P ) only have neighbors in Q, and those vertices whose degree is at least |Q|
(i.e., vertices in T ) are adjacent to every vertex of Q. Thus∑

q∈Q
dG(q) = |Q|(|Q| − 1) +

∑
p∈Q

min{|Q|, dG(p)}

if and only if Q is a clique whose neighbors are all adjacent to every vertex of
T while P is an independent set whose vertices are adjacent to no vertex of T .
This latter condition is clearly equivalent to G = (G[P ∪Q], P,Q) ◦G[T ].

Corollary 5.5. Let d be a graphic sequence. If d satisfies the kth EG-inequality
with equality, then k ≤ m(d).

Proof. Let Q be a set of k vertices of G with the largest degrees in G. By
Lemma 5.4, every vertex in Q is adjacent to the k − 1 other vertices of Q, so
m(d) ≥ k.

Given a degree sequence d, the conjugate sequence d∗ is defined by letting
d∗j = max{i : di ≥ j} for j ≥ 0. For nonnegative j let δj = |{i : i > j and di =
j}|.
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Theorem 5.6. Let G be a graph with degree sequence d = (d1, . . . , dn) and
vertex set {v1, . . . , vn}, indexed so that dG(vi) = di. Suppose that (G`, A`, B`) ◦
· · · ◦ (G1, A1, B1) ◦ G0 is the canonical decomposition of G, where A0 and B0

partition V (G0) into an independent set and a clique, respectively, if G0 is split.

(a) A nonempty set W ⊆ V (G) is equal to the clique Bj in the canonical
component (Gj , Aj , Bj) if and only if W = {vi : k < i ≤ k′} for a
pair k, k′ of consecutive terms in EG(d). In this case the corresponding
independent set Aj is precisely the set {v ∈ V (G) : k < dG(v) < k′}.

(b) Given a term k of EG(d), if i > k and dG(vi) = k then the canonical
component containing vi is trivial.

(c) If k is a positive term of EG(d) and (Gj , Aj , Bj) is the splitted canonical
component containing vk, then

d∗k =

∣∣∣∣∣V (G0) ∪
⋃̀
i=1

Bi ∪
j−1⋃
i=1

Ai

∣∣∣∣∣ .
(d) Let (Gj , Aj , Bj) be a splitted canonical component, and let k and k′ be the

consecutive terms of EG(d) such that Bj = {vi : k < i ≤ k′}. If v ∈ Bj,
then dG(v) = dGj (v)− k′ + k + d∗k′ . If v ∈ Aj, then dG(v) = dGj (v) + k.

Proof. (a): We prove first that a vertex vs belongs to
⋃
i≥0Bi if and only if

s ≤ t, where t is the last term of EG(d). Indeed, applying Lemma 5.4 with

Q =
⋃`
i≥0Bi, we see that d satisfies the |Q|th EG-inequality, so s ≤ |Q| ≤ t.

Conversely, if s ≤ t, then vs belongs to a set Q′ of t vertices with the highest
degrees in G. Lemma 5.4 implies the existence of subsets P ′ and T ′ of V (G)
such that G = (G[P ′ ∪ Q′], P ′, Q′) ◦ G[T ′], where G[T ′] is either empty or
canonically indecomposable. By Theorem 5.1(b) and the uniqueness of the

canonical decomposition, Q′ =
⋃`
i≥0Bi.

Now let W be a nonempty subset of V (G), and suppose vs ∈ W . If s > t,
then by the last paragraph vs belongs to no clique Bi and clearly belongs to no
set {vi : k < i ≤ k′} for k, k′ ∈ EG(d), so W can equal neither of these. Assume
that s ≤ t, and let Bj be the set in

⋃
i≥0Bi containing vs. By Observation 5.2,

we may assume that Bj = {va, va+1, . . . , vz} for some a, z ≤ t. Let k, k′ be the
consecutive terms in EG(d) such that k < s ≤ k′. We show now that a = k+ 1
and z = k′.

By Lemma 5.4, we may write G = (G[P ∪ Q], P,Q) ◦ G[T ], where Q =
{v1, . . . , vk}, P consists of all vertices of G with degree less than k, and T =
V (G)−P −Q, so k+1 ≤ a. On the other hand, since we may write G = (G[A∪
B], A,B) ◦G[C] for subsets A, B, and C of V (G) such that B = {v1, . . . , va−1},
Lemma 5.4 implies that a − 1 ≤ k. Hence a = k + 1, and similar applications
of Lemma 5.4 show that z = k′. We conclude that W = Bj if and only if
W = {v ∈ V (G) : k < dG(v) < k′}.

Now let A′ = {v ∈ V (G) : k < dG(v) < k′}. By Observation 5.3 and the
requirements of the canonical decomposition, vertices in Aj have degree strictly
between k and k′, so Aj ⊆ A′. These same results also imply that vertices
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in
⋃
i>j Bi, Bj , and

⋃
i<j V (Gi) all have degree at least k′, while vertices in⋃

i>j Ai have degree at most k. Thus Aj = A′.
(b): Let k be a term of EG(d). Note that each isolated vertex of G is a trivial

component in the canonical decomposition (if G has t isolated vertices, then the
canonical components Gi with ` − t + 1 ≤ i ≤ ` are each splitted with their
respective vertex sets satisfying Bi = ∅ and |Ai| = 1). We may therefore assume
that k > 0. Let (Gj , Aj , Bj) be the splitted canonical component containing
vk. Further let W = {vi ∈ V (G) : i > k and di = k}, and suppose that Gs is
a canonical component of G containing a vertex v of W . Observation 5.3 and
the requirements of the canonical decomposition imply that vertices in

⋃
i≥j Ai

have degree less than k. By the arguments of part (a) above, if some nontrivial
canonical component Gj′ of G satisfies j′ < j, then vertices in V (Gj′) have
degree greater than k. Thus Gs is a trivial component.

(c): By definition, d∗k is the number of terms of d having value at least k.
By (a) and Observation 5.2, since Gj is the canonical component containing vk,

the set of vertices having degree at least k is V (G0) ∪
⋃`
i=1Bi ∪

⋃j−1
i=1 Ai.

(d): If v ∈ Bj , the v’s neighborhood in G consists of its neighbors in Aj and

all vertices of V (G0)∪
⋃`
i=1Bi∪

⋃j−1
i=1 Ai other than itself. Since k′−k−1 of these

latter vertices are vertices in Bj to which v is adjacent, (c) yields the expression
for dG(v) immediately. If v ∈ Aj , then the neighborhood of v in B consists of
the neighbors of v in Gj and the vertices {v1, . . . , vk}, so dG(v) = dGj

(v)+k.

6. Degree sequences of hereditary unigraphs

In this section we use Theorem 5.6 and the structural results in Section 4 to
characterize the degree sequences of hereditary unigraphs.

Lemma 6.1. If G is split with degree sequence d = (d1, . . . , dn) and m = m(d),
then the vertices with degree at least dm form the clique of a partition of V (G)
into a clique and an independent set. If G is indecomposable and has more than
one vertex, then this is the unique such partition.

Proof. The first statement is proved by Hammer and Simeone in [14]. If G is
indecomposable and has more than one vertex, then by Theorems 2.2 and 2.5
each vertex of G belongs to an induced P4. Since the vertex set of P4 has a
unique partition into an independent set and a clique, the same property follows
for the vertex set of G.

Theorem 6.2. A graph G is a hereditary unigraph if and only if for each
canonical component G′ of G, the degree sequence d′ = (d′1, . . . , d

′
p) of G′ satisfies

the following:

(i) if G′ is split then p = 1 or d′1 = · · · = d′m′ ∈ {m′, p− 2} or d′m′+1 = · · · =
d′p ∈ {1,m′ − 1}, where m′ = m(d′);

(ii) if G′ is not split then d′ is one of the sequences

(25), (12r), (r, 12s+r), ((2r − 2)2r), ((2s+ r − 1)2s+r, 2s)

for some r ≥ 2 and s ≥ 1.
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Proof. Theorem 4.5 characterizes hereditary unigraphs in terms of their canon-
ical components. Let G be an arbitrary graph, and let G′ be a canonical com-
ponent of G with degree sequence d′. It suffices to show that G′ has one of
the forms listed in Theorem 4.5 if and only if its degree sequence meets the
conditions (i) and (ii) here.

Suppose first that G′ is split. We note that G′ has one vertex if and only if
p = 1 and assume that G′ has more than one vertex. Let {v′1, . . . , v′p} be the
vertex set of G′, indexed so that v′i has degree d′i for each i. By Lemma 6.1,
B′ = {v′1, . . . , v′m′} is the set of clique vertices in the unique partition of V (G′)
into a clique and independent set, and A′ = {vm′+1, . . . , v

′
p} is the independent

set.
If G′ is a top-expanded spider, then every two vertices of B′ have the same

degree. Depending on which case holds in Definition 2.7(iii), each vertex in B′

is adjacent to either 1 or |A′| − 1 vertices of A′, along with all other vertices
of B′. Hence d′1 = · · · = d′m′ ∈ {m′, p − 2}. Conversely, suppose d′1 = · · · =
d′m′ ∈ {m′, p− 2}. Every vertex v′j of B′ is adjacent to the m′− 1 other vertices
in B′. Thus if d′j = m′, then v′j has exactly one neighbor in A′. In this case,
we may partition the vertices of B′ into classes C1, . . . , Ct according to their
neighbors in A′. Since G′ is indecomposable, every vertex in A′ has at least one
neighbor in B′ by Observation 5.3. It follows that G′ is a top-expanded spider,
where C1, . . . , Ct are the cliques substituted in forming G′ from a prime spider.
Similarly, if d′j = p− 2, then v′j has exactly one nonneighbor in A′, and we may
partition B′ into C1, . . . , Ct according to their nonneighbors in A′. Since G is
indecomposable, each vertex in A′ has at least one nonneighbor in B′, so once
again G′ is a top-expanded spider obtained by substituting C1, . . . , Ct for body
vertices in a prime spider.

Hence G′ is a top-expanded spider if and only if d′1 = · · · = d′m′ ∈ {m′, p−2}.
Similarly arguments show that G′ is a bottom-expanded spider if and only if
d′m′ = · · · = d′p ∈ {1,m′ − 1}.

Now suppose that G′ is not split. For r ≥ 2 and s ≥ 1, each of C5, rK2,
and K1,r+sK2 is clearly a unigraph with degree sequence (25), (12r), (r, 12s+r),
respectively. The complements rK2 and K1,r + sK2 are also unigraphs, having
degree sequences ((2r − 2)2r) and ((2s+ r − 1)2s+r, 2s), respectively.

Theorem 6.3. If G is a graph with degree sequence d = (d1, . . . , dn), then G is
a hereditary unigraph if and only if the following conditions hold:

(a) For every pair k, k′ of consecutive terms in EG(d) such that k′ ≥ k + 2,
either

(i) the terms di with k < i ≤ k′ are all equal and belong to {d∗k′ , d∗k −
δk − 2}, or

(ii) the terms di such that k < di < k′ are all equal and belong to {k +
1, k′ − 1}.

(b) If t denotes the last term of EG(d), then if any terms di satisfy i > t and
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di > t, they collectively form one of the sequences

((t+ 2)5), ((t+ 1)2r), (t+ r, (t+ 1)2s+r),

((t+ 2r − 2)2r), ((t+ 2s+ r − 1)2s+r, t+ 2s)

for some r ≥ 2 and s ≥ 1.

Proof. We show that conditions (a) and (b) are equivalent to parts (i) and (ii),
respectively, of Theorem 6.2. Let G be an arbitrary graph, and denote the
vertices of G as {v1, . . . , vn} so that vi has degree di for each i.

Let k, k′ be a pair of consecutive terms in EG(d) such that k′ ≥ k + 2. By
Theorem 5.6(a), the triple (G[T ∪U ], T, U) is a canonical component of G, where
T = {v ∈ V (G) : k < dG(v) < k′} and U = {vi : k < i < k′}. Suppose that
G[T ∪ U ] = Gj , so that T = Aj and U = Bj .

Suppose (a) holds. In case (i) the vertices in U all have the same degree inGj ,
and this degree is |Bj | or |V (Gj)|−2. Theorem 5.6 implies that the degree in G
of a vertex in U is either |Bj |−(k′−k)+d∗k′ = d∗k′ or |Aj∪Bj |−(k′−k)+d∗k′−2 =
d∗k − δk − 2. In case (ii) the vertices in T all have the same degree, which is 1 or
|U | − 1. Theorem 5.6 implies that the degree of a vertex in T is either k + 1 or
k + |U | − 1 = k′ − 1.

Conversely, let d′ = (d′1, . . . , d
′
p) be the degree sequence of Gj . Lemma 6.1

implies that m(d′) = |Bj |. Suppose first that the vertices in Bj all have the same
degree in G, which is either {d∗k′ or d∗k− δk− 2}. By Theorem 5.6, the degree of
these vertices in Gj is either d∗k′ +k

′−k−d∗k′ = m(d′) or d∗k−δk−d∗k′ +k′−k−2 =
|Aj ∪ Bj | − 2 = p − 2. If instead the vertices of Aj all have the same degree
in G, which is either k + 1 or k′ − 1, then by Theorem 5.6, the degree of these
vertices in Gj is either 1 or k′ − 1− k = m(d′)− 1. Hence (a) is satisfied.

Now let d′ denote the list of terms di of d such that i > t and di > t, where
t is the last term of EG(d). It follows from Theorem 5.6 and the adjacency re-
quirements of the canonical decomposition that the vertices of G corresponding
to the terms in d′ comprise V (G0), and G0 is not split. Each vertex in V (G0)
has a degree in G that is clearly t units larger than the its degree in G0, so d′

has one of the forms listed above in (b) if and only if the degree sequence of G0

is one listed in (ii) in Theorem 6.2.

Let G be a graph with n vertices. As stated in [25], the degree sequences
of the canonical components of G may be computed from the degree sequence
of G in linear time. (Indeed, one may use Theorem 5.6 to modify a linear-time
algorithm for verifying the Erdös–Gallai inequalities, such as the one in [15], to
derive the components’ degree sequences.) In the process of decomposition one
may keep track of which components are split. Checking then that the degree
of each vertex in its respective canonical component satisfies the conditions in
Theorem 6.2 can be accomplished in O(n) steps. We thus have the following.

Theorem 6.4. Hereditary unigraphs may be recognized from their degree se-
quences in linear time.
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Degree sequences of general unigraphs were studied by several authors (see [5],
[16]–[18], [19], [25], [27]–[30]). Borri et al. [5] and Kleitman and Li [16] derived
linear time algorithms for recognizing unigraphic degree sequences by recur-
sively pruning an input degree sequence. Tyshkevich [25] gave a complete char-
acterization of unigraphic degree sequences using the canonical decomposition.
Theorems 6.2 and 6.3 on hereditary unigraphs may be seen to be a special case
of these previous results.

Theorems 6.2 and 6.3 in turn generalize the degree sequence characteriza-
tions for our example families of hereditary unigraphs. For example, the reliance
of the characterization in Theorem 6.3 on the list EG(d) resembles that of The-
orem 5.1 for the threshold and split graphs. Indeed, as mentioned in Section 5,
the threshold graphs are precisely those graphs for which the terms of EG(d) are
consecutive integers and, if t is the last term of EG(d), every degree sequence
term appears within the first t terms or has value less than t.

Moreover, the degree sequence characterization for matroidal and matrogenic
graphs presented in [26] relies on the decomposition of the degree sequence of a
graph into the degree sequences of its canonical components. These component
degree sequences are then checked to see if they are each the degree sequence of a
single vertex, a net or net-complement, rK2 for some r ≥ 2, or C5 (this last not
being allowed for matroidal graphs). It is easy to see that these characterizations
are special cases of Theorem 6.2. In fact, to the characterization in [26] and to
another characterization in [22] of degree sequences of matrogenic graphs we
may add the following: A graph G is matrogenic (or matroidal) if and only if
its degree sequence satisfies the conditions of Theorem 6.3 with both (i) and (ii)
holding in (a), and with the lists (t+r, (t+1)2s+r) and ((t+2s+r−1)2s+r, t+2s)
(and ((t+ 2)5), for matroidal graphs) omitted in (b).
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