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ABSTRACT

A major part of graph theory is the study of structural properties of graphs. In

this thesis we focus on three topics in structural graph theory that each deal with

the set of induced subgraphs of a graph and the degrees of its vertices.

For example, the Graph Reconstruction Conjecture states that any graph on

at least three vertices is uniquely determined by the multiset of its unlabeled

subgraphs obtained by deleting a single vertex from the graph. This multiset is

called the deck of the graph, and the induced subgraphs it contains are the cards.

The degree-associated reconstruction number of a graph is the minimum number

of cards that suffice to determine the graph when each card is accompanied by the

degree of the vertex that was deleted to form it. We obtain results on the degree-

associated reconstruction number for graphs in general and for various special

classes of graphs, including regular graphs, vertex-transitive graphs, trees, and

caterpillars.

Several interesting classes of graphs are characterized by specifying a (possibly

infinite) list of forbidden subgraphs, that is, graphs that are not allowed to appear

as induced subgraphs of graphs in the given class. A number of graph classes have

forbidden subgraph characterizations and also have characterizations that rely

solely on the degree sequence; examples of such graph classes include the classes

of complete graphs and split graphs. We consider the problem of determining

which sets F of forbidden subgraphs are degree-sequence-forcing, that is, the set

of F -free graphs has a characterization requiring no more information about a
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graph than its degree sequence.

Finally, we define the A4-structure H of a graph G to be the 4-uniform hy-

pergraph on the vertex set of G where four vertices comprise an edge in H if and

only if they form the vertex set of an alternating 4-cycle in G. Our definition is a

variation of the notion of the P4-structure, a hypergraph which has been shown

to have important ties to the various decompositions of a graph. We show that

A4-structure has many properties analogous to those of P4-structure, including

connections to a special type of graph decomposition called the canonical decom-

position. We also give several equivalent characterizations of the class of A4-split

graphs, those having the same A4-structure as some split graph.
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CHAPTER 1

Introduction

A major part of graph theory is the study of structural properties of graphs. (We

refer the reader to Section 1.4 at the end of the chapter for basic graph theory

definitions and notation.) In this thesis we focus on three topics in structural

graph theory that each deal with the set of induced subgraphs of a graph and the

degrees of its vertices.

For example, the Graph Reconstruction Conjecture states that any graph on

at least three vertices is uniquely determined by the multiset of its unlabeled

subgraphs obtained by deleting a single vertex from the graph. This multiset is

called the deck of the graph, and the induced subgraphs it contains are the cards.

The degree-associated reconstruction number of a graph is the minimum number

of cards that suffice to determine the graph when each card is accompanied by the

degree of the vertex that was deleted to form it. In Chapter 2 we obtain results on

the degree-associated reconstruction number for graphs in general and for various

special classes of graphs, including regular graphs, vertex-transitive graphs, trees,

and caterpillars. This is joint work with Douglas B. West and appears in [6].

Several interesting classes of graphs are characterized by specifying a (possibly

infinite) list of forbidden subgraphs, that is, graphs that are not allowed to appear

as induced subgraphs of graphs in the given class. A number of graph classes have

forbidden subgraph characterizations and also have characterizations that rely

solely on the degree sequence; examples of such graph classes include the classes

of complete graphs and split graphs. In Chapter 3 we consider the problem of
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determining which sets F of forbidden subgraphs are degree-sequence-forcing, that

is, the set of F -free graphs has a characterization requiring no more information

about a graph than its degree sequence. This is joint work with Stephen G. Hartke

and Mohit Kumbhat and appears in [3] and [4].

Finally, in Chapter 4 we define the A4-structure H of a graph G to be the

4-uniform hypergraph on the vertex set of G where four vertices comprise an

edge in H if and only if they form the vertex set of an alternating 4-cycle in

G. Our definition is a variation of the notion of the P4-structure, a hypergraph

which has been shown to have important ties to the various decompositions of a

graph. We show that A4-structure has many properties analogous to those of P4-

structure, including connections to a special type of graph decomposition called

the canonical decomposition. We also give several equivalent characterizations

of the class of A4-split graphs, those having the same A4-structure as some split

graph. This is joint work with Douglas B. West and appears in [5].

1.1 Degree-associated reconstruction numbers

Our first results deal with a problem in graph reconstruction. A card of a graph

G is an unlabeled subgraph obtained by deleting a single vertex from G. The deck

of G is the multiset of cards of G. The Graph Reconstruction Conjecture, one of

the most prominent unsolved problems in graph theory, is due to Kelly [30] and

Ulam [52]. It states that no two nonisomorphic graphs on at least three vertices

have identical decks. Results so far have shown how to determine many properties

of a graph from its deck, and the conjecture has been proved for various classes

of graphs. However, the problem in its full generality remains open at this time.

Motivated by questions on the reconstruction of directed graphs, Ramachan-

dran [44] proposed that the Reconstruction Conjecture be weakened by present-
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ing each vertex-deleted subgraph along with the degree of the deleted vertex in

a degree-associated card, or dacard. Ramachandran’s conjecture that each graph

is uniquely determined by its degree-associated deck, or dadeck, is equivalent to

the Graph Reconstruction Conjecture for graphs on at least three vertices, since

from the entire deck of a graph one can determine the degrees of the deleted

vertices. Each dacard, however, gives more information about the graph than

the corresponding card does, and dacards provide more information than cards in

situations when an entire (da)deck is not specified.

One does not always need the entire deck or degree-associated deck to uniquely

reconstruct a graph. Harary and Plantholt [22] defined the reconstruction num-

ber rn(G) of a graph G to be the minimum size of a subdeck for which G is the

only graph having those cards. Ramachandran [45] modified this definition to

define the degree-associated reconstruction number drn(G) of a graph G as the

minimum number of dacards that suffice to uniquely determine G. The Recon-

struction Conjecture is equivalent to showing that drn(G) is defined (and at most

|V (G)|) for each graph G. We observe that drn(G) ≤ 2 for almost all graphs G

(asymptotically), and we show that a graph G satisfies drn(G) = 1 if and only if

G or its complement has an isolated vertex or a pendant vertex whose deletion

yields a vertex-transitive graph.

We also study the degree-associated reconstruction number for vertex-transitive

graphs. These graphs are of interest because they are the graphs for which all

dacards are the same. Vertex-transitive graphs are regular; we show that if G

is any k-regular graph, then drn(G) ≤ min{k + 2, n − k + 1}. We show that

drn(G) ≥ 3 for every vertex-transitive graph G that is not a complete or edgeless

graph. We define a vertex-transitive graph G to be coherent if in any two-vertex-

deleted subgraph the only way to add a vertex v back to form a card of G is to give

v the same neighborhood as one of the deleted vertices. We show that drn(G) = 3
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for coherent vertex-transitive graphs, and we show that the Petersen graph, hy-

percubes, prisms of complete graphs, and disjoint copies of identical coherent

graphs are coherent. Nevertheless, we show that vertex-transitive graphs can

have large degree-associated reconstruction numbers. Let G be a non-complete

vertex-transitive graph in which no two vertices have the same neighborhood. Let

G(m) denote the graph obtained by replacing each vertex of G by an independent

set of size m and making copies of vertices adjacent in G(m) if the corresponding

original vertices are adjacent in G. We prove that drn(G(m)) = m + 2 for any

m ≥ 2.

We also study the degree-associated reconstruction number of trees. Myr-

vold [41] showed that rn(T ) ≤ 3 (and hence drn(T ) ≤ 3) for any tree T other

than P4; we show that drn(T ) = 2 when T is a caterpillar (a tree that becomes a

path when all its leaves are deleted) other than a star or a particular six-vertex

tree. The proofs of many of our results make use of the centroid of a tree, a notion

employed extensively in Myrvold’s paper, and we show that drn(T ) = 2 for any

tree T having exactly one centroid vertex u and a leaf ℓ adjacent to u such that

T − ℓ also has exactly one centroid vertex.

1.2 Degree-sequence-forcing sets

We next consider the problem of determining which hereditary graph families have

characterizations that can be stated strictly in terms of their degree sequences.

Such degree sequence characterizations are desirable because conditions depending

only on the degree sequence can often be tested by linear-time algorithms. Call a

graph family G degree-determined if the question of whether a graph H belongs to

G can be answered knowing only the degree sequence of H . Unfortunately, most

graph classes of broad interest are not degree-determined. Some, however, are:
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examples include the complete, split, matrogenic, and matroidal graphs (these last

two classes will be defined in Chapter 4. Each of these families has a linear-time

recognition algorithm based on a degree sequence characterization [20, 50].

A class G of graphs is hereditary if every induced subgraph of an element of G

is also in G. For every hereditary class G there is a minimal set F of graphs such

that a graph H is in G if and only if it is F-free, that is, it contains no induced

subgraph isomorphic to an element of F . We call the elements of F forbidden

subgraphs for the class G.

We seek to characterize degree-determined hereditary families by studying

their associated minimal forbidden subgraphs. We define a set F of graphs to

be degree-sequence-forcing if the class of F -free graphs is degree-determined. We

observe that if the F -free graphs are the unique realizations of their respective

degree sequences, then F is degree-sequence-forcing. We show that every degree-

sequence-forcing set must contain a disjoint union of complete graphs, a complete

multipartite graph, a forest of stars, and the complement of a forest of stars. As

a consequence, there are only three singleton sets and eleven pairs of graphs that

are minimal degree-sequence-forcing sets, meaning that no proper subset is also

degree-sequence-forcing.

We also characterize the non-minimal degree-sequence-forcing triples, showing

that they all belong to one of ten infinite families or a collection of twenty-seven

other sets. In the process, we consider an analogue of degree-sequence-forcing

sets for bipartite graphs with a fixed bipartition. We also study minimal degree-

sequence-forcing sets, showing that for any natural number k, there are finitely

many minimal degree-sequence-forcing k-sets.

For certain hereditary families G, the degree sequence of a graph H determines

not only whether H is in G, but also how many edges must be added to or deleted

from H to produce a graph in G. When G is the class of split graphs, this
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parameter is known as the splittance of H ; Hammer and Simeone [20] defined

the splittance and gave a formula for it in terms of the degree sequence. Degree-

determined families having this additional degree sequence property are called

edit-level. If a hereditary class of graphs is edit-level, then its set of minimal

forbidden subgraphs is edit-leveling. Edit-leveling sets of graphs are necessarily

degree-sequence-forcing, though the converse is not true. We give examples of

edit-leveling sets and a show that if F is edit-leveling, then so is F (k), the set of

minimal forbidden subgraphs for the family of graphs that can be produced by

adding or deleting at most k edges from an F -free graph. We prove that a set

of graphs is edit-leveling if and only if F (k) is degree-sequence-forcing for every

natural number k.

1.3 The A4-structure of a graph

In work related to Berge’s Strong Perfect Graph Conjecture, Chvátal [13] defined

the P4-structure of a graph G as the 4-uniform hypergraph having the same vertex

set as G in which four vertices form an edge if and only if they induce a path (a

copy of P4) in G. He conjectured that two graphs having the same P4-structure are

either both perfect or both imperfect (this result, initially called the Semi-Strong

Perfect Graph Conjecture, was later proved by Reed [47]). Research on the P4-

structure has since grown beyond a focus on perfect graphs; the P4-structure has

been used to define several graph classes with interesting structural properties

in which several optimization problems can be solved more efficiently than on

general graphs. It has also appeared in several schemes of graph decomposition

(partitioning the vertex set of a graph into subsets with prescribed properties).

An induced P4 in a graph gives rise to an alternating 4-cycle, a configuration

on four vertices in which two edges and two non-edges of the graph alternate in a
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cyclic fashion. We define the A4-structure of a graph G by modifying the definition

of the P4-structure to include as edges the vertex sets of all alternating 4-cycles.

We observe that the threshold graphs (which will be defined in Chapter 4) are

those whose A4-structures contain no edges, and the matrogenic and matroidal

graphs are those whose A4-structures contain no five vertices inducing exactly

two or three edges, and contain no five vertices containing more than one edge,

respectively. We also show that cycles of length 5 or at least 7 are, together with

their complements, the unique graphs having their particular A4-structure. As a

consequence, we give an A4-structure analogue of the Semi-Strong Perfect Graph

Theorem. We also prove that triangle-free graphs G and H have the same A4-

structure if and only if there is a bijection ϕ : V (G) → V (H) such that whenever

S is the vertex set of a matching of size at least 2 in G, ϕ(S) is the vertex set of

a matching in H .

Several results on P4-structure have analogues in the context of graph A4-

structures. In particular, a module in a graph is a vertex subset S such that no

vertex outside S has both a neighbor and a non-neighbor in S. We introduce

an analogous concept by defining a strict module to be a module S such that no

alternating path (a configuration to be defined in Chapter 4) begins and ends in

S. We show that the relationship between the P4-structure and the modules of

a graph is analogous to the relationship between the A4-structure and the strict

modules of the graph; in particular, 4-vertex graphs having alternating 4-cycles

are the minimal graphs not having any nontrivial strict modules.

We show further that strict modules and A4-structure are closely related to the

canonical decomposition of a graph, as defined by Tyshkevich [49,51]. In particu-

lar, the indecomposable components of a graph under this decomposition have the

same vertex sets as the connected components of the A4-structure of the graph.

As a result, the role of the A4-structure of a graph in its canonical decomposi-
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tion is an analogue of the role of the P4-structure in the primeval decomposition

defined by Jamison and Olariu [29].

Finally, we show that the canonical decomposition of a graph can be used to

generate other graphs having the same A4-structure. Motivated by these results,

we define the A4-split graphs, those having the same A4-structure as some split

graph. We give five equivalent characterizations of the A4-split graphs, including

a list of eleven forbidden induced subgraphs and a characterization in terms of

the canonical decomposition.

1.4 Definitions and notation

A graph G consists of two sets V (G) and E(G) called the vertex set and the edge

set of G, respectively. Each member of V (G) is called a vertex; each member of

E(G) is an unordered pair of distinct vertices, called an edge. The order of a

graph is the size of its vertex set. All graphs in this thesis are assumed to have

positive, finite order.

In writing edges of a graph, we use uv to denote an edge {u, v}, and we refer to

u and v as the endpoints of the edge. If uv is an edge, then u and v are adjacent,

and the edge uv is incident with u and v. The neighborhood NG(v) of a vertex

v in G is the set of all vertices adjacent to v; these are the neighbors of v. The

closed neighborhood NG[v] is NG(v) ∪ {v}.

An ismorphism from a graph G to a graph H is a bijection ϕ : V (G) → V (H)

such that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H). If such an isomorphism

exists, we say that G and H are isomorphic and denote this by G ∼= H . An

isomorphism from G to itself is an automorphism of G. A graph G is vertex-

transitive if for every pair (u, v) of vertices in G there exists an automorphism of

G mapping u to v.
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Graph isomorphism defines an equivalence relation on graphs, and the equiva-

lence class containing a graph G is the isomorphism class of G. Often we will refer

to an isomorphism class as a single graph, such as when we speak of the graph on

n vertices with no edges. When we wish to emphasize that an isomorphism class

of graphs is meant, rather than a single member of the isomorphism class, we use

the term unlabeled graph. A graph G is a copy of a graph or isomorphism class if

G is isomorphic to the graph or belongs to the isomorphism class in question.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆

E(G). If H is (isomorphic to) a subgraph of G, then we may say that G contains

H or that H is contained in G. The graph H is an induced subgraph of G if H

is a subgraph of G with the property that two vertices are adjacent in H if and

only if they are adjacent in G. If H is (isomorphic to) an induced subgraph of G,

we say that H is induced in G, or that G induces (a copy of) H . If S ⊆ V (G),

the subgraph induced by S, denoted G[S], is the induced subgraph of G having

vertex set S.

To delete a vertex v from a graph G is to remove v from V (G) and to remove

from E(G) all edges containing v. The resulting graph equals G[V (G)−{v}] and

is denoted by G − v. We may denote the result of deleting all vertices in a set S

from G by G−S. The graph H is induced in G if and only if H may be obtained

by deleting vertices from G. To delete an edge uv from a graph G is to remove

uv from E(G); we denote the resulting graph by G − uv.

The complement G of a graph G is the graph with vertex set V (G) where any

two vertices are adjacent if and only if they are not adjacent in G.

The degree of a vertex v in a graph G is the number of edges of G incident with

v. We denote the degree of v in G by dG(v), or simply d(v) when G is understood.

The maximum and minimum vertex degrees in G are denoted by ∆(G) and δ(G),

respectively. If ∆(G) = δ(G), then G is regular ; if dG(v) = k for all v ∈ V (G),
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then G is k-regular. A vertex of degree 0 is an isolated vertex, a vertex of degree

1 is a leaf or pendant vertex, and a vertex in G whose degree is |V (G)| − 1 (that

is, the vertex is adjacent to all other vertices in G) is a dominating vertex. Given

a vertex subset S and a vertex v, we say that v is isolated from S if v is adjacent

to no vertex of S, and v dominates S if S ⊆ NG(v).

The list of vertex degrees in an n-vertex graph is the degree sequence, and it

is usually written as an n-tuple with its entries in nonincreasing order. If a graph

G has degree sequence d, then G is a realization of d. If G is a realization of

(d1, . . . , dn) and m is the number of edges in G, then since each edge is incident

with its two endpoints, we have the well-known Degree-Sum Formula, which states

that
n
∑

i=1

di = 2m.

An independent set is a set of vertices that are pairwise nonadjacent. A clique

is a set of vertices that are pairwise adjacent. A k-clique is a clique of size k.

The chromatic number of a graph G is the smallest number of independent sets

that together partition V (G). A graph G is perfect if for every induced subgraph

G′ of G the chromatic number of G′ equals the maximum size of a clique in G′.

A path on n vertices, denoted Pn, is a graph whose vertex set may be indexed

{v1, . . . , vn} so that its edge set is {vivi+1 : 1 ≤ i ≤ n−1}. We denote such a path

in Chapters 1–3 by 〈v1, v2, . . . , vn〉. (In Chapter 4 our focus will be on alternating

paths, and we will redefine this notation then.) The first and last vertices are the

endpoints of the path, and the remaining vertices are the interior vertices. The

length of the path is the number of edges it contains. A cycle on n vertices, also

called an n-cycle and denoted Cn, is a graph formed by adding an edge joining

the endpoints of a path on n vertices. We denote a cycle with vertices v1, . . . , vn

in cyclic order by [v1, v2, . . . , vn]. A triangle is a graph isomorphic to C3.
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A graph is connected if for any two vertices u and v in the graph, there is a

path having u and v as its endpoints; it is disconnected otherwise. A component

in a graph is a maximal connected subgraph. A cut-vertex in a graph is a vertex

whose deletion leaves the resulting graph with more components than the original

graph had; a cut-edge is an edge having the same property.

The distance between two vertices u and v in G is the number of edges on a

shortest path having endpoints u and v. We write diam(G) for the diameter of

G, which is the largest distance between vertices in G.

A tree is a connected graph with no cycles. A forest is a graph in which every

component is a tree. A tree on n vertices has exactly n − 1 edges. A graph G

is bipartite if its vertex set may be partitioned into two sets A and B, called the

partite sets, such that A and B are independent sets in G. A matching in G is a

set of pairwise disjoint edges.

A graph G is edgeless if V (G) is an independent set. A graph is complete if its

vertex set is a clique. We use Kn to denote the complete graph on n vertices, and

we denote by Kn − e the unlabeled graph obtained by deleting any edge of Kn.

A complete multipartite graph, denoted Kn1,...,nk
, is a graph whose vertex set may

be partitioned into subsets V1, . . . , Vk (the partite sets) with orders n1, . . . , nk,

respectively, such that vertices u ∈ Vi and v ∈ Vj are adjacent if and only if i 6= j.

If k = 2, we refer to the graph as a complete bipartite graph. A star is a graph

of the form K1,m; equivalently, it is a tree with diameter at most 2. A graph is

a split graph if its vertex set can be partitioned into a clique and an independent

set.

The disjoint union of graphs G and H , denoted G + H , is the graph whose

vertex set is V (G)∪ V (H) and whose edge set is E(G)∪E(H), where we assume

that G and H have disjoint vertex sets and disjoint edge sets. When a disjoint

union is taken of a graph with itself, we denote the result with a coefficient; the
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graph G + G + · · ·+ G (m copies) is denoted mG. The join of disjoint graphs G

and H , denoted G∨H , is the graph whose vertex set is V (G)∪ V (H) and whose

edge set is E(G) ∪ E(H) ∪ {uv : u ∈ V (G) and v ∈ V (H)}.

The cartesian product G�H of graphs G and H is the graph with vertex set

V (G) × V (H) such that (u, v) and (u′, v′) are adjacent precisely when (i) u = u′

and vv′ ∈ E(H) or (ii) v = v′ and uu′ ∈ E(G). When H = K2, the special case

G�K2 of the cartesian product is formed from 2G by adding a matching of size

|V (G)| joining the two copies of each vertex of G; this is the prism over G.

A hypergraph is a pair (V, E) where the set V contains vertices of the hyper-

graph, and the set E contains subsets of V of any size (as opposed to graphs). A

hypergraph is k-uniform if every edge contains exactly k vertices. A hypergraph

H is connected if for every two vertices u and v in H there is a list u1, . . . , uk

of vertices such that u1 = u and uk = v and every two consecutive vertices in

the list belong to an edge of H . If the shortest such list has length ℓ, then the

distance between u and v is ℓ − 1. The maximal connected subhypergraphs of a

hypergraph are its components.

A hypergraph H ′ is a subhypergraph of H if V (H ′) ⊆ V (H) and E(H ′) ⊆

E(H)). Given hypergraphs H and J , a hypergraph isomorphism from H to J

is a map ϕ : V (H) → V (J) such that for every subset A of V (H), we have

ϕ(A) ∈ E(J) if and only if A ∈ E(H).
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CHAPTER 2

Degree-associated reconstruction numbers

2.1 Introduction

The well-known Graph Reconstruction Conjecture of Kelly [30] and Ulam [52]

has been open for more than 50 years. It asserts that every graph with at least

three vertices can be (uniquely) reconstructed from its “deck” of vertex-deleted

subgraphs. Here the deck of a graph G is the multiset of unlabeled induced

subgraphs formed by deleting one vertex from G, and these subgraphs are cards

in the deck. Saying that G is reconstructible is the same as saying that all graphs

with the same deck as G are isomorphic to G. The conjecture has been proved

for many special classes of G, and many results show that various properties of

G may be deduced from its deck. Nevertheless, the full conjecture remains open.

Surveys of results on reconstruction include [9, 10, 33, 35].

It may not be necessary to know the entire deck to reconstruct the graph.

Harary and Plantholt [22] defined the reconstruction number of a graph G, denoted

rn(G), to be the minimum number of cards from the deck that suffice to determine

G. The Reconstruction Conjecture is the statement that rn(G) is defined (at most

|V (G)|) for each graph G with at least three vertices. Reconstruction numbers

are known for various classes of graphs; see [1, 22, 38–41].

Motivated by reconstruction questions for directed graphs, Ramachandran [44]

proposed a slightly different model. A degree-associated card (or dacard) of a

graph (or digraph) is a pair (C, d) consisting of a card C in the deck and the
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degree (or in/out-degree pair) d of the deleted vertex. The multiset of dacards is

the dadeck (the degree-associated deck). For graphs with at least three vertices,

knowing the degree of the deleted vertex is equivalent to knowing the total number

of edges. A simple counting argument computes |E(G)| when the entire deck is

known, so the dadeck gives the same information as the deck. However, the

counting argument requires the entire deck, so an individual dacard gives more

information than the corresponding card. Ramachandran [45] defined the degree-

associated reconstruction number drn(G) of a graph G to be the minimum number

of dacards that suffice to determine G. Clearly drn(G) ≤ rn(G). Ramachandran

studied this parameter for complete graphs, edgeless graphs, cycles, complete

bipartite graphs, and disjoint unions of identical graphs.

In this chapter we continue this study. Bollobás [8] proved that rn(G) = 3 for

almost every graph. In Section 2.2 we conclude from this that drn(G) ≤ 2 for

almost every graph, and we characterize the graphs G for which drn(G) = 1. We

also prove that drn(G) ≤ min{k + 2, n− k + 1} when G is a k-regular graph with

n vertices.

In Section 2.3 we study vertex-transitive graphs. Let G be vertex-transitive.

We prove that drn(G) ≥ 3 and give a sufficient condition for equality; it holds

for the Petersen graph, the k-dimensional hypercube, and the cartesian product

Kn�K2. Also, if G has nonadjacent vertices with distinct neighborhoods, and

G(m) arises from G by expanding each vertex into m independent vertices, then

drn(G(m)) = tm +2, where t is the maximum number of vertices having the same

neighborhood in G.

In Sections 2.4–2.6 we study trees. Section 2.4 gives sufficient conditions for

drn(G) = 2 when G is a tree. These aid subsequently in computing the value for

all trees whose non-leaf vertices form a path; these trees are called caterpillars. If

G is a caterpillar, then drn(G) = 2 unless G is a star or the one 6-vertex tree with
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four leaves and maximum degree 3. We consider special families of caterpillars in

Section 2.5 and complete the general proof in Section 2.6.

2.2 Small reconstruction numbers and regular graphs

In this section we show that drn(G) ≤ 2 for almost every graph G, and we deter-

mine when drn(G) = 1. Our observation relies heavily on the result of Bollobás [8]

about rn(G), which also implies that almost every graph is reconstructible.

Theorem 2.1 (Bollobás [8]). Almost every graph has reconstruction number 3.

Furthermore, for almost every graph, any two cards in the deck determine every-

thing about the graph except whether the two deleted vertices are adjacent.

The reconstruction number of any graph is at least 3, since G − u and G − v

are cards for both G and G′, where G and G′ differ only on whether the edge uv

is present. Thus, the previous result is sharp. The degree information determines

the last unknown bit of information without introducing another card.

Corollary 2.2. For almost every graph G, drn(G) ≤ 2.

Proof. Let G be a graph with two cards that determine the graph except for

whether the deleted vertices are adjacent. In the dadeck of G the cards G − u

and G − v are paired with dG(u) and dG(v). The degree information determines

whether uv is present, thereby reconstructing G; thus drn(G) ≤ 2.

It is natural to ask when drn(G) = 1. We answer this question in the next few

results.

Lemma 2.3. For any graph G, drn(G) = drn(G).

Proof. Let v be a vertex in an n-vertex graph G. Since dG(v) = n−1−dG(v) and

G − v = G− v, it follows that (C, d) is a dacard of G if and only if (C, n− 1− d)

is a dacard of G.
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Consider a multiset {(C1, d1), . . . , (Cr, dr)} of dacards that determine G. Since

these can be obtained from {(C1, n− 1− d1), . . . , (Cr, n− 1− dr)} and G can be

obtained from G, we conclude that drn(G) ≤ drn(G). Reversing the roles of G

and G yields drn(G) = drn(G).

Note that drn(G) = 1 if and only if G has a dacard that does not occur in the

dadeck of any other graph. We next determine all dacards of this type.

Theorem 2.4. The dacard (C, d) belongs to the dadeck of only one graph (up to

isomorphism) if and only if one of the following holds:

(1) d = 0 or d = |V (C)|;

(2) d = 1 or d = |V (C)| − 1, and C is vertex-transitive;

(3) C is complete or edgeless.

Proof. Let n = |V (C)|. In each case listed, there is exactly one way (up to

isomorphism) to form a graph G with n+1 vertices by adding to C a vertex with

d neighbors in C.

Suppose now that (C, d) is a dacard for only one graph. That is, adding a

vertex adjacent to d vertices in C produces a graph in the same isomorphism

class no matter which d vertices of C are chosen. If (C, d) is not in the list above,

then d /∈ {0, n} and C /∈ {Kn, Kn}. We must show that then d ∈ {1, n − 1} and

C is vertex-transtive.

Because (C, d) is a dacard for only one graph, the same isomorphism class is

produced no matter what set of d vertices is chosen for the neighborhood of the

added vertex v. Since isomorphic graphs have the same number of triangles, and

the number of triangles after adding v is the number of triangles in C plus the

number of edges in C induced by neighbors of v, we conclude that every induced

subgraph of C with d vertices has the same number of edges. It is a well-known

exercise (Exercise 1.3.35 on page 50 of [53]) that when 1 < d < n−1, this property
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forces C ∈ {Kn, Kn}.

Hence we may assume that d ∈ {1, n − 1}. Since (C, d) determines G if and

only if (C, n−1−d) determines G, we many assume that d = 1. Note that adding

a vertex of degree 1 adds 1 to some vertex degree in C. In particular, (C, d) is

a dacard for some graph with maximum degree ∆(C) + 1. If C is not regular,

then also (C, d) is a dacard for some graph with maximum degree ∆(C). Hence

C must be regular.

If C is regular of degree 0 or 1, then automatically C is vertex-transitive.

For larger degree, every automorphism of the resulting graph G fixes v, since it

is the only vertex of degree 1. Since attaching v to any vertex yields the same

graph, C must have automorphisms taking each vertex to any other. Hence C is

vertex-transitive.

Corollary 2.5. A graph G satisfies drn(G) = 1 if and only if G or G has an

isolated vertex or has a pendant vertex whose deletion leaves a vertex-transitive

graph.

Proof. We have drn(G) = 1 if and only if the dadeck of G has a dacard (C, d) as

described in Theorem 2.4. If C is complete or edgeless, or if d ∈ {0, |V (C)|}, then

G or G has an isolated vertex. Case 2 of Theorem 2.4 yields the second possibility

here.

We close this section with a general bound for regular graphs. Regular graphs

are well known to be reconstructible, since the degree list can be determined from

the deck, and the deficient vertices in any card must be the neighbors of the

missing vertex. One dacard gives the degree of the missing vertex, but it does not

give the degree list and hence does not determine G. Nevertheless, we obtain an

upper bound on drn(G).
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Theorem 2.6. If G is a k-regular graph on n vertices, then drn(G) ≤ min{k +

2, n − k + 1}.

Proof. Since G is k-regular, each card has k vertices of degree k−1 and n−1−k

vertices of degree k. Let H be a graph that shares k+2 dacards with G. Let (C, k)

be one such dacard, with C = G − v, so there exists u ∈ V (H) with C = H − u.

If H 6∼= G, then u has a neighbor w in H with degree k in C, and ∆(H) = k+1.

The k + 2 given dacards of H imply that H has at least k + 2 vertices of degree k

whose deletion from H leaves a subgraph with maximum degree at most k. Since

dH(w) = k +1, deleting w cannot yield a dacard of G. Hence vertices in H whose

deletion yields a dacard of G lie in NH(w). There are only k + 1 such vertices,

so any graph agreeing with G on k + 2 dacards must be isomorphic to it, and

drn(G) ≤ k + 2.

The complement of a k-regular graph is (n−1−k)-regular, so Lemma 2.3 and

the argument above yield drn(G) = drn(G) ≤ (n − 1 − k) + 2, completing the

proof.

Equality holds in the bound of Theorem 2.6 for graphs of the form tKm,m

with t > 1, proved by Ramachandran [45]. Ramachandran [45] also proved for

k, t ≥ 2 that if G is a connected k-regular graph on n vertices, where n ≥ 3, then

drn(tG) ≤ n − k + 2.

2.3 Vertex-transitive graphs

For regular graphs that are vertex-transitive, we obtain sharper results. Observe

that a graph is vertex-transitive if and only if its dacards are pairwise isomorphic.

Since vertex-transitive graphs are regular, Theorem 2.6 provides an upper bound.

We will prove further lower and upper bounds and give sufficient conditions for

equality in the bounds.
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Since drn(G) = 2 almost always, only special graphs need more dacards. When

the dacards are identical, there is no clever choice of dacards, so it is natural to

expect vertex-transitive graphs to be hard to reconstruct. Ramachandran [45]

showed that drn(tKm,m) = m + 2 when t > 1. On the other hand, the value can

remain small: for t, m > 1, Ramachandran [45] showed that drn(tKm) = 3 even

though rn(tKm) = m+2 (Myrvold [40]). Note that by setting t = 2 and applying

drn(G) = drn(G), one also obtains drn(Km,m) = 3.

Definition 2.7. A twin of v is a vertex having the same neighborhood as v. A

clone of a vertex x in a graph is a vertex having the same closed neighborhood as

x.

Theorem 2.8. If G is vertex-transitive but is not complete or edgeless, then

drn(G) ≥ 3.

Proof. Let (C, d) denote the only dacard of G. To show that drn(G) > 2, we

construct a graph H different from G that has at least two copies of (C, d) in its

dadeck.

Let v be a vertex of G, so C = G− v. If every neighbor of v in G is a clone of

v, then G is a disjoint union of complete graphs, say mKr with m ≥ 2 and r ≥ 2.

In this case, C = (m − 1)Kr + Kr−1. Let x be a nonneighbor of v in G. Form

H by adding to C a vertex x′ with the same neighborhood as x. Now H has a

noncomplete component, so H 6∼= G, but H − x′ = H − x = C, so H has (C, d) as

a dacard twice.

Otherwise, let u be a neighbor of v with NG[u] 6= NG[v]. There exist vertices

w ∈ NG(u)−NG(v) and w′ ∈ NG(v)−NG(u). Form H by adding to C a vertex u′

such that NH [u′] = NG[u]−{v}. Note that dH(w) > dC(w) > dC(w′) = dH(w′), so

H is not regular; thus H 6∼= G. Since NH [u′] = NH [u], we have H − u = H − u′ =

C = G − v, so H has (C, d) as a dacard twice.
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We will shortly give sufficient conditions for equality in this bound. The bound

can be arbitrarily bad, since Ramachandran proved that drn(tKm,m) = m+2. We

next extend Ramachandran’s result by proving this value for a more general family

of vertex-transitive graphs. The graph produced is tKm,m when the construction

begins with tK2.

Definition 2.9. An expansion of a graph G is a graph H obtained by replacing

each vertex of G with an independent set such that copies in H of two vertices of

G are adjacent in H if and only if the original vertices were adjacent in G. The

m-fold expansion G(m) is the expansion of G in which each vertex expands into

an independent set of size m. A twin-set in a graph is a maximal vertex subset

containing vertices with identical neighborhoods.

Theorem 2.10. Let G be a vertex-transitive graph other than a complete graph,

and suppose that G has no twins. If m ≥ 2, then drn(G(m)) = m + 2.

Proof. Let V (G) = {v1, . . . , vn}. In G(m), each vertex vi of G becomes an inde-

pendent set Vi of size m. All vertices in Vi have the same neighborhood, while

vertices in distinct such sets have different neighborhoods, since G has no twins.

Thus the sets V1, . . . , Vn are twin-sets. Note that G(m) is vertex-transitive and

km-regular, where G is k-regular, and every vertex neighborhood in G(m) is a

union of twin-sets. Let C be the unique card of G(m).

We first show that drn(G(m)) ≥ m + 2. Since G is not a complete graph and

has no twins, it has nonadjacent vertices vi and vj with distinct neighborhoods.

View C as G − x, where x ∈ Vi. Construct H by adding to C a vertex u with

neighborhood N(Vj) (the common neighborhood of all vertices of Vj). Since x /∈

N(Vj), we have dH(u) = km. In G(m) every set of m + 1 vertices contains two

vertices having distinct neighborhoods, but in H the m + 1 vertices in Vj ∪ {u}

all have the same neighborhood. Hence H ≇ G(m). Furthermore, the dacards for
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these vertices of H are the same as the dacards for G(m). Thus drn(G(m)) ≥ m+2.

Now let H be a graph having vertices u1, . . . , um+2 of degree km such that

H − ui
∼= C for 1 ≤ i ≤ m + 2. Since m ≥ 2, there are n twin-sets in C, one of

which has size m − 1; call it U . Treating a deleted vertex of G(m) (assume it is

u1) as a member of V1, we may let V1 − {u1}, V2, . . . , Vn be the twin-sets of C.

There are exactly n distinct vertex neighborhoods in C. Suppose that NH(u1) is

none of these. Since |U | = m − 1, among u2, . . . , um+2 there is a vertex uj not

in U . In C − uj, there remain n distinct neighborhoods (since the n twin-sets of

C remain nonempty), and none of them is NH(u1) − {uj}. Replacing u1, we find

that H − uj has n + 1 distinct neighborhoods, contradicting H − uj
∼= C.

Thus NH(u1) is a vertex neighborhood in C. If it is the neighborhood of the

deficient set, then H ∼= G(m). Otherwise, H is an expansion of G in which one

twin-set T has size m+1, one twin-set U has size m− 1, and the others have size

m. The only way to delete a vertex from H so that the twin-sets in the resulting

graph have the same sizes as in C is to delete a vertex of T . Since |T | = m + 1,

the dacard (C, km) cannot occur m + 2 times for H .

In a vertex-transitive graph, the twin-sets all have the same size.

Corollary 2.11. If G is a vertex-transitive graph other than a complete multi-

partite graph, then drn(G(m)) = tm + 2 for every m ≥ 2, where t is the size of the

twin-sets in G.

Proof. Collapsing the twin-sets of G into single vertices yields a vertex-transitive

graph G0 having no twins, and G = G
(t)
0 . Since G is not a complete multipartite

graph, G0 is not a complete graph. Hence Theorem 2.10 applies to G0, and

drn(G(m)) = drn(G
(tm)
0 ) = tm + 2.

In the remainder of this section we study sharpness in the lower bound of
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Theorem 2.8. We give a sufficient condition for drn(G) = 3 in the family of vertex-

transitive graphs and show that hypercubes and some other products satisfy it.

Definition 2.12. A vertex-transitive graph G is coherent if a card C of G formed

by adding one vertex z to a two-vertex-deleted subgraph G − {x, y} can only be

formed by making z adjacent to NG−y(x) or NG−x(y).

Coherence prevents the deletion of two vertices from G in such a way that the

card can be recreated by adding a vertex adjacent to some set of deficient vertices

other than the full neighborhood of one of the deleted vertices.

Theorem 2.13. Let G be a k-regular vertex-transitive graph. If G is coherent

and has no clones or twins, then drn(G) = 3.

Proof. Let C be the unique card of G. We must show that if some graph H has

vertices u, v, w of degree k such that deleting any one yields C, then H ∼= G.

Let S be the set of vertices of degree k−1 in H−u. Since H−u ∼= C ∼= G−x,

we may assume that H−u = G−x (using the same vertex names), so NG(x) = S

and |S| = k. Now H − u − v is obtained by deleting x and v from G. The card

H − v is obtained by adding u and the appropriate edges to H −u− v; doing this

adds u and appropriate edges to G − x − v to produce a graph isomorphic to C.

By coherence, NH−v(u) is NG−v(x) or NG−x(v).

If NH−v(u) = NG−v(x), then S − {v} ⊆ NH(u). Also, |S − {v}| is k − 1 or

k, depending on whether v ∈ NG(x). Since we are given dH(u) = k, we obtain

NH(u) = S and H ∼= G.

If NH−v(u) = NG−x(v), then |NH(u) ∩ NH(v)| ∈ {k − 1, k}, depending on

whether v ∈ NG(x). This makes u and v clones or twins in H , respectively, since

dH(u) = k. Now we look at H − w. Whether w is adjacent to neither or both

of {u, v} in H , still u and v are clones or twins in H − w. Since G is regular,

H − w ∼= C ∼= G − x, and dH−w(u) = dH−w(v), forming G from H − w makes w
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Figure 2.1: The Petersen graph.

adjacent to neither or both of {u, v}. As a result, u and v are clones or twins in

G, which contradicts the prohibition of such pairs.

It is easy to see that tKm,m and tKm are coherent, but tKm,m has twins and

tKm has clones. We have noted that drn(tKm,m) = m + 2 and drn(tKm) = 3.

Proposition 2.14. If G is a coherent 2-connected vertex-transitive graph, then

tG is coherent.

Proof. Vertices u and v to be deleted from tG may lie in the same component or

not. If they don’t, then a vertex added to turn tG − u − v into the card C must

restore one of the components of G. If u and v lie in the same component of tG,

then the needed property follows from the coherence of G.

We close this section with several natural examples to illustrate the role of

coherence.

The Petersen graph is shown in Figure 2.1; it is the graph whose vertices are

the 2-element subsets of a set of five elements, with two vertices adjacent if and

only if the associated subsets are disjoint.

Example 2.15. If G is the Petersen graph, then drn(G) = 3. Any two nonad-

jacent vertices in G have exactly one common neighbor, and any two adjacent

vertices have no common neighbors; hence G has no twins or clones. It therefore
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suffices to check coherence. Let C be the card. There are only two types of vertex

pairs in G; adjacent or nonadjacent.

Deleting two adjacent vertices leaves four vertices with degree 2. Any two

of them that did not have a common neighbor among the deleted vertices have

a common neighbor among the remaining vertices. Adding a vertex adjacent to

both of them creates a 4-cycle, which does not exist in C.

Deleting two nonadjacent vertices leaves one vertex with degree 1, and the

vertices having degree 2 induce 2K2. A vertex added to form C must be adjacent

to the leaf and to one vertex from each edge of this 2K2. To avoid creating a

4-cycle, only two of the four such choices are allowable, and these yield the vertex

neighborhoods of the deleted vertices.

We next consider the k-dimensional hypercube Qk, the graph with vertex set

{0, 1}k in which two vertices are adjacent if and only if they differ in exactly one

coordinate.

It is well known that vertices separated by distance 2 in Qk have exactly two

common neighbors.

Theorem 2.16. If k ≥ 2, then drn(Qk) = 3.

Proof. The lower bound follows from Theorem 2.8. Ramachandran [45] showed

that drn(C4) = 3. Since Q2
∼= C4, we may assume that k ≥ 3. Since Qk has

no clones or twins, it suffices by Theorem 2.13 to show that Qk is coherent. Let

C be the unique card of Qk. Given u, v ∈ V (Qk), let F = Qk − {u, v}, and let

S = NQk−v(u) and S ′ = NQk−u(v). Let z be a vertex added to F to obtain C; we

must show that NC(z) ∈ {S, S ′}.

The vertex z cannot have have neighbors in both partite sets of F , since C is

bipartite. Also it has no neighbor with degree k in F , since ∆(C) ≤ k. Hence

NC(z) ∈ {S, S ′} when u and v lie in opposite partite sets.
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Now consider u and v in the same partite set. Since δ(C) = k − 1 and

∆(C) ≤ k, we have S ∩ S ′ ⊆ NC(z) ⊆ S ∪ S ′. If NC(z) /∈ {S, S ′}, then z has

neighbors in both S − S ′ and S ′ − S. Since dC(z) = k = |S| = |S ′|, there also

exist w ∈ S − S ′ and w′ ∈ S ′ − S outside NC(z). Now dC(w) = dC(w′) = k − 1.

Hence w and w′ have a common neighbor in Qk deleted to obtain C. Since the

distance between them in Qk is 2, they have exactly two common neighbors in

Qk, and hence exactly one remains in C. However, since by choice neither lies in

S ∩ S ′, neither u nor v is one of their common neighbors. Hence their common

neighbors in Qk both remain in F and hence in C. The contradiction implies that

NC(z) ∈ {S, S ′}.

The hypercube Qk is the cartesian product of k factors isomorphic to K2. It

would be nice to generalize Theorem 2.16 to all cartesian products of complete

graphs. Our next result does this for one special case. As noted in Chapter 1, the

cartesian product G�K2 is also called the prism over G.

Unfortunately, K3�K2 is not coherent, since it has C4 as a double-vertex-

deleted subgraph, and the card can be obtained by adding z adjacent to any two

consecutive vertices on the cycle. Hence we cannot apply Theorem 2.13 to this

graph.

Lemma 2.17. drn(K3�K2) ≤ 3.

Proof. It suffices to show that three dacards determine K3�K2. Let C be the

unique card of K3�K2, and consider a graph H having three cards isomorphic to

C, obtained by deleting any one of {u, v, w}, all having degree 3 in H .

If H has a vertex x of degree 4, then {u, v, w} ⊆ NH(x), since ∆(C) = 3. Let

z be a vertex added to C to form H . Since x has only one neighbor with degree

3 in C, z is adjacent to a neighbor of x with degree 2 in C. If z is also adjacent

to the unique nonneighbor y of x, then z is a clone or twin of a vertex t in H and
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hence in one of {H − u, H − v, H − w}. Since C has no clones or twins, this is a

contradiction. Thus dH(y) ≤ 2. Since xy /∈ E(H), deleting one of {u, v, w} leaves

dC(y) ≤ 1. This contradicts δ(C) = 2.

Hence ∆(H) = 3, which yields G ∼= K3�K2.

Theorem 2.18. If k ≥ 2, then drn(Kk�K2) = 3.

Proof. Again the lower bound is from Theorem 2.8. Let G = Kk�K2. We have

observed that drn(G) ≤ 3 when k ≤ 3, so consider k ≥ 4. Let C be the unique

card of G. Since G has no clones or twins, by Theorem 2.13 it suffices to show

that G is coherent. Given u, v ∈ V (G), let F = G − {u, v}, and let S = NG−v(u)

and S ′ = NG−u(v). Let z be a vertex added to F to obtain C; we must show that

NC(z) ∈ {S, S ′}. Let A and B be the two k-cliques in G. By symmetry, we have

two cases.

Case 1: u, v ∈ A. Vertices remaining in A have degree k − 2 in F , and the

neighbors of u and v in B have degree k − 1 in F . Since δ(C) = k − 1 and

∆(C) = k, we conclude that NC(z) contains all of A−{u, v} and the neighbor of

u or v in B. Hence NC(z) ∈ {S, S ′}.

Case 2: u ∈ A, v ∈ B. Here F ⊆ Kk−1�K2, with equality if uv ∈ E(G) and

one missing “cross-edge” if uv /∈ E(G). Since k ≥ 4, the only (k − 1)-cliques in

F are A − u and B − v. Since C has a k-clique, z must be adjacent to all of

A − u or B − v. Since C has exactly k vertices of degree k − 1, z has no other

neighbor if uv ∈ E(G) and is adjacent to the remaining vertex of degree k − 2 in

F if uv /∈ E(G). In either case, NC(z) ∈ {S, S ′}.

Similar arguments can be made for other families of vertex-transitive graphs.

For example, it follows also that drn(Ck�K2) = 3 for k ≥ 3, where Ck is the

k-cycle. We ask which vertex-transitive graphs are coherent, or at least which

vertex-transitive graphs have coherent cartesian products with K2.
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H1 H2

Figure 2.2: Trees with degree-associated reconstruction number 3.

2.4 Trees

In one of the first papers on reconstruction, Kelly [30] proved that trees with at

least three vertices are reconstructible. Several papers have studied reconstruction

of trees given only some of the cards from the deck. Harary and Palmer [21]

showed that every tree is uniquely determined by its leaf-deleted subgraphs, and

Lauri [32] showed that every tree with at least three cut-vertices is reconstructible

from its cut-vertex-deleted subgraphs.

Myrvold [41] proved that every tree with at least 5 vertices has reconstruction

number 3. Together with Corollary 2.5, this implies the following.

Corollary 2.19. If T is a tree, then drn(T ) ≤ 3, and drn(T ) = 1 if and only if

T is a star.

By Corollary 2.2, almost every graph has degree-associated reconstruction

number 2, and Prince [43] proved the “almost-always” statement also for the class

of all trees. The trees H1 and H2 in Figure 2.2 do satisfy drn(H1) = drn(H2) = 3.

Example 2.20. drn(H1) = 3. The graph H1 has only two distinct dacards. They

are (P3 +2K1, 3) and (S, 1), where S is the tree obtained by subdividing one edge

of K1,3 (that is, replacing an edge uv by a vertex w and two edges uw and wv).

Hence there are three ways to take two dacards; two of the first, two of the second,

and one of each. For these three cases, other graphs having the same two dacards

are the graph obtained from 2K1+K4 by deleting one edge, the tree obtained from
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K1,4 by subdividing one edge, and the tree obtained from K1,3 by subdividing one

edge twice, respectively.

Three dacards suffice, using one leaf and the two central vertices. For any

reconstruction G, the leaf card forces G to be a tree, and the other two force G

to have two vertices of degree 3. Hence G is obtained from S by appending a leaf

to the one vertex of degree 2.

The argument for H2 is similar but longer. We have particular interest in

H1 because it lies in the family we will study for the rest of this chapter. First,

the fact that we know of no tree T other than H1 and H2 such that drn(T ) = 3

suggests a conjecture.

Conjecture. Only finitely many trees T satisfy drn(T ) = 3.

A caterpillar is a tree whose non-leaf vertices induce a path called the spine

of the caterpillar. In the remainder of this chapter, we prove that the tree H1 and

the stars K1,m are the only caterpillars T such that drn(T ) 6= 2.

By Corollary 2.19, it suffices to prove that drn(T ) ≤ 2 for caterpillars other

than H1. In this section we give sufficient conditions for drn(T ) ≤ 2 when T is

a tree. In the subsequent sections of this chapter, we prove this inequality for

various classes of caterpillars described by conditions on the list of degrees of

the spine vertices, culminating in the full proof. The task is to select for each

caterpillar T a pair of dacards that together determine T .

The skeleton of a tree T is the subtree T ′ obtained by deleting all leaves from

T . Thus caterpillars are the trees whose skeletons are paths, and the spine of a

caterpillar is its skeleton. We use C(a1, . . . , as) to denote a caterpillar with spine

〈v1, . . . , vs〉 by attaching ai leaf neighbors to vi for each i ∈ {1, . . . , s}. We call

(a1, . . . , as) the spine list. Note that C(a1, . . . , as) ∼= C(as, . . . , a1) and that a1

and as are both positive. Where convenient, we denote a repeated string in this
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notation by enclosing it in parentheses and writing its multiplicity as a superscript

in parentheses. For example, C(a, b, c, d, b, c, d, b, c, d, e, f) = C(a, (b, c, d)(3), e, f).

The weight w(u) of a vertex u in a tree T is the maximum number of vertices

in a component of T −u; note that all leaves in an n-vertex tree have weight n−1.

The centroid of a tree is the set of vertices having minimum weight. Myrvold [41]

used centroids of trees extensively in her analysis of reconstruction number of

trees. To keep our presentation self-contained, we include short proofs of some

elementary observations.

Lemma 2.21 (Myrvold [41]). The centroid of an n-vertex tree T consists of one

vertex or two adjacent vertices. Also, w(v) ≤ n/2 if and only if v is in the centroid

of T , and the centroid of T has size 1 if and only if T has a vertex with weight

strictly less than n/2.

Proof. For each vertex v, mark an incident edge from v toward a largest compo-

nent of T − v. Since T has n vertices and n − 1 edges, some edge ab is marked

twice. Let A and B the vertex sets of the components of T − ab, with a ∈ A and

b ∈ B. Note that w(a) = |B| and w(b) = |A|, so w(a) + w(b) = n.

If w(a) = w(b) = n/2, then |A| = |B| = n/2; for c ∈ V (T ) − {a, b}, we have

w(c) > |B| if c ∈ A and w(c) > |A| if c ∈ B. Thus the centroid of T is {a, b}, the

set of two adjacent vertices with weight at most n/2.

Suppose that w(a) < n/2. Let C1, . . . , Cd(a) denote the vertex sets of the

components of T − a. For a vertex c ∈ Ci, note that T − c has a component of

order at least n − |Ci|; hence w(c) ≥ n − |Ci| > n/2, since |Ci| ≤ w(a) < n/2.

Thus the centroid of T is {a} and consists of the single vertex with weight strictly

less than n/2. A similar conclusion holds if w(b) < n/2.

A tree is unicentroidal or bicentroidal depending on whether its centroid has

size 1 or 2, respectively. For simplicity, we refer to the centroid vertex of a
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unicentroidal tree as the centroid. A centroidal vertex is a vertex in the centroid.

Lemma 2.22 (Myrvold [41]). Let v be the centroid in a unicentroidal tree T . If

ℓ is a leaf in T , then v is centroidal in T − ℓ.

Proof. Let T have n vertices. By Lemma 2.21, w(v) < n/2. The weight of v in

T ′ is at most (n − 1)/2, since deleting ℓ simply reduces one component of T − v.

By Lemma 2.21, v is centroidal in T ′.

These facts about centroids can be useful in reconstructing a tree from its

dacards. Note that if G has a card that is a tree obtained by deleting a vertex of

degree 1, then G is a tree.

Proposition 2.23. If T is a unicentroidal tree with a leaf ℓ adjacent to the cen-

troid vertex, and T − ℓ is unicentroidal, then drn(T ) ≤ 2.

Proof. Let T ′ = T − ℓ, and let T̂ be the card obtained by deleting the centroid

from T . Thus (T ′, 1) and (T̂, d) are the corresponding dacards, and ℓ is an isolated

vertex in T̂ .

Let G be a graph having these dacards, obtained by deleting vertices u and v,

respectively. From the first dacard, G is a tree. From the sizes of the components

of T̂ , Lemma 2.21 tells us that G is unicentroidal with centroid v.

Since u is a leaf and G−u is unicentroidal (being isomorphic to T ′), Lemma 2.22

identifies v in G− u as the centroid of G− u, Since T̂ = G− v, the d components

of T̂ agree with the components obtained by deleting the centroid from T ′, except

that one may have u as an extra leaf. However, we know from T that instead

T̂ has one more component than T ′ − v, an isolated vertex. This forces u to be

adjacent to v in G, yielding G ∼= T .

We have noted that having a dacard (G− v, 1) in which G− v is a tree forces

G to be a tree. Our next lemma gives another sufficient condition on dacards for

G to be a tree.

30



Lemma 2.24. Let G be a graph with dacards (A, 2) and (B, 2). If A and B are

forests with two components, and the sizes of the components of A do not equal

those of B, then G is a tree.

Proof. Let the sizes of the components in A and B be {a1, a2} and {b1, b2}, re-

spectively. Let u and v be the vertices such that G − u = A and G − v = B.

If G is disconnected, then the neighbors of u in G belong to the same compo-

nent of A, which we may call A1. Now G has two components with orders a1 + 1

and a2, and the component of G containing A1 is not a tree. To make B a forest, v

must lie on all cycles in G and hence must lie in A1. Since G and B both have two

components, v is not a cut-vertex of A1. Now {a1, a2} = {b1, b2}, a contradiction.

Hence G is connected. Since dG(u) = 2, it follows that G is a tree.

By the characterization in Corollary 2.5, the only trees T for which drn(T ) = 1

are stars. We have also observed that drn(H1) = 3. To complete our analysis of

caterpillars, in the remainder of this chapter we only need to prove results showing

that caterpillars other than H1 have degree-associated reconstruction number at

most 2. General arguments for reconstruction of trees often must exclude the

special case of paths; we treat them separately here.

Proposition 2.25. If n ≥ 4, then drn(Pn) = 2.

Proof. For n = 4, use the two dacards (P3, 1) and (P1 + P2, 2). The first forces

every reconstruction to be a tree, and hence in the second the missing vertex has

a neighbor in each component, yielding P4.

For n ≥ 5, let a =
⌊

n−1
2

⌋

and b =
⌈

n−1
2

⌉

. Let G be a graph having the two

dacards (Pa + Pb, 2) and (Pa−1 + Pb+1, 2), associated with u and v, respectively.

By Lemma 2.24, G is a tree. (Here a − 1 ≥ 1 requires n ≥ 5.)

Let w be a neighbor of u in G. If w is not a leaf in G − u, then dG(w) = 3.

Since ∆(G−v) = 2, we have v ∈ NG(w). Now the component of G−v containing
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u has at least a+3 vertices, since it contains all of one component of Pa +Pb plus

u, w, and another neighbor of w. Since the components of G − v have at most

a + 2 vertices, we conclude that u has no neighbor with degree 3 in G, and hence

G = Pn.

Our general arguments fail also for several other classes of caterpillars where

we will need alternative choices of dacards. It is worth noting that Pn is forced by

two dacards only when they correspond to a centroidal vertex and a noncentroidal

neighbor of the centroid.

2.5 Caterpillars of the form C(1, 0, a3, . . . , as−2, 0, 1)

We begin with a technical lemma that will restrict the form of caterpillars with

special symmetry properties. A palindrome is a list unchanged under reversal.

Lemma 2.26. Let B = (b1, . . . , bs). If (b1, . . . , bs) and (b3, . . . , bs) are palin-

dromes, then either B is constant, or s is odd and B alternates two values. If

(b1, . . . , bs−1) and (b2, . . . , bs) are palindromes, then either B is constant, or s is

even and B alternates two values.

Proof. Define a graph R with vertex set {v1, . . . , vs} such that vivj ∈ E(R) if and

only if the palindrome requirements force bi = bj . If R consists of one component,

then B is constant. If R consists of two components, one containing the odd-

indexed and the other the even-indexed vertices, then B is constant or alternates

between two values.

If (b1, . . . , bs) and (b3, . . . , bs) are palindromes, then vivj ∈ E(R) if and only if

i + j ∈ {s +1, s+ 3}. If s is even, then R is the path 〈v1, vs, v3, vs−2, . . . , vs−1, v2〉.

If s is odd, then R consists of two paths 〈v1, vs, v3, vs−2, . . .〉, containing the odd-

indexed vertices, and 〈v2, vs−1, v4, vs−3, . . .〉, containing the even-indexed vertices.

32



If (b1, . . . , bs−1) and (b2, . . . , bs) are palindromes, then vivj ∈ E(R) if and only

if i+j ∈ {s, s+2}. If s is odd, then R is the path 〈v1, vs−1, v3, vs−3, . . . , vs−2, v2, vs〉.

If s is even, then R consists of two paths 〈v1, vs−1, v3, vs−3, . . .〉, containing the odd-

indexed vertices, and 〈vs, v2, vs−2, v4 . . .〉, containing the even-indexed vertices.

In the remainder of this chapter, T = C(1, 0, a3, . . . , as−2, 0, 1), with spine

〈v1, . . . , vs〉 such that vi has ai leaf neighbors for 1 ≤ i ≤ s. By Proposition 2.25,

drn(Ps+2) = 2. Since Ps+2 is the case a3 = · · · = as−2 = 0, we may let r =

min{i : ai > 0 and 3 ≤ i ≤ s − 2}. To show drn(T ) ≤ 2, we present two dacards

that determine T . Consider the dacards for leaves adjacent to v1 and vr, writing

C1 = C(1, 0(r−3), ar, . . . , as−2, 0, 1), D1 = (C1, 1),

C2 = C(1, 0(r−2), ar − 1, ar+1, . . . , as−2, 0, 1), D2 = (C2, 1).

Let G be a graph reconstructed from dacards D1 and D2, with vertices u and

v being the deleted vertices, respectively. Since dG(u) = dG(v) = 1, either card

forces G to be a tree. We show that G ∼= T , with some exceptions where we will

later use other dacards.

Lemma 2.27. If T = C(1, 0, a3, . . . , as−2, 0, 1) and T is not a path, then the

dacards D1 and D2 determine T in all cases except when T satisfies one of the

following conditions:

(1) T = C(1, 0(p), 1, 0(q), 1), where p, q ≥ 1;

(2) T = C(1, 0(p+1), k, (α), k − 1, 0(p), 1), where k ≥ 1, p ≥ 0, and (α) is a

palindrome.

Proof. From D2 it follows that G is a tree with diameter at least s + 1. Since

diam(G− u) = s and s ≥ 5, it follows that u is adjacent in G to an endpoint of a

longest path in G−u. Hence G is T or is C(1, 0(r−3), ar, . . . , as−2, 0, 0, 1). Suppose
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the latter.

Since G − v ∼= C2, and both G and C2 have spines with s vertices, decreasing

one term of the spine list L for G yields the spine list L′ for C2 or its reverse, L′′.

Let Li, L
′
i, L

′′
i denote the ith entry in L, L′, L′′, respectively. Since Lr−1 = ar >

0 = L′
r−1, changing L into L′ by decreasing one Li requires i = r − 1 and ar = 1.

Since no other change is allowed, we have

ar − 1 = Lr−1 − 1 = L′
r−1 = 0,

ar+1 = Lr = L′
r = ar − 1,

ai+1 = Li = L′
i = ai for r + 1 ≤ i ≤ s − 3,

0 = Ls−2 = L′
s−2 = as−2,

and thus ar = 1 and ar+1 = · · · = as−2 = 0. Hence T = C(1, 0(r−2), 1, 0(s−r−1), 1),

as in (1).

Suppose instead that decreasing some Lj by 1 changes L into L′′; we first

restrict the choices for j. By construction, 3 ≤ r ≤ s− 2 and s ≥ 5. We compare

the expressions below.

T = C(1, 0(r−2), ar, . . . , as−2, 0, 1)

G = C(1, 0(r−3), ar, . . . , as−2, 0, 0, 1) = C(L)

C2 = C(1, 0, as−2, . . . , ar+1, ar − 1, 0(r−2) , 1) = C(L′′)

positions = 1, 2, 3, . . . , s − r, s − r + 1, . . . , s − 2, s − 1, s

Since Li = ai+1 for 2 ≤ i ≤ s− 2, we have Lr−1 + Ls−r+1 = ar + as−r+2. Since

L′′
i = as+1−i for i 6= s − r + 1 (and L′′

s−r+1 = ar − 1), setting i = r − 1 yields

L′′
r−1 + L′′

s−r+1 = as−r+2 + ar − 1, except that L′′
r−1 + L′′

s−r+1 = as−r+2 + ar − 2

when r − 1 = s− r + 1. In either case, L′′
r−1 + L′′

s−r+1 < Lr−1 + Ls−r+1, and hence

j ∈ {r − 1, s − r + 1}.
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Since Li = 0 for 2 ≤ i ≤ r − 2, we have j ≥ r − 1. Since only position j

changes, the first r − 2 positions agree in L and L′′. Hence ai = 0 for s − r +

3 ≤ i ≤ s − 1 (when r = 3 this conclusion is empty). If r − 1 ≥ s − r + 2,

then this statement includes ar − 1 = 0, since L′′
s−r+1 = ar − 1. In this case

T = C(1, 0(r−2), 1, 0(s−1−r), 1), which satisfies description (1). If r − 1 = s −

r + 1, then s − r + 3 = r + 1; we obtain T = C(1, 0(r−2), ar, 0
(r−3), 1) and G =

C(1, 0(r−3), ar, 0
(r−2), 1), and hence G ∼= T .

Hence we may assume that r−1 < s−r+1. Now ai+1 = Li = L′′
i = as+1−i for

r ≤ i ≤ s − r. Hence (ar+1, . . . , as−r+1) is a palindrome, and as−r+2 equals ar − 1

(if j = r − 1) or ar (if j = s − r + 1). Letting α = (ar+1, . . . , as−r+1), we have

T = C(1, 0(r−2), k, (α), k′, 0(r−3), 1) and G = C(1, 0(r−3), k, (α), k′, 0(r−2), 1), where

k = ar ≥ 1 and k′ ∈ {k, k − 1}. If k′ = k, then G ∼= T ; otherwise, T satisfies

description (2).

Since C(a1, . . . , as) ∼= C(as, . . . , a1) for every caterpillar by reversing the spine,

we have shown that a caterpillar of the form C(1, 0, a3, . . . , as−2, 0, 1) is determined

by the stated choice of dacards taken from one end or the other unless under

both directions the caterpillar has one of the exceptional forms in described in

Lemma 2.27.

Our argument to handle these exceptional forms has exceptions itself. The

difficulty is that in the exceptional cases the two dacards D1 and D2 chosen for

Lemma 2.27 do not determine T . Nevertheless, in all exceptional cases, we find

two dacards that work. We show first that the type (1) exceptional form in

Lemma 2.27 causes no difficulty.

Proposition 2.28. If T = C(1, 0(p), 1, 0(q), 1), where p, q ≥ 0, then drn(T ) ≤ 2.

Proof. The caterpillar T contains one vertex of degree 3, which has exactly one
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leaf neighbor. Use the dacards for these two vertices: D1 = (Pp+q+5, 1) and

D2 = (Pp+2 + K1 + Pq+2, 3). Let G be a reconstruction from these dacards, with

u and v being the respective deleted vertices. As a leaf deletion, D1 forces G to

be a tree. Since G − u is a path, v is the only vertex of degree 3 in G. Hence v

must have a neighbor in each component of Pp+2 + K1 + Pq+2, and that neighbor

cannot have degree 2 in its component. We obtain G ∼= T .

Among the type (2) exceptions in Lemma 2.27, we consider several special

forms.

Proposition 2.29. If T = C(1, 0(p+1), (2, 0)(q), 1, 0(p), 1), where p, q ≥ 1, then

drn(T ) ≤ 2.

Proof. Let j = p + 3 + 2 ⌊q/2⌋. The spine vertex vj has degree 4. Consider the

dacards obtained by deleting vj or a leaf ℓ adjacent to vj . Deleting ℓ leaves a tree

with 2p+4q+6 vertices, and hence any reconstruction G is a tree with 2p+4q+7

vertices. The card when we delete vj consists of two isolated vertices and two

caterpillars, which have p + 3 + 4 ⌊q/2⌋ and p + 1 + 4 ⌈q/2⌉ vertices. For either

parity of q, the maximum of these is p + 3 + 2q.

Let u and v be the leaf and the non-leaf vertices deleted from G to obtain

these dacards. Since p + 3 + 2q < (2p + 4q + 7)/2, Lemma 2.21 implies that v is

the centroid of G. The tree G − u has 2p + 4q + 6 vertices and is bicentroidal,

with centroid vertices vj and vj±1 (+1 when q is odd, −1 when q is even); each

of these vertices has weight p + 2q + 3. By Lemma 2.22, v is one of these two

vertices. Since dG(v) = 4 and the spine neighbors of vj have no leaf neighbors,

v = vj . Since dG−u(vj) = 3, we obtain G from the leaf card G − u by adding u

adjacent to vj . Thus G ∼= T .

Proposition 2.30. If T = C(1, 0(p), 1(q), 0(p), 1), where p ≥ 1 and q ≥ 0, then

drn(T ) ≤ 2.
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Proof. If q = 0, then T is a path, and Proposition 2.25 applies. If q = 1, then

Proposition 2.28 applies. Now consider q ≥ 2. Note that s = 2p + q + 2, so

diam(T ) = 2p + q + 3.

Let x be the leaf adjacent to vp+2. Consider the dacards obtained by deleting

vp (with degree 2) and x. Note that T−x = C(1, 0(p+1), 1(q−1), 0(p), 1) and T−vp =

Pp + C(2, 1(q−1), 0(p), 1). Let G be a reconstruction from these two dacards, with

G − u ∼= T − x and G − v ∼= T − vp. As usual, the leaf dacard forces G to be a

tree. Since diam(G − u) = 2p + q + 3 = diam T , the neighbors of v in G must

be endpoints of longest paths in the two components of G − v. Hence G ∼= T

or G = C(2, 1(q−1), 0(2p+1), 1), depending on which end of the longest path in the

non-path component in G − v is adjacent to v.

In the latter case, since the spine endpoints in G − u each have only one leaf

neighbor, u must be adjacent in G to the spine vertex having two leaf neighbors.

Now G−u ∼= C(1(q), 0(2p+1), 1). Since p ≥ 1 and q ≥ 2, this graph is not isomorphic

to T − x, a contradiction. Hence this case does not arise, and G ∼= T .

We now have the tools to prove the main result of this section.

Theorem 2.31. If T = C(1, 0, a3, . . . , as−2, 0, 1), then drn(T ) = 2.

Proof. By Proposition 2.25, we may assume that T is not a path. In Lemma 2.27,

we proved that the dacards for the leaves adjacent to v1 and the next spine vertex

having a leaf neighbor determine T unless both T and its reverse description

C(as, . . . , a1) have the forms specified in Lemma 2.27. If the description is as in

(1) of Lemma 2.27, then T is a path plus one pendant edge, and Proposition 2.28

yields drn(T ) ≤ 2.

Hence we may assume that both T and the reverse description T ′ are as in (2)
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of Lemma 2.27. If L = (a1, . . . , as), then

L = (1, 0(p+1), k, (α), k − 1, 0(p), 1) = (1, 0(q), ℓ − 1, (β), ℓ, 0(q+1), 1)

for some palindromes (α) and (β) and integers p, q, k, ℓ such that p, q ≥ 0 and

k, ℓ ≥ 1.

Suppose that k ≥ 2. The last nonzero entry of L before as is both as−p−1 and

as−q−2, so q = p − 1 and ℓ = k − 1. Hence

L = (1, 0(p+1), k, (α), k − 1, 0(p), 1) = (1, 0(p−1), k − 2, (β), k − 1, 0(p), 1),

which implies that k = 2 and that both (ap+4, . . . , as−p−2) and (ap+2, . . . , as−p−2)

are palindromes. Since ap+2 = 0 6= k = ap+3, Lemma 2.26 yields

T = C(1, 0(p+1), (2, 0)(s/2−p−2), 1, 0(p), 1),

where s is even and p ≥ 1. Since L contains at least one 2, Proposition 2.29 yields

drn(T ) ≤ 2.

By reversing L, the same argument holds when ℓ ≥ 2. Finally, when k = ℓ = 1,

L = (1, 0(p+1), 1, (α), 0(p+1), 1) = (1, 0(q+1), (β), 1, 0(q+1), 1).

Since ap+3 = 1 and a2 = · · · = aq+2 = 0, we have p ≥ q. Since as−q−2 = 1 and

as−p−1 = · · · = as−1 = 0, we have q ≥ p. Thus p = q, and (ap+4, . . . , as−p−2)

and (ap+3, . . . , as−p−3) are palindromes. Since ap+3 = as−p−2 = 1, Lemma 2.26

implies that ap+3 = · · · = as−p−2 = 1, so T = C(1, 0(p+1), 1(s−2p−4), 0(p+1), 1). By

Proposition 2.30, again drn(T ) ≤ 2.
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2.6 General caterpillars

Having shown that drn(T ) ≤ 2 whenever T has the form C(1, 0, a3, . . . , as−2, 0, 1),

we may exclude such caterpillars (and stars) from our study of general caterpillars.

In the general case, we will use the dacards obtained by deleting the first spine

vertex v1 and one of its leaf neighbors. This choice will determine T except in

some cases. Again we must handle the exceptional cases separately, choosing a

different pair of dacards. The next several propositions handle these cases. Note

that setting k = 0 in the first would yield a path.

Proposition 2.32. If T = C(k+1, k(m), k+1), where k, m ≥ 1, then drn(T ) = 2.

Proof. The cards obtained by deleting leaf neighbors of v1 and v2 are C(k(m+1), k+

1) and C(k+1, k−1, k(m−1), k+1). Let G be a reconstruction from these dacards,

with u and v respectively being the added vertices of degree 1; G must be a tree.

Since the endpoints of the spine in G − v both have k + 1 leaf neighbors, G has

two vertices at distance m + 1 that each have at least k + 1 leaf neighbors. Since

G − u has only one vertex with k + 1 leaf neighbors, the neighbor of u in G − u

must have distance m + 1 from the spine endpoint having k + 1 leaf neighbors.

There is only one such vertex, so G ∼= C(k + 1, k(m), k + 1).

A branch vertex is a vertex with degree at least 3. Let Bk denote the caterpillar

formed by giving two leaf neighbors to one end of Pk. Let zk denote the third leaf

in Bk.

Proposition 2.33. If T = C(2, 0(s−2), 2), where s ≥ 3, then drn(T ) = 2.

Proof. Let p = ⌈s/2⌉. Note that vp is centroidal in T and vp−1 is not. The cards

C1 and C2 obtained by deleting vp and vp−1 are Bp−1 + Bs−p and Bp−2 + Bs−p+1,

respectively. Let D1 = (C1, 2) and D2 = (C2, 2); these are the dacards for vp and
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vp−1 when s ≥ 5. We postpone the special cases s = 4 and s = 3 (when s = 2,

the caterpillar reduces to H1).

Let G be a reconstruction from {D1, D2}, where C1 = G− u and C2 = G− v.

By Lemma 2.24, G is a tree, and each of u and v has one neighbor in each com-

ponent of its dacard.

Case 1: uv ∈ E(G). Since dG(u) = dG(v) = 2, vertex v is a leaf in G − u,

and u is a leaf in G− v. Thus G− v can be obtained from G− u by deleting the

leaf v in G − u and attaching u to one vertex in the other component of G − u.

Since p − 2 < p − 1 ≤ s − p < s − p + 1, with the components of G − u being

isomorphic when p − 1 = s − p, obtaining a component of G − v by deleting a

leaf of a component of G − u happens only by deleting zp−1 from Bp−1 to obtain

Bp−2. Hence Bs−p+1 is the component of G − v containing u, and it arises from

Bs−p only by attaching u to zs−p. Now G ∼= T .

Case 2: uv /∈ E(G). Let Q and Q′ be the components of G−u, with v ∈ V (Q).

Since uv /∈ E(G), we have dG−u(v) = 2. Now v is a cut-vertex of Q. Let q be the

order of the component of Q− v not containing the neighbor of u in V (Q). It fol-

lows that G−v has components of orders q and s+3−q; we also know that these

values are p and s− p + 3. Since the orders of Q and Q′ differ by at most one, we

have q < s+3−q. We conclude that q = p. To accommodate the inclusion of ver-

tex v and another vertex, Q needs at least p+2 vertices, so Q = Bs−p
∼= Bp (with

s even), v is the vertex of Bs−p adjacent to zs−p, and u is adjacent to zs−p. Now ex-

amination of G−v shows that the neighbor of u in Bp−1 is zp−1, and again G ∼= T .

In either case, when s ≥ 5, we conclude that G ∼= T . For s ∈ {3, 4}, we again

use dacards for vp and vp−1, but now p = 2, and we obtain C1 = P3 + Bs−p and

C2 = 2K1 + Bs−p+1, with D1 = (C1, 2) and D2 = (C2, 3). Although Lemma 2.24

does not apply, still every reconstruction G (with C1 = G − u and C2 = G − v)

is a tree. This holds because D1 implies that G has no isolated vertex, and then
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D2 gives v a neighbor in each component of G − v.

If s = 3, then C1 = 2P3, which yields ∆(G) ≤ 3. Hence we cannot make v

adjacent to the center of Bs−p+1 (which equals K1,3), and making it adjacent to

a leaf of Bs−p+1 yields G ∼= T .

If s = 4, then T = C(2, 0, 0, 2), with C1 = P3 +K1,3 and C2 = 2K1 +B3. If v is

adjacent to z3 in the component B3 of G−v, then G ∼= T , so we exclude the other

three possibilities. If G has a vertex x of degree 4, then ∆(G−u) = ∆(G−v) = 3

requires u, v ∈ NG(x). Now x has a neighbor v of degree 3, but restoring u to

G − u gives x no neighbor with degree more than 3. Hence ∆(G) = 3. This

requires u to be adjacent to the central vertex of P3 and a leaf of K1,3 in the two

components of C1, yielding G ∼= T .

Proposition 2.34. If T = C(k + 2, (0, k)(m), 0, k + 2), with k ≥ 0 and m ≥ 1,

then drn(T ) ≤ 2.

Proof. The case where k = 0 is a special case of Proposition 2.33, so we may

assume that k ≥ 1. In that case T is unicentroidal and has a leaf adjacent to

the centroid whose deletion leaves a unicentroidal subtree. By Proposition 2.23,

drn(T ) = 2.

For a general caterpillar T , with T = C(a1, . . . , as), we want to make a uniform

choice of two dacards. The main lemma shows that this choice determines T unless

T belongs to one of several exceptional classes of caterpillars. The proof of the

theorem then uses the classes we have already discussed to handle the exceptional

classes.

Lemma 2.35. If T = C(a1, . . . , as), then the dacards for an endpoint of the spine

and one of its leaf neighbors determine T unless T is Type t for t ∈ {1, 2, 3, 4},

defined as follows:

(1) T = C(1, 0, a3, . . . , as) with s ≥ 3;
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(2) T = C(2, (0, 0)(m), (1, 0)(n), 2) with m, n ≥ 0;

(3) T = C(k + 1, k(m), (k + 1)(n)) with k, m, n ≥ 1;

(4) T = C(k + 2, (0, k)(m), (0, k + 1)(n), 0, k + 2) with k, n ≥ 0 and m ≥ 1.

Proof. Since drn(K1,t) = 1, we may assume that s ≥ 2. Let 〈v1, . . . , vs〉 be the

spine of T . Recall that a1, as ≥ 1. Specify the dacards by deleting v1 and by

deleting a leaf neighbor ℓ of v1. Let T1 = T − ℓ, and let T2 be the nontrivial

component of T − v1. Thus the dacards are (a1K1 + T2, a1 + 1) and (T1, 1). From

the dacard (T1, 1), any reconstruction G is a tree. Define u and v by G − u = T1

and G − v = a1K1 + T2. Let x the neighbor of u in G, and let y be the non-leaf

neighbor of v in G (since G is a tree, dG(v) = a1 +1 forces v to have one neighbor

in T2).

Define r and s by letting the spine of T2 be 〈vr, . . . , vs〉 and the spine of T1 be

〈vq, . . . , vs〉. We list four events; always (U1 or U2) and (V1 or V2) occurs. Note

that if U1 and V1 occur, then T has Type 1, so we may assume that this case

does not occur (and also that G 6∼= T ).

U1: a1 = 1, q = 2, diam T1 = s.

U2: a1 > 1, q = 1, diam T1 = s + 1.

V1: a2 = 0, r = 3, diam T2 = s − 1.

V2: a2 > 0, r = 2, diam T2 = s.

We call the descriptions of G obtained from G−u and G−v the u-description

and the v-description of G. The cases depend on the location of y in T2. Most

importantly, this determines whether G is a caterpillar.

Case 1: y is in {vr+1, . . . , vs−1} or is a leaf neighbor of such a vertex. Since we

make v (with its a1 leaf neighbors) adjacent to y, in this case G is not a caterpillar.
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The u-description also produces G and hence is not a caterpillar. Thus x is a leaf

neighbor of a vertex in {vq+1, . . . , vs−1}. The skeleton G′ has three leaves. In the

v-description, the leaves are vr, vs, and v; also, G′ has s − r + 1 edges if y is in

the spine of T2, otherwise s − r + 2. In the u-description, the leaves of G′ are vq,

vs and x, and G′ has s − q + 1 edges.

Let Su and Sv denote the multiset of degrees in G of the leaves of G′ under

the u-description and v-description of G, respectively. Equating the numbers of

edges of G′ in the two descriptions yields several possibilities.

(i) If q = 1, then r = 2 and y is not in the spine of T2. Now Su = {a1, as +1, 2}

and Sv = {a2 + 1, as + 1, a1 + 1}. Equality requires a1 = 1, which contradicts

q = 1.

(ii) If q = 2, then r = 2, since otherwise T has Type 1. Now Su = {a2 +2, as +

1, 2} and Sv = {a2 + 1, as + 1, 2}, and equality cannot hold.

Case 2: y is a leaf neighbor of vr or vs. For such y, if a2 = 0 and hence r = 3,

then G ∼= T or G = C(a3 +1, a4, . . . , as−1, as−1, 0, a1). If a2 > 0 and hence r = 2,

then G = C(a1, 0, a2 − 1, a3, . . . , as) or G = C(a2, . . . , as−1, as − 1, 0, a1).

Subcase 2a: a2 = 0. Here G = C(a3 + 1, a4, . . . , as−1, as − 1, 0, a1). Avoiding

Type 1 requires a1 > 1 and q = 1, so diam T1 = s + 1 = diam G. Since G is a

caterpillar with diameter diam T1, vertex x is on the spine of T1, say x = vj . With

G 6∼= T , we have j > 1, and the u-description is G = C(a1 − 1, a2, . . . , aj−1, aj +

1, aj+1, . . . , as), with a2 = 0.

In obtaining the multiset of leaf degrees for G from that of T , in both the

v-description and the u-description one term increases and one term decreases.

The values that change must be the same in each instance; hence a1 = as and

a3 = aj . Since a1 6= a1 − 1, the descriptions match without reversal. Since

as = a1 = a3 + 2 = aj + 2 > aj + 1 > 0, we conclude that j ≤ s − 2. Since

0 = as−1 = as−3 = · · · , we conclude that s − j is even (otherwise aj + 1 = 0).
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If j and s are even, then 0 = a2 = a4 = · · · = aj = a3, so a1 = as = 2. Also

0 = a3 = · · · = as−1. Since aj + 1 = aj+2 = · · · = as−2 = as − 1 = 1, we find that

T is Type 2.

If j and s are odd, then 0 = a2 = · · ·as−1 and a1 − 2 = a3 = · · · = aj and

aj + 1 = aj+2 = · · · = as−2 = as − 1, with j ≥ 3. Letting k = a3, we find that T

is Type 4.

Subcase 2b: a2 > 0. Here diam T2 = s, and hence diamG = s + 2. Since

adding u to T1 can only add 1 to the diameter, diamT1 = s + 1, and hence

q = 1, a1 > 1, and x is a leaf neighbor of v1 or vs. Now the u-description is

G = C(1, a1 − 2, a2, . . . , as) or G = C(a1 − 1, a2, . . . , as−1, as − 1, 1).

In both possibilities for the v-description with a2 > 0, one end of the spine

of G has a1 leaf neighbors. Since a1 /∈ {1, a1 − 1}, the second possibility for the

u-description is forbidden. Furthermore, since a1 > 1, the first possibility must be

oriented so that as in the u-description matches up with a1 in the v-description.

We have two choices.

(i) (as, . . . , a3, a2 − 1, 0, a1) = (1, a1 − 2, a2, . . . , as). This is forbidden, since it

requires 1 = as = a1, but a1 > 1.

(ii) (a2, . . . , as−1, as−1, 0, a1) = (1, a1−2, a2, . . . , as). Since 0 = as−1 = as−3 =

· · · and 1 = a2 = a4 = · · · , we conclude that s is even. Now a1 − 2 = 0 and

as − 1 = 1, and T is Type 2 with m = 0.

Case 3: y ∈ {vr, vs}. If y = vr, then G ∼= T , so we may assume y = vs and

G is a caterpillar with diameter s − r + 3. Since G is a caterpillar, x is a spine

vertex of T1 or a leaf neighbor of vq or vs.

If x is a leaf neighbor of vq or vs, then adding u to T1 enlarges the diameter,

so diam G = s − q + 3. Hence q = r, which requires a1 = 1 and a2 > 0, and

q = r = 2. Since a1 = 1, setting x to a leaf neighbor of v2 yields G ∼= T .

Hence the v-description is G = C(a2, . . . , as, a1) and the u-description is G =
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C(a2 + 1, a3, . . . , as−1, as − 1, 1). Since a2 > 0, the descriptions must match up

without reversal, which fails because a2 6= a2 + 1.

Finally, we may assume that x is a spine vertex vj in T1. Now diam G = s−q+

2, so q = r − 1. Avoiding Type 1 leaves only q = r − 1 = 1, so a1 > 1 and a2 > 0.

If j = 1, then G ∼= T , so j > 1. Now the v-description is G = C(a2, . . . , as, a1)

and the u-description is G = C(a1 − 1, a2, . . . , aj−1, aj + 1, aj+1, . . . , as). Since

a1 − 1 6= a1, the descriptions must match up without reversal. Two posibilities

remain.

(i) If j = s, then matching positions yields a1 − 1 = a2 = · · · = as. Now the

v-description of G is the reverse of the original description of T , and hence G ∼= T .

(ii) If 1 < j < s, then matching positions yields a1 − 1 = a2 = · · · = aj =

aj+1 − 1 = · · · = as − 1. Letting a2 = k, we have T = C(k +1, k(j−1), (k +1)(s−j)).

We may assume that k ≥ 1, since otherwise T is Type 1. Now T is Type 3.

Theorem 2.36. If T is a caterpillar that is neither H1 nor a star, then drn(T ) =

2.

Proof. Let T = C(a1, . . . , as). As in Section 2.5, reversing the order of the spine

vertices does not change the isomorphism class of a caterpillar; T ∼= T ′, where

T ′ = C(as, . . . , a1). In Lemma 2.35 we used dacards corresponding to the first

spine endpoint and a leaf adjacent to it, but similar results hold by taking dacards

corresponding to the last spine vertex and a leaf adjacent to it. Thus our choice

of two dacards, from one end of T or the other, uniquely determines T unless both

T and T ′ have a Type listed in Lemma 2.35.

Suppose first that T is Type 1. Suppose that T ′ is Type 1 as well. We have

T = C(1, 0, a3, . . . , as−2, 0, 1), and drn(T ) ≤ 2 by Proposition 2.31. Since all other

Types end with as > 1, but a1 = 1, the reversal of a Type 1 caterpillar cannot be

Type 2, 3, or 4. This completes the proof when T (or T ′) is Type 1.
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Suppose next that T is Type 2. Since the length of the spine has different

parity in Type 2 and Type 4, T ′ is not of Type 4. If T ′ is Type 2 or Type 3, then

either T = C(2, 2) and T ∼= H1, or T = C(2, (0, 0)(m), 2) with m ≥ 1, in which

case drn(T ) ≤ 2 by Proposition 2.33.

If T and T ′ are both Type 3, then T = C(k + 1, k(m), k + 1) with k, m ≥ 1,

and drn(T ) ≤ 2 by Proposition 2.32. Since the entries in specifying a Type 3

caterpillar are all positive, and for Type 4 they are not, T and T ′ cannot be Type

3 and Type 4.

Finally, if T and T ′ are both Type 4, then n = 0. Now drn(T ) ≤ 2 by

Proposition 2.34.

Having exhausted all cases, the proof is complete.

There is hope to complete a proof that drn(T ) ≤ 2 for all but finitely many

trees. Building upon our result, one can try to make a choice of two dacards

that determines T when T is not a caterpillar, with finitely many exceptions. As

happened in the proofs of our results on caterpillars, there may be several special

classes in addition to caterpillars where the dacards needs to be chosen in other

ways.
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CHAPTER 3

Degree-sequence-forcing sets

3.1 Introduction

A graph class C is hereditary if whenever G is an element of C, every induced

subgraph of G also belongs to C. Recall that, given a set F of graphs, G is F-free

if no induced subgraph of G is isomorphic to an element of F .

Hereditary classes are exactly those consisting of the F -free graphs for some

set F of graphs. Many important classes of graphs are hereditary, and several cele-

brated theorems have specified the minimal forbidden subgraphs for these classes.

For example, Kuratowski’s Theorem [31] can be reformulated as a statement of

which induced subgraphs are forbidden for planar graphs, and the Strong Per-

fect Graph Theorem [12] characterizes perfect graphs in terms of their forbidden

subgraphs.

We say that a graph class C is degree-determined, or that it has a degree

sequence characterization, if it is possible to determine whether a graph G belongs

to C from just the degree sequence of G. Most graph classes of interest do not

have degree sequence characterizations, but they are useful when they do exist,

as they often lead to very efficient algorithms for recognizing membership in a

degree-determined class of graphs.

In this chapter, we address the question of which classes of graphs can be

characterized both in terms of their degree sequences and in terms of a set of

forbidden subgraphs. More precisely, we make the following definition.
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Definition 3.1. A set F of graphs is degree-sequence-forcing if whenever some

realization of a graphic sequence π is F -free, every other realization of π is F -free

as well.

We seek to characterize degree-sequence-forcing sets of graphs. Our interest

in degree-sequence-forcing sets is motivated in part by the class of split graphs,

those whose vertex sets can be partitioned into a clique and an independent set.

Split graphs have the following two characterizations:

Theorem 3.2 (Földes–Hammer [16]). A graph is split if and only if it is

{2K2, C4, C5}-free.

Theorem 3.3 (Hammer–Simeone [20]). If G is a graph having degree sequence

d(G) = (d1, . . . , dn) in nonincreasing order, then G is split if and only if

m
∑

i=1

di = m(m − 1) +
n
∑

i=m+1

di,

where m = max{k : dk ≥ k − 1}.

From these two theorems, {2K2, C4, C5} is a degree-sequence-forcing set. Other

examples of degree-determined hereditary families have appeared in the literature;

Table 3.1 lists several. The sets of graphs in the rightmost column of the table

are all degree-sequence-forcing sets.

We begin our analysis in Section 3.2 by proving several necessary and suf-

ficient conditions for a set of graphs to be degree-sequence-forcing. We then

use these results in Section 3.3 to characterize all degree-sequence-forcing sets

with size at most 2. A degree-sequence-forcing set is minimal if it contains

no proper degree-sequence-forcing subset. In Section 3.4 to determine all non-

minimal degree-sequence-forcing sets with size 3. In Section 3.5 we study minimal

degree-sequence-forcing sets and give a brief discussion of their properties. We
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Class Characterizations List of forbidden subgraphs

Degree Forbidden
sequence subgraph

Split graphs [20] [16] {2K2, C4, C5}
Threshold graphs [19] [14] {2K2, C4, P4}
Pseudo-split graphs [36] [36] {2K2, C4}
Matroidal graphs [37, 50] [42] {C5, K2 + P3, 2K1 ∨ (K2 + K1),

P5, house, chair, kite, K2 + K3,
K2,3, 4-pan, co-4-pan}

Matrogenic graphs [37, 50] [15] {K2 + P3, 2K1 ∨ (K2 + K1),
P5, house, chair, kite, K2 + K3,
K2,3, 4-pan, co-4-pan}

Table 3.1: Graph classes characterized by both degree sequences and forbidden
subgraphs.

conclude the chapter in Section 3.6 by discussing edit-leveling sets of graphs, which

are degree-sequence-forcing sets satisfying a much stronger condition in terms of

degree sequences.

3.2 Conditions on degree-sequence-forcing sets

In this section we provide some necessary and some sufficient conditions for a set of

graphs to be degree-sequence-forcing. We first show how degree-sequence-forcing

sets may be used to give rise to other degree-sequence-forcing sets.

Proposition 3.4. Given a set G of graphs, let F be the set of minimal elements

of G under the induced subgraph relation. The set G is degree-sequence-forcing if

and only if F is degree-sequence-forcing.

Proof. It is easy to see that a graph is G-free if and only if it is F -free. If either

the G-free or the F -free graphs may be recognized by their degree sequences, then

membership in the other set of graphs is recognizable from the degree sequence

as well.
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Proposition 3.5. The union of degree-sequence-forcing sets is degree-sequence-

forcing.

Proof. Let I be an index set, and let Fi be a degree-sequence-forcing set for each

i ∈ I. Define F =
⋃

i∈I Fi. Suppose that π is a graphic list having a realization

that induces an element F of F . The graph F belongs to Fj for some j ∈ I, and

since Fj is degree-sequence-forcing, every realization of π induces an element of

Fj and hence an element of F . Thus F is degree-sequence-forcing.

Proposition 3.6. If F is a degree-sequence-forcing set of graphs, then F c is also

degree-sequence-forcing, where F c = {G : G ∈ F}.

Proof. Let F be degree-sequence-forcing, and suppose that π is a graphic list

having a realization G that induces an element F of F c. The graph G induces

F , an element of the degree-sequence-forcing set F , so every realization of the

degree sequence of G induces an element of F . It follows that every realization of

π induces an element of F c, so F c is degree-sequence-forcing.

A unigraph is a graph that is the unique (unlabeled) realization of its degree

sequence. The following remark is an easy consequence of the definition of a

degree-sequence-forcing set and establishes a sufficient condition for a set of graphs

to be degree-sequence-forcing.

Remark 3.7. Let F be a set of graphs. If every F-free graph is a unigraph, then

F is degree-sequence-forcing.

A 2-switch is an operation on a graph G that deletes two disjoint edges uv and

xy such that ux, vy /∈ E(G) and adds ux and vy to the graph. We denote such

a 2-switch by {uv, xy} ⇉ {ux, vy}. This operation is important in the study of

degree sequences because of the following result.
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Theorem 3.8 (Fulkerson et al. [17]). Graphs H and H ′ on the same vertex set

have dH(v) = dH′(v) for every vertex v if and only if H ′ can be obtained by

performing a finite sequence of 2-switches on H.

Definition 3.9. Given a set F of graphs and an element F of F , the graph F

switches to F − F if whenever H and H ′ are two graphs such that H induces F

while H ′ is F -free, and H ′ can be obtained by performing a single 2-switch on H ,

the graph H ′ induces an element of F − F .

If F consists of two graphs F and G, instead of saying that F switches to {G},

we say simply that F switches to G.

Proposition 3.10. Let F be a set of graphs. The following statements are equiv-

alent.

(i) If F ∈ F , then F switches to F − F .

(ii) For every F ∈ F , if H and H ′ are any two graphs having the same de-

gree sequence such that H induces F and H ′ is F -free, then H ′ induces an

element of F − F .

(iii) F is a degree-sequence-forcing set.

Proof. (i) =⇒ (ii): Let F be an element of F . Suppose that H and H ′ are two

graphs with the same degree sequence such that H induces F and H ′ is F -free.

By Theorem 3.8, there exists a finite sequence of 2-switches that, when applied to

H , produces H ′. Let Hi denote the graph obtained after the ith 2-switch in this

sequence, so that H0 = H and Hk = H ′. If j is the first index such that Hj+1 does

not induce F , then Hj induces F . Since F switches to F − F , the graph Hj+1

must induce an element F ′ of F − F . If H ′ does not induce F ′, then there exists

a least index j′ exceeding j such that Hj′+1 does not induce F ′; since F ′ switches
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to F − F ′, we conclude that Hj′ induces an element of F − F ′. By induction on

i, we see that each Hi induces an element of F ; if Hk does not induce F , then it

induces an element of F − F .

(ii) =⇒ (iii): Suppose that π is a graphic sequence having a realization H

that induces an element F of F . If H ′ is any other realization of π, then by (ii)

H ′ induces either F or an element of F −F ; in either case H ′ induces an element

of F .

(iii) =⇒ (i): Let F be a degree-sequence-forcing set of graphs, and let F be

an element of F . Suppose that H and H ′ are two graphs such that H induces F

while H ′ is F -free, and H ′ can be obtained by performing a single 2-switch on H .

Since F is degree-sequence-forcing and the degree sequence of H has a realization

that induces an element of F , we conclude that H ′ induces an element of F and

hence of F − F .

For sets F with more than a few graphs, using Proposition 3.10 to show that

F is degree-sequence-forcing can be quite cumbersome in practice. However, this

proposition will be important in characterizing degree-sequence-forcing pairs in

Section 3.3. We define an ordered pair (H, H ′) of graphs to be F-breaking if their

degree sequences are the same, H induces an element of F , and H ′ is F -free. By

Proposition 3.10, a set F is degree-sequence-forcing if and only if no F -breaking

pair exists. In fact, a stronger result holds, as we show in the following result.

Proposition 3.11. If G is a set of graphs that is not degree-sequence-forcing,

then there exists a G-breaking pair (H, H ′) such that H and H ′ each have at most

|V (G)| + 2 vertices, where G is a graph in G with the most vertices.

Proof. Since G is not degree-sequence-forcing, by Proposition 3.10 there exists

a G-breaking pair (J, J ′) of graphs. By Theorem 3.8, there exists a sequence

J = J0, J1, J2, . . . , Jk = J ′ of graphs in which Ji is obtained via a 2-switch on
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Ji−1 for i ∈ {1, . . . , k}. Define ℓ to be the largest index such that Jℓ induces an

element G of G, so that (Jℓ, Jℓ+1) is a G-breaking pair. Let V denote the vertex

set of an induced copy of G in Jℓ, and let W denote the set of 4 vertices involved

in the 2-switch transforming Jℓ into Jℓ+1. Since G is not induced on V in Jℓ+1,

the 2-switch performed must add an edge to or delete an edge from Jℓ[V ]; hence

|W ∩V | ≥ 2 and |V ∪W | ≤ |V |+2. Thus (Jℓ[V ∪W ], Jℓ+1[V ∪W ]) is a G-breaking

pair on at most |V (G)| + 2 vertices. Taking G to be a graph in G with the most

vertices yields the result.

We now provide a number of necessary conditions on a degree-sequence-forcing

set by considering the effect that 2-switches can have on certain graph parameters.

Proposition 3.12. Every degree-sequence-forcing set contains a forest in which

each component is a star.

Proof. Let F be a set containing no forest, and let F ∈ F be a graph having the

minimum number of cycles among graphs in F . Let xy be an edge of a cycle in

F . Form H by adding to F two new vertices u and v and the edge uv. Form

H ′ from H via the 2-switch {uv, xy} ⇉ {ux, vy}. The graph H ′ has fewer cycles

than F and hence is F -free; thus F is not degree-sequence-forcing.

Having shown that every degree-sequence-forcing set contains a forest, let F

be a degree-sequence-forcing set. Suppose that every forest in F has a component

of diameter at least 3 (and hence is not a forest of stars). Among the forests in

F , consider those which minimize the length of a longest path, and among these

latter forests choose F having a minimum number of paths of this length. Let ℓ

denote the maximum length of a path in F , and let xy be an internal edge of a

path in F of length ℓ. Form a graph H by adding to F two new vertices u and

v and the edge uv. Form H ′ from H via the 2-switch {uv, xy} ⇉ {ux, vy}. Now

H ′ is a forest having fewer paths of length ℓ than F does, and the longest path in
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H ′ has length at most ℓ. It follows that (H, H ′) is an F -breaking pair of graphs.

This is a contradiction, since F is degree-sequence-forcing. Thus, F contains a

forest in which every component is a star.

We may generalize the approach of proposition. Define a graph parameter to

be order-preserving if p(G) ≤ p(H) whenever G is an induced subgraph of H .

Remark 3.13. Let p(G) be an order-preserving parameter and c a constant. Sup-

pose that for every graph G such that p(G) > c, there exist graphs H and H ′ such

that the graph H contains G as an induced subgraph, H ′ is obtained by performing

a 2-switch on H, and p(H ′) < p(G). Every degree-sequence-forcing set contains

an element F such that p(F ) ≤ c.

The first paragraph of the proof of Proposition 3.12 illustrates this idea; there

the parameter p(G) is the number of cycles in G, and c = 0. The conclusion of

Remark 3.13 also holds when p(G) takes values in any linearly ordered set, and

such a formulation could be used to provide an alternate version of the second

paragraph of the proof of Proposition 3.12.

Corollary 3.14. Every degree-sequence-forcing set contains a graph that is the

complement of a forest of stars.

Proof. Let F be a degree-sequence-forcing set. By Proposition 3.6, the set F c is

degree-sequence-forcing and hence contains a forest of stars by Proposition 3.12.

Thus F contains the complement of a forest of stars.

Proposition 3.15. Every degree-sequence-forcing set contains a graph that is a

disjoint union of complete graphs.

Proof. Let p(G) denote the minimum number of edges that need to be added to

G to make every component a complete subgraph. Note that p(G) is an order-

preserving parameter, as deleting any vertex of G cannot increase the number
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of non-adjacent pairs of vertices in the same component. Let G be an arbitrary

graph such that p(G) ≥ 1, and let x and y be two non-adjacent vertices in a

component of G. Form a graph H by adding to G two new vertices u and v and

edges ux and vy. Form H ′ from H via the 2-switch {ux, vy} ⇉ {uv, xy}. Note

that p(H ′) < p(G). By Remark 3.13, if F is a degree-sequence-forcing set, then

F contains an element F such that p(F ) = 0, that is, F is a disjoint union of

complete graphs.

Corollary 3.16. Every degree-sequence-forcing set contains a complete multipar-

tite graph.

We have shown that every degree-sequence-forcing set contains at least one

element from each of several classes, which we denote as follows:

K = {disjoint unions of complete graphs},

Kc = {complete multipartite graphs},

S = {forests of stars},

Sc = {complements of forests of stars}.

3.3 Singletons and pairs

In this section we use the results of the previous section to completely determine

all degree-sequence-forcing sets of size at most 2. We immediately determine the

degree-sequence-forcing singleton sets.

Theorem 3.17. A singleton set {F} is degree-sequence-forcing if and only if

F ∈ {K1, K2, 2K1}.

Proof. We have assumed that all graphs have at least one vertex, so the statement

that {K1} is degree-sequence-forcing is vacuously true. A graph is {K2}-free if
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and only if it is edgeless, which happens if and only if its degree sequence contains

only zeros. Thus {K2} is degree-sequence-forcing, and by Proposition 3.6 the set

{2K1} is degree-sequence-forcing as well.

Note now that if {F} is a degree-sequence-forcing set, then F belongs to each

of K, Kc, S, and Sc. Since every component of F is complete, F cannot induce

P3. As F is a complete multipartite graph, this means that either F has only one

partite set, or every partite set contains only one vertex. Thus F is either Kn or

nK1 for some n. Since F is both a forest and the complement of a forest, we have

n ≤ 2, so F ∈ {K1, K2, 2K1}.

We devote the rest of the section to proving the following result.

Theorem 3.18. A pair of graphs comprises a degree-sequence-forcing set if and

only if it is one of the following:

(i) {A, B}, where A ∈ {K1, K2, 2K1} and B is any graph;

(ii) {P3, K3}, {P3, K3 + K1}, {P3, K3 + K2}, {P3, 2K2}, {P3, K2 + K1};

(iii) {K2 + K1, 3K1}, {K2 + K1, K1,3}, {K2 + K1, K2,3}, {K2 + K1, C4};

(iv) {K3, 3K1};

(v) {2K2, C4}.

We first show that these pairs are degree-sequence-forcing, after which we will

show that no other pairs are degree-sequence-forcing. We recall from Chapter 1

that an alternating 4-cycle in a graph G is a configuration on four vertices of G in

which two edges and two non-edges alternate in a cyclic fashion. An alternating

4-cycle and the minimal unlabeled subgraphs having an alternating 4-cycle are

shown in Figure 3.1; these subgraphs are 2K2, C4, and P4. (Here and throughout

this thesis, dotted segments will denote non-adjacencies.)
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Figure 3.1: An alternating 4-cycle and the 4-vertex subgraphs in which it appears.

The {2K2, C4}-free graphs appear in Table 3.1; these graphs are called the

pseudo-split graphs, and they were shown in [36] to form a degree-determined

family. Thus {2K2, C4} is degree-sequence-forcing. Each of the other pairs is

degree-sequence-forcing by Remark 3.7 and the following.

Proposition 3.19. If F is any of the following sets, then the F-free graphs are

all unigraphs:

(i) {A, B}, where A ∈ {K1, K2, 2K1} and B is any graph;

(ii) {P3, K3}, {P3, K3 + K1}, {P3, K3 + K2}, {P3, 2K2}, {P3, K2 + K1};

(iii) {K2 + K1, 3K1}, {K2 + K1, K1,3}, {K2 + K1, K2,3}, {K2 + K1, C4};

(iv) {K3, 3K1}.

Proof. (i) The {A, B}-free graphs form a subset of the {A}-free graphs, so it

suffices to show that the {A}-free graphs are unigraphs. Since an alternating 4-

cycle is required to perform a 2-switch, and alternating 4-cycles induce K1, K2,

and 2K1, Theorem 3.8 implies that the {A}-free graphs are unigraphs.

(ii) Let G be a {P3, K3 + K2}-free graph. A graph is {P3}-free if and only if

it is a disjoint union of complete graphs. Since G is additionally {K3 + K2}-free,

either G induces K3, in which case G has the form Kn + mK1, or G is triangle

free, in which case G has the form mK2 + nK1. In the first case no 2-switches

are possible on G, and in the second case every 2-switch on G yields a graph

isomorphic to G; hence G is a unigraph. If F is any of the sets listed in (ii) then
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the F -free graphs form a subset of the {P3, K3 + K2}-free graphs and hence are

unigraphs.

(iii) Let F be a set listed in (iii). Suppose that G and G′ are F -free realizations

of the same degree sequence. The graphs G and G′ are both F c-free and have the

same degree sequence. Since F c appears in (ii), G ∼= G′. It follows that G ∼= G′,

so the F -free graphs are unigraphs.

(iv) A well-known elementary result of Ramsey Theory states that each of the

{K3, 3K1}-free graphs contains at most five vertices, and direct verification shows

that each {K3, 3K1}-free graph is a unigraph.

To show that no pairs other than those listed in Theorem 3.18 are degree-

sequence-forcing, we begin by employing “sieve” arguments: Given a graph A, we

determine possible candidates for the graph B in a degree-sequence-forcing set

{A, B} by finding {A}-breaking pairs (H, H ′) of graphs. Proposition 3.10 implies

that B is an induced subgraph of every graph H ′ such that (H, H ′) is an {A}-

breaking pair for some H . Therefore, the graphs that appear in every such H ′ are

the only possible choices for B.

Proposition 3.20. Other than the pairs listed in Theorem 3.18, there are no

degree-sequence-forcing pairs in which one graph has 3 or fewer vertices.

Proof. Let F = {A, B}, and suppose that F is degree-sequence-forcing. We must

show that F is one of the sets listed in Theorem 3.18. This is clearly the case if

A or B has fewer than 3 vertices.

Suppose that F = {K3, B}. Let H1 = K3 +K2 and H ′
1 = P5; further let H2 be

the house graph (that is, the complement of P5), and let H ′
2 = K2,3. Both (H1, H

′
1)

and (H2, H
′
2) are {K3}-breaking pairs. Since F is degree-sequence-forcing, B is

a common induced subgraph of P5 and K2,3. The only such subgraphs on 3 or

more vertices are P3 and 3K1; hence B ∈ {K1, K2, 2K1, P3, 3K1}, and F is listed
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H2 H ′
2

Figure 3.2: The graphs H2 and H ′
2 from Proposition 3.21.

H3 H ′
3

Figure 3.3: The graphs H3 and H ′
3 from Proposition 3.21.

in Theorem 3.18.

If F = {3K1, B}, then Proposition 3.6 and the previous paragraph show that

B ∈ {K1, 2K1, K2, K2 + K1, K3}. Hence F is listed in Theorem 3.18.

Suppose now that F = {P3, B}. Since (P5, K3 + K2) is a {P3}-breaking pair,

B is induced in K3 + K2, and hence F is one of the sets listed in Theorem 3.18.

Finally, suppose that F = {K2 + K1, B}. Proposition 3.6 and the previous

paragraph imply that B is induced in K2,3, and hence F appears in the list in

Theorem 3.18.

We now consider pairs {A, B} such that both graphs have at least four vertices.

The k-pan is the graph consisting of a k-cycle plus a pendant edge. The co-k-pan

is its complement.

Proposition 3.21. The set {2K2, C4} is the only degree-sequence-forcing pair of

the form {2K2, B} or {C4, B} such that B contains at least 4 vertices.

Proof. Let H1 be the co-4-pan, and let H ′
1 be the 4-pan. Let H2 and H ′

2 be the

graphs shown in Figure 3.2, and let H3 and H ′
3 be the graphs shown in Figure 3.3.

The ordered pairs (H1, H
′
1), (H2, H

′
2), and (H3, H

′
3) are all {2K2}-breaking, so

if {2K2, B} is degree-sequence-forcing, then B must be induced in each of H ′
1,
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Figure 3.4: The graphs K2,n and K ′ from Lemmas 3.22 and 3.24.

H ′
2, and H ′

3. The only induced subgraph with at least 4 vertices common to H ′
1,

H ′
2, and H ′

3 is C4, so B = C4. From Proposition 3.6 it follows that if {C4, B} is

degree-sequence-forcing and B has at least four vertices, then B = 2K2.

Lemma 3.22. For n ≥ 4, the graph nK1 switches to B if and only if B is an

induced subgraph of K2 + (n − 2)K1.

Proof. Let H be a graph inducing nK1, and let U be a collection of n pairwise

nonadjacent vertices in H . Let H ′ be an {nK1}-free graph obtained by performing

a single 2-switch on H . Such a 2-switch must place an edge between two vertices

of U , and such a 2-switch can involve at most two vertices of U . In H ′, the

subgraph induced on U is isomorphic to K2 +(n−2)K1, so nK1 switches to every

induced subgraph of this graph.

We now show that every graph B to which nK1 switches is an induced sub-

graph of K2 + (n − 2)K1. Define H1 = K2,n, and let the cycle [u, y, x, v] be any

4-cycle in the graph, as shown in Figure 3.4. Form K ′ via the 2-switch {uv, xy} ⇉

{ux, vy}, and let H ′
1 = K. Let H2 = P5+(n−3)K1 and H ′

2 = K2+K3+(n−3)K1;

also let H3 = 2P3 + (n − 4)K1 and H ′
3 = P4 + K2 + (n − 4)K1.

Observe that graphs H1, H2, and H3 all induce nK1. If nK1 switches to B,

then B is induced in each of H ′
1, H ′

2, and H ′
3, because none of these graphs induce

nK1. Since B is induced in H ′
2, it is a disjoint union of at most n − 1 complete

graphs. Each component of B has either one or two vertices, since H ′
3 induces

no triangle. Furthermore, since B is induced in H ′
1, it does not induce 2K2 and
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Figure 3.5: The graphs H2 and H ′
2 from Lemma 3.24.

hence has at most one component with more than one vertex. It follows that B

is an induced subgraph of K2 + (n − 2)K1, as claimed.

By Definition 3.9 a graph S switches to a graph T if and only if S switches to

T , which leads to the following corollary.

Corollary 3.23. For n ≥ 4, the graph Kn switches to B if and only if B is an

induced subgraph of Kn − e.

Lemma 3.24. For n ≥ 4, the graph K2 + (n − 2)K1 switches to B if and only if

B is K2 or cK1, where c ≤ n − 2.

Proof. Let H be a graph inducing K2+(n−2)K1, and let H ′ be a {K2+(n−2)K1}-

free graph obtained from H after a single 2-switch. Since H ′ must contain at least

one edge, K2 + (n − 2)K1 switches to K2. Furthermore, if U is the vertex set of

some induced K2 + (n − 2)K1 in H , then every 2-switch on H resulting in a

{K2 + (n − 2)K1}-free graph involves exactly two vertices of U ; it follows that

H ′[U ] contains an independent set of size at least n−2, so K2+(n−2)K1 switches

to cK1 for each c at most n − 2.

We now show that K2 + (n − 2)K1 switches to no other graphs than the

ones described above. Let H1 be the graph K ′ shown in Figure 3.4, and let

H ′
1 = K2,n. Let H2 be the graph shown on the left in Figure 3.5, consisting

of n − 4 isolated vertices and one nontrivial component on six vertices, and let

H ′
2 = K4 + K2 + (n − 4)K1.
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Suppose that K2 + (n − 2)K1 switches to B. The graphs H1 and H2 induce

K2 + (n − 2)K1 while the graphs H ′
1 and H ′

2 do not, so B is induced in both

H ′
1 and H ′

2. Since H ′
1 is a complete bipartite graph (and hence triangle-free and

{K2 + K1}-free), B must be these things as well. Since B is induced in H ′
2, it

must also be a disjoint union of at most n− 2 complete graphs. It follows that B

is isomorphic to either K2 or to cK1 for some c ≤ n − 2.

Corollary 3.25. For n ≥ 4, the graph Kn − e switches to B if and only if B is

2K1 or Kc, where c ≤ n − 2.

We now our results on switching to show that a large family of pairs are not

degree-sequence-forcing.

Proposition 3.26. For n ≥ 4, the following are not degree-sequence-forcing pairs

for any B on 3 or more vertices: {nK1, B}, {Kn, B}, {K2 + (n − 2)K1, B}, and

{Kn − e, B}.

Proof. Suppose that {nK1, B} is degree-sequence-forcing. By Proposition 3.10,

nK1 switches to B, so by Lemma 3.22 B must be an induced subgraph of K2 +

(n − 2)K1. If B has no edges, then it is induced in nK1, and by Proposition 3.4

the set {B} is degree-sequence-forcing. This contradicts Theorem 3.17, since B

has at least 3 vertices; thus B has an edge and hence is of the form n′K1 + e for

some n′ at most n. However, Proposition 3.10 implies that B switches to nK1,

and by Lemma 3.24 we have that n′ ≥ n + 2, a contradiction. Thus {nK1, B} is

not degree-sequence-forcing.

Suppose that {K2 + (n − 2)K1, B} is degree-sequence-forcing. By Proposi-

tion 3.10, K2 + (n− 2)K1 switches to B, and Lemma 3.24 implies that B has the

form cK1 for c ≤ n−2, since B has at least three vertices. However, B must switch

to K2 + (n − 2)K1, and this contradicts Lemma 3.22, since K2 + (n − 2)K1 has

more vertices than B. Thus {K2 + (n − 2)K1, B} is not degree-sequence-forcing.
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By Proposition 3.6, neither {Kn, B} nor {Kn − e, B} are degree-sequence-forcing

for any B on at least three vertices.

We now finish the proof of Theorem 3.18

Proof of Theorem 3.18. By the results of this section it suffices to suppose that

F is a degree-sequence-forcing set, where F = {F1, F2} and both F1 and F2 have

at least four vertices. We must show that F = {2K2, C4}. By Propositions 3.12

and 3.15 and Corollaries 3.14 and 3.16, F must contain an element from each of

K, Kc, S, and Sc. It is easy to see that K∩Kc contains only complete or edgeless

graphs, so by Proposition 3.26, one of F1 and F2 belongs to K while the other

belongs to Kc. Without loss of generality, assume that F1 ∈ K and F2 ∈ Kc. We

also have S ∩ Sc = {K1, K2, 2K1, K2 + K1, P3}, so since F1 and F2 both have at

least four vertices, one Fi belongs to S while the other belongs to Sc.

Suppose that F1 ∈ Sc and F2 ∈ S. The class K∩Sc consists of complete graphs

and complete graphs plus an isolated vertex. By Proposition 3.26, we may write

F1 = Ka + K1, where a ≥ 3. Since Kc ∩ S consists of edgeless graphs and stars,

Proposition 3.26 also implies that F2 = K1,b for some integer b ≥ 3. If H = K2,b,

and let H ′ be the graph K ′ from Figure 3.4 (where n = b), then (H, H ′) is an

F -breaking pair, a contradiction.

Suppose instead that F1 ∈ S and F2 ∈ Sc. The class K ∩ S consists of disjoint

unions of complete graphs with one or two vertices each, and the class Kc ∩ Sc

consists of complete multipartite graphs where every partite set has size at most

2. Thus F1 = aK2 + bK1 for nonnegative integers a and b; by Proposition 3.26,

a ≥ 2. Proposition 3.26 also implies that at least two of the partite sets in F2 have

size 2, so F2 induces C4. If H and H ′ are the graphs formed by taking the disjoint

union of (a − 2)K2 + bK1 with the co-4-pan and 4-pan graphs, respectively, then

(H, H ′) is {F1}-breaking. It follows that F2 is induced in H ′, and since the only
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Figure 3.6: A {2K2, C4, K1,4}-breaking pair.

complete multipartite induced subgraph of F2 containing C4 is C4 itself, we have

F2 = C4. By Proposition 3.21 we conclude that F = {2K2, C4}.

3.4 Non-minimal degree-sequence-forcing triples

In comparing Theorems 3.17 and 3.18, we notice that by appending any graph

to a degree-sequence-forcing singleton set we obtain a degree-sequence-forcing

pair, though there are degree-sequence-forcing pairs that do not contain a degree-

sequence-forcing singleton. We define a degree-sequence-forcing set to be minimal

if it contains no proper subset that is degree-sequence-forcing, and non-minimal

otherwise.

For example, from Table 3.1 we observe that the set of forbidden subgraphs

for the class of matroidal graphs is a non-minimal degree-sequence-forcing set,

since it properly contains the set of forbidden subgraphs for the class of matro-

genic graphs. Likewise, {2K2, C4, C5} and {2K2, C4, P4} are nonminimal degree-

sequence-forcing sets, since they contain the (minimal) degree-sequence-forcing

pair {2K2, C4}. In this section we study non-minimal degree-sequence-forcing

sets, turning to the minimal degree-sequence-forcing sets in the next section.

We note that not every set of graphs that contains a degree-sequence-forcing

subset is degree-sequence-forcing. For example, though the set {2K2, C4} is

degree-sequence-forcing, the set {2K2, C4, K1,4} is not: the graphs in Figure 3.6

constitute a {2K2, C4, K1,4}-breaking pair. We characterize all non-minimal degree-

sequence-forcing triples with the next theorem, whose proof will be the focus of
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Figure 3.7: The graphs from Theorem 1(viii).

this section. The chair graph is the unique 5-vertex graph with degree sequence

(3, 2, 1, 1, 1); the kite graph is its complement.

Theorem 3.27. A set F of 3 graphs is a non-minimal degree-sequence-forcing

set if and only if one of the following conditions holds:

(1) F contains a proper degree-sequence-forcing subset other than {2K2, C4};

(2) F = {2K2, C4, F}, where F satisfies one of the following:

(i) F induces 2K2 or C4;

(ii) F ∼= nK1 or F ∼= Kn for some n ≥ 1;

(iii) F ∼= C5 + nK1 or F ∼= C5 ∨ Kn for some n ≥ 0;

(iv) F ∼= ((C5 +nK1)∨K1)+mK1 or F ∼= ((C5∨Kn)+K1)∨Km for some

m, n ≥ 0;

(v) F ∼= K2 + (n − 2)K1 or F ∼= Kn − e for some n ≥ 2;

(vi) F or F is isomorphic to ((C5 ∨ K1) + 2K1) ∨ K1;

(vii) F has 4 or fewer vertices or is isomorphic to the chair or kite;

(viii) F is isomorphic to one of the graphs in Figure 3.7;

(ix) F ∼= K1,3 + K1 or F ∼= (K3 + K1) ∨ K1.

We give the proof in stages. In Section 3.4.1 we show that each of the triples

from Theorem 3.27 is degree-sequence-forcing, and in Section 3.4.2 we show that
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there are no other non-minimal degree-sequence-forcing triples by studying an

analogue of degree-sequence-forcing sets in the context of bipartite graphs.

3.4.1 Proof of sufficiency in Theorem 3.27

We begin with a few basic results.

Remark 3.28. By Proposition 3.6, the set {2K2, C4, F} is degree-sequence-forcing

if and only if {2K2, C4, F} is, since 2K2 and C4 are complements of each other.

Remark 3.29. Let G be a family of graphs. If (H, H ′) is a {2K2, C4}∪G-breaking

pair, then (H, H ′) is a G-breaking pair, and H and H ′ are both {2K2, C4}-free.

Non-minimal degree-sequence-forcing triples are formed by appending suitable

graphs to the degree-sequence-forcing sets from Theorems 3.17 and 3.18. For

degree-sequence-forcing proper sets other than {2K2, C4}, we may append any

graphs we wish, as the following remark shows.

Remark 3.30. If a set F contains a degree-sequence-forcing singleton or pair

other than {2K2, C4}, then the F-free graphs are unigraphs by Proposition 3.19.

By Remark 3.7, F is a degree-sequence-forcing set.

This proves that the sets listed in item 1 of Theorem 3.27 are degree-sequence-

forcing. We now examine the triple F = {2K2, C4, F}. By Proposition 3.4, F is

degree-sequence-forcing if F induces {2K2, C4}, as stated in item 2(i).

We henceforth assume that F is {2K2, C4}-free. The next several definitions

and results provide a framework for discussion of the structure of {2K2, C4}-

free graphs and the 2-switches possible on them. We begin with a structural

characterization of {2K2, C4}-free graphs due to Blázsik et al. [7].

Theorem 3.31. A graph G is {2K2, C4}-free if and only if there exists a partition

V1, V2, V3 of V (G) such that
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(i) V1 is an independent set,

(ii) V2 is a clique,

(iii) V3 = ∅ or G[V3] ∼= C5,

(iv) every possible edge exists between V2 and V3, and

(v) no edge in G has one endpoint in V1 and the other endpoint in V3.

Given a {2K2, C4}-free graph G, we call the triple (V1, V2, V3) a pseudo-splitting

partition of V (G) if V1, V2, V3 satisfy the conditions of the partition set forth in

Theorem 3.31. The name is suggested by [36], in which {2K2, C4}-free graphs

are called pseudo-split graphs. Similarly, for a split graph G, define a splitting

partition of V (G) to be an ordered partition (V1, V2) of V (G) into an independent

set and a clique, respectively.

Note that there is at most one induced C5 in any {2K2, C4}-free graph. Given a

{2K2, C4}-free graph C, define the split part Gs of G to be the induced subgraph

resulting from deleting the vertices of the induced C5 from G if such a 5-cycle

exists, and letting Gs = G otherwise.

The following is an easy consequence of Theorem 3.31.

Corollary 3.32. Let H be an arbitrary {2K2, C4}-free graph, and let (W1, W2, W3)

be a pseudo-splitting partition of V (H). Any induced P4 in H either lies in H [W3]

or has its endpoints in W1 and its midpoints in W2.

Proposition 3.33. Let H be an arbitrary {2K2, C4}-free graph with pseudo-

splitting partition (W1, W2, W3). Let H ′ be a graph obtained via a 2-switch on

H, with H ′ ≇ H. The following statements all hold.

(i) The 2-switch changing H into H ′ is performed on a set of vertices in W1∪W2

on which a P4 is induced in both H and H ′.
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(ii) The triple (W1, W2, W3) is a pseudo-splitting partition of H ′.

(iii) For any u ∈ W1 and v ∈ W2, we have |NH(u) ∩ W2| = |NH′(u) ∩ W2| and

|NH(v) ∩ W1| = |NH′(v) ∩ W1|.

Proof. (i) The four vertices on which the 2-switch is performed must induce 2K2,

C4, or P4; since the first two graphs are forbidden in H , the 2-switch must have

occurred on an induced P4. Any 2-switch on an induced P4 leaves an induced P4 on

the four vertices involved. By Corollary 3.32 the P4 must either be located entirely

within W3 or within W1∪W2. From Theorem 3.31, any 2-switch on a P4 contained

in G[W3] will not change the isomorphism class of the graph, since every 2-switch

on a copy of C5 produces another copy of C5, every vertex of W2 dominates the

induced C5 in both H and H ′, and every vertex of W1 is nonadjacent to every

vertex of the induced C5. Hence the isomorphism-class-changing 2-switch must

occur on the vertex set of an induced P4 in G[W1 ∪ W2].

(ii) Let abcd be the induced P4 on which the 2-switch changing H into H ′

occurred. By (i) and Corollary 3.32, a, d ∈ W1 and b, c ∈ W2. Note that in the

2-switch the edges deleted are ab, cd and the edges added are ad, bc. Thus after

the 2-switch no edge exists between vertices in W1, no non-edge exists in W2,

and all the other requirements for (W1, W2, W3) to be a pseudo-splitting partition

hold.

(iii) This is clear upon considering the edges deleted and added as part of the

2-switch in the proof of (ii).

Lemma 3.34. Let H be a {2K2, C4}-free graph with pseudo-splitting partition

(W1, W2, W3), and let H ′ be a graph obtained by performing a 2-switch on H. If

G is an induced subgraph of H that is not induced in H ′, then |V (G) ∩ W2| ≥ 2.

Proof. Let H , H ′, and G be as described in the hypothesis, and let V2 = V (F ) ∩

W2. Since H [W1 ∪ W3] ∼= H ′[W1 ∪ W3] and H ′ is F -free, we have |V2| ≥ 0.
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Suppose that |V2| = 1, and let V2 = {v}. Let p1 and p2 denote respectively

the number of vertices in V (F ) ∩ W1 to which v is and is not adjacent to. By

Proposition 3.33, after the 2-switch that creates H ′ there are still at least p1

vertices in W1 to which v is adjacent, and at least p2 vertices in W1 to which v

is not adjacent. These p1 + p2 vertices, together with v and V (F ) ∩ W3, clearly

induce F in H ′, a contradiction; thus |V2| ≥ 2, as claimed.

We now show that the sets described in items 2(ii), 2(iii), and 2(iv) of Theo-

rem 3.27 are degree-sequence-forcing.

Corollary 3.35. The set F = {2K2, C4, F} is degree-sequence-forcing whenever

F is one of the following:

(i) nK1, n ≥ 1;

(ii) Kn, n ≥ 1;

(iii) C5 + nK1, n ≥ 0;

(iv) C5 ∨ Kn, n ≥ 0;

(v) ((C5 + nK1) ∨ K1) + mK1, m, n ≥ 0;

(vi) ((C5 ∨ Kn) + K1) ∨ Km, m, n ≥ 0.

Proof. If F is any of the graphs described in (i), (iii), or (v), then every pseudo-

splitting partition (V1, V2, V3) of V (F ) has |V2| ≤ 1. By Lemma 3.34 and Re-

mark 3.29, there exist no {2K2, C4, F}-breaking pairs, so {2K2, C4, F} is degree-

sequence-forcing. The cases (ii), (iv), and (vi) follow from the cases (i), (iii) and

(v) by Proposition 3.6.

We now consider sets of the form listed in item 2(v) of Theorem 3.27.
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Proposition 3.36. The triples F = {2K2, C4, K2+(n−2)K1} and G = {2K2, C4,

Kn − e} are degree-sequence-forcing for all n ≥ 2.

Proof. By Proposition 3.6, it suffices to show that the triple F is degree-sequence-

forcing.

Corollary 3.35 handles the case when n = 2, so we assume that n ≥ 3. Suppose

that F is not degree-sequence-forcing, and let (H, H ′) be an F -breaking pair. By

Remark 3.29, (H, H ′) is an {K2 +(n−2)K1}-breaking pair where both H and H ′

are {2K2, C4}-free. Let V = {a, b, i3, i4, . . . , in} be the vertex set of an induced

copy of K2 + (n − 2)K1 in H , with ab ∈ E(H). By Proposition 3.33, we may

fix a pseudo-splitting partition (W1, W2, W3) of both V (H) and V (H ′). From

Lemma 3.34 it follows that |V ∩W2| = 2, so V ∩W2 = {a, b}, and V −{a, b} ⊆ W1.

Graph H ′ is {K2 + (n− 2)K1}-free, so the 2-switch transforming H into H ′ must

add an edge between either a or b and ik for some k ∈ {3, . . . , n}; without loss

of generality assume the edge ai3 is added. The 2-switch must be {ax, i3y} ⇉

{ai3, xy} for some x ∈ W1 and some y ∈ W2. However, then H ′[{a, x, i3, . . . , in}] ∼=

K2 + (n − 2)K1, a contradiction. Thus F is degree-sequence-forcing.

The next result addresses the sets described in item 2(vi) of Theorem 3.27.

Proposition 3.37. The sets {2K2, C4, F} and {2K2, C4, F} are degree-sequence-

forcing, where F ∼= ((C5 ∨ K1) + 2K1) ∨ K1.

Proof. Suppose that (H, H ′) is a {2K2, C4, F}-breaking pair, where F ∼= ((C5 ∨

K1) + 2K1) ∨K1. By Remark 3.29 and Proposition 3.33, we may assume that H

induces F and that H and H ′ have the same vertex set and a common pseudo-

splitting partition (W1, W2, W3). Fix a copy of F in H . Note that there is a unique

pseudo-splitting partition of F , and it must be (W1∩V (F ), W2∩V (F ), W3∩V (F )).

Within the induced copy of F , let c and ℓ1 be the vertices having degrees 8 and 6

in H , respectively, and let ℓ2 and ℓ3 be the pendant vertices. By Proposition 3.11
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and Remark 3.29, we may assume that (H, H ′) is an F -breaking pair, and that H

contains at most 2 vertices not contained in the copy of F . In order for there to be

an isomorphism-class-changing 2-switch on H , there must be an induced copy of

P4 on H [W1 ∪W2] that includes a vertex from each of W1 ∩V (F ) and W2 ∩V (F ).

There then exists a vertex y ∈ W1−V (F ) such that y has a neighbor other than c

in W2 and y does not dominate W2. If |W2| = 2, then y is adjacent to ℓ1 but not to

c; but then any 2-switch involving y has the form {ℓ1y, vc} ⇉ {ℓ1v, yc} for some

v ∈ W1−{y}, and H ′[{y, w}∪W2∪W3] is a copy of F , where w ∈ {ℓ2, ℓ3}−v. Thus

H contains a vertex x ∈ W2 that does not belong to F , and V (H) = V (F )∪{x, y}.

If NH(y) = {x}, then the 2-switch changing H into H ′ must be {xy, vc} ⇉

{xv, yc}, where v ∈ {ℓ2, ℓ3}; since xv /∈ E(H), the 2-switch in effect merely

switches the roles of y and v without changing the isomorphism class of H . A

similar contradiction arises if NH(y) = {ℓ1}. The neighborhood of y in H cannot

be {x, c} or {ℓ1, c} or {x, c, ℓ1}, for no 2-switch would then be possible on H .

Thus NH(y) = {ℓ1, x}, and the 2-switch changing H into H ′ then has the form

{vy, wc} ⇉ {vw, yc}, where v ∈ {ℓ1, x} and w ∈ {ℓ2, ℓ3}. If v = ℓ1 then ℓ1y /∈

E(H ′), and H ′[W3 ∪ {c, ℓ1, y, u}] ∼= F , where u ∈ {ℓ2, ℓ3}−w. If v = x then since

xy /∈ E(H ′) and H ′ cannot induce F on W3 ∪ {c, x, y, u}, where u ∈ {ℓ2, ℓ3} − w,

we must have xu ∈ E(H ′); but then H ′[W3 ∪ {x, ℓ1, ℓ2, ℓ3}] ∼= F , a contradiction.

We conclude that no {2K2, C4, F}-breaking pair exists, so this set is degree-

sequence-forcing. By Proposition 3.6, it follows that {2K2, C4, F} is also degree-

sequence-forcing.

We now prove that the sets described in item 2(vii) of Theorem 3.27 are

degree-sequence-forcing, beginning with a few technical results.

Lemma 3.38. If G is a {2K2, C4}-free graph and abcd is an induced copy of P4

such that every vertex not in {a, b, c, d} is adjacent to exactly 0 or 2 vertices in
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{a, d}, then the graph G′ formed by performing the 2-switch {ab, cd} ⇉ {ac, bd}

is isomorphic to G.

Proof. It is easy to verify that the bijection from V (G) to V (G′) that maps a and

d to each other and fixes every other element (recall that V (G) = V (G′) is an

isomorphism.

Lemma 3.39. If abcd is an induced copy of P4 in a {2K2, C4, kite}-free graph G,

then every vertex of V (G) − {a, b, c, d} is adjacent to exactly 0 or 2 of {a, d}.

Proof. Let (V1, V2, V3) be a pseudo-splitting partition of G. By Corollary 3.32,

either the path 〈a, b, c, d〉 is contained within G[V3], in which case the claim is

clearly true by Theorem 3.31, or a, d ∈ V1 and b, c ∈ V2. Assume that the latter

holds, and suppose that u 6= b and ua ∈ E(G). It follows that u ∈ V2, so

ub, uc ∈ E(G). Since G does not induce the kite on {a, b, c, d, u}, we must have

ud ∈ E(G). Similar arguments show that any vertex other than c adjacent to d

must also be adjacent to a, and the result follows.

Proposition 3.40. If F is {2K2, C4, kite} or {2K2, C4, chair}, then the F-free

graphs are unigraphs.

Proof. Any 2-switch on a {2K2, C4, kite}-free graph G must be performed on an

induced copy of P4. Lemmas 3.38 and 3.39 imply that the graph resulting from

such a 2-switch is isomorphic to G, so by Theorem 3.8 G is a unigraph. Since

every {2K2, C4, chair}-free graph H is the complement of a {2K2, C4, kite}-free

graph, H is also a unigraph.

Corollary 3.41. The triple F = {2K2, C4, F} is degree-sequence-forcing if F is

the kite or chair graph, or any graph on 4 or fewer vertices.

Proof. If F ∈ {2K2, C4} then F = {2K2, C4} which by Theorem 3.18 is degree-

sequence-forcing. If F ∈ {4K1, K4}, then by Corollary 3.35 F is degree-sequence-

forcing. If F is any other graph on 4 or fewer vertices, or if F is the chair or kite
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graph, then F is induced in either the chair or the kite graph. The {2K2, C4, F}-

free graphs are thus {2K2, C4, chair}-free or {2K2, C4, kite}-free and hence are

unigraphs by Proposition 3.40, so {2K2, C4, F} is degree-sequence-forcing by Re-

mark 3.7.

In the next few results we show that the graphs in item 2(viii) of Theorem 3.27

(those illustrated in Figure 3.7) complete a degree-sequence-forcing triple with

{2K2, C4}. We begin by establishing some facts about the triple F where F

induces C5.

Proposition 3.42. Let G and H be C5-inducing graphs that are {2K2, C4}-free.

If the vertex set of the split part Gs of G has a unique partition into a clique and

an independent set, then H is G-free if and only if Hs is Gs-free.

Proof. Suppose first that Hs induces Gs, and assume that V (Gs) ⊆ V (Hs).

Let (W1, W2, W3) be the pseudo-splitting partition of H . The ordered partition

(W1, W2) is a splitting partition of V (Hs), and if (V1, V2) is a splitting partition of

V (Gs), then the uniqueness of the latter partition forces V1 ⊆ W1 and V2 ⊆ W2.

Now in H there is an induced copy of C5 on V3 in which every vertex dominates

W2. Since G is constructed by making each vertex of a copy of C5 adjacent to

each vertex in V2 and not adjacent to any vertex in V1, it is clear that G is induced

in H .

For the converse, suppose that H induces G, and assume V (G) ⊆ V (H).

Let (W1, W2, W3) be a pseudo-splitting partition of H , and let (V1, V2, V3) be a

pseudo-splitting partition of G. Now H induces a single copy of C5, as does G, so

V3 = W3. Then V1 ∪ V2 ⊆ W1 ∪ W2, and it is clear that Gs is induced in Hs.

Proposition 3.43. Suppose that G is a {2K2, C4}-free graph such that G in-

duces C5, and V (Gs) has a unique partition into a clique and an independent set.
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If {2K2, C4, G
s} is degree-sequence-forcing, then {2K2, C4, G} is degree-sequence-

forcing as well.

Proof. Suppose that G = {2K2, C4, G} is not degree-sequence-forcing, and let

(H1, H2) be a G-breaking pair. Proposition 3.42 implies that Hs
1 induces Gs,

and Hs
2 is Gs-free; thus (Hs

1 , H
s
2) is a Gs-breaking pair and hence a {2K2, C4, G

s}-

breaking pair. We conclude that {2K2, C4, G
s} is not degree-sequence-forcing.

Corollary 3.44. Let F be the unique C5-inducing {2K2, C4}-free graph such that

F s ∼= chair. Let G be the unique C5-inducing {2K2, C4}-free graph such that

Gs ∼= P4. The sets {2K2, C4, F}, {2K2, C4, F}, and {2K2, C4, G} are degree-

sequence-forcing.

We conclude our proof of the sufficiency of the conditions listed in Theo-

rem 3.27 by addressing the case listed in item 2(ix) of Theorem 3.27.

Proposition 3.45. The sets {2K2, C4, K1,3 +K1} and {2K2, C4, (K3 +K1)∨K1}

are degree-sequence-forcing.

Proof. Let F = {2K2, C4, K1,3 + K1}. If F is not degree-sequence-forcing, then

there exists a {K1,3+K1}-breaking pair (H1, H2) of {2K2, C4}-free graphs, and we

may assume that H2 is obtained by performing a single 2-switch on H1, so that the

two have the same vertex set. Let (W1, W2, W3) be a pseudo-splitting partition

of V (H1). It follows from Lemma 3.34 that any induced subgraph isomorphic to

K1,3+K1 contains exactly two vertices from W2. Fix an induced subgraph G of H1

isomorphic to K1,3 + K1. It follows from Theorem 3.31 that G has three vertices

s, ℓ2, and ℓ3 in W1 and two vertices c and ℓ1 in W2, with c and s the vertices

of degrees 3 and 0, respectively, in G. Since H2 induces no copy of K1,3 + K1

on V (G), it follows from Proposition 3.33 that the 2-switch changing H1 into H2

must either add an edge between ℓ1 and one of ℓ2 or ℓ3, add the edge ℓ1s to G,
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add the edge cs to G, or delete an edge joining c and one of ℓ2 or ℓ3. We consider

each of these possibilities.

If the 2-switch adds an edge between ℓ1 and either ℓ2 or ℓ3, without loss of

generality we may assume that the 2-switch has the form {ℓ1y, ℓ2x} ⇉ {ℓ1ℓ2, yx}

for some vertex x ∈ W2 and some y ∈ W1 We make no initial assumption that x

or y is distinct from a vertex in V (G) (other than the vertices ℓ1 and x involved in

the 2-switch); however, since ℓ1y is an edge in H1, we deduce that y /∈ {ℓ2, ℓ3}. If

cy were an edge of H1, then H1 would induce a copy of K1,3 +K1 on {c, ℓ2, ℓ3, s, y}

having only one vertex in W2, a contradiction; thus cy /∈ E(H1). Now in H2 we

have edges cx, cℓ2, cℓ3 and non-edges xℓ2, ℓ2ℓ3, sℓ2, sℓ3; since H2 is {K1,3 + K1}-

free, H2 must contain either xℓ3 or xs as an edge. If H2 had both of these edges

then it would induce K1,3+K1 on {ℓ2, ℓ3, s, x, y}, a contradiction, so exactly one of

xℓ3 or xs is and edge of G. In either case H2 induces K1,3 +K1 on {ℓ1, ℓ3, s, x, y},

a contradiction.

If instead the 2-switch producing H2 adds the edge ℓ1s, then the 2-switch has

the form {ℓ1y, sx} ⇉ {ℓ1s, yx} for some x ∈ W2 and y ∈ W1. Since x is adjacent

to s, we have x /∈ {c, ℓ1}, and since y is adjacent to ℓ1, we have {y /∈ ℓ2, ℓ3, s}.

Since {c, ℓ2, ℓ3, s, y} cannot induce K1,3 + K1 in H1 (only one of these vertices

belongs to W2), we have cy /∈ E(H1). In H2 we have y adjacent to neither of c or

ℓ1, so H2 induces K1,3 + K1 on {c, ℓ1, ℓ2, ℓ3, y}, a contradiction.

If the 2-switch adds instead the edge cs to G, then the 2-switch performed has

the form {cy, sx} ⇉ {cs, xy} for some x ∈ W2 and y ∈ W1. Since x is adjacent

to s in H1, we have x 6= ℓ1. However, since H1 cannot induce K1,3 + K1 on

{c, ℓ2, ℓ3, s, y}, we must have y ∈ {ℓ2, ℓ3}. Without loss of generality we assume

that y = ℓ2, so that the 2-switch performed is {cℓ2, sx} ⇉ {cs, xℓ2}. The subgraph

of H2 induced on {c, ℓ1, ℓ2, ℓ3, s} is then isomorphic to K1,3 + K1, a contradiction.

Finally, if the 2-switch changing H1 into H2 deletes an edge joining c to one of
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ℓ2 or ℓ3, then we may assume without loss of generality that the 2-switch has the

form {cℓ2, yx} ⇉ {cy, ℓ2x} for some x ∈ W2 and y ∈ W1. Since xy is an edge in

H1, we cannot have both x = ℓ1 and y = s. If y 6= s, then H2 induces K1,3 + K1

on {c, ℓ3, s, x, y} unless x is adjacent to ℓ3 or s. Since H2 is {K1,3 + K1}-free, x

cannot be adjacent to both vertices, and if x is adjacent to either one, then H2

induces K1,3 + K1 on {ℓ1, ℓ2, ℓ3, s, x}, a contradiction. Thus y = s and x 6= ℓ1; in

this case H2 induces K1,3 + K1 on {c, ℓ1, ℓ2, ℓ3, s}, a contradiction.

Since every case yields a contradiction, we conclude that no F -breaking pair

exists. Thus {2K2, C4, K1,3 + K1} is degree-sequence-forcing, and by Proposi-

tion 3.6 the set {2K2, C4, (K3 + K1)∨K1} is degree-sequence-forcing as well.

3.4.2 Proof of necessity in Theorem 3.27

In this subsection we show that the only non-minimal degree-sequence-forcing

triples are the ones presented in Theorem 3.27. In the previous section, we used

an observation on order-preserving graph parameters (Remark 3.13) to show that

every degree-sequence-forcing set contains graphs of certain types (namely, from

the classes K, Kc, S, and Sc). These results were useful in showing that no other

degree-sequence-forcing pairs existed than those listed in Theorem 3.18.

In this subsection we again seek to show that all but certain specified sets are

not degree-sequence-forcing. However, our assumption that the degree-sequence-

forcing triples are non-minimal renders Remark 3.13 and the results that accom-

pany it useless, because by assumption the sets we consider contain a degree-

sequence-forcing set as a subset, and hence contain elements from K, S, and any

other graph class determined by values of an order-preserving parameter.

Instead, we use the structure of {2K2, C4}-free graphs to formulate a notion of

a degree-sequence-forcing sets in the context of bipartite graphs. We then use our
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results to complete the proof of Theorem 3.27. We begin with several definitions.

A bipartitioned graph is a triple (G, V1, V2) where G is a bipartite graph with

partite sets V1 and V2. We use G(V1, V2) to denote the bipartitioned graph and

refer to G as the underlying graph. We define two bipartitioned graphs G(V1, V2)

and G′(V ′
1 , V

′
2) to be isomorphic if there exists a graph isomorphism φ : V (G) →

V (G′) such that φ(V1) = V ′
1 (and hence φ(V2) = V ′

2).

We define the bicomplement G(V1, V2) of a bipartitioned graph G(V1, V2) to be

the bipartitioned graph H(V2, V1) such that E(H) = {uv : u ∈ V2, v ∈ V1, uv /∈

E(G)}. Note that in the bicomplement the roles of V1 and V2 are interchanged.

Given a split graph G and a splitting partition (V1, V2) of V (G), we define the

associated bipartitioned graph to be Gb(V1, V2), where Gb is formed by deleting all

edges with both endpoints in V2. Note that an arbitrary split graph may have

more than one partition into an independent set and a clique, and hence more than

one associated bipartitioned graph. If H is a pseudo-split graph that induces C5

and has pseudo-splitting partition (V1, V2, V3), then the associated bipartitioned

graph is defined to be Hb(V1, V2), where Hb is formed by deleting V3 from H

and removing all edges with both endpoints in V2; equivalently, Hb = (Hs)b. A

pseudo-split graph that induces C5 has exactly one bipartitioned graph associated

with it.

We say a bipartitioned graph H(W1, W2) is an induced subgraph of G(V1, V2) if

Wi ⊆ Vi for i ∈ {1, 2} and H = G[W1 ∪ W2]. We will often be more interested in

isomorphism classes of bipartitioned graphs than with specific graphs themselves;

for that reason, we say that G(V1, V2) is F (X1, X2)-free if there is no induced

subgraph of G(V1, V2) isomorphic to F (X1, X2), and we say that G(V1, V2) in-

duces F (X1, X2) if there exists an induced subgraph of G(V1, V2) isomorphic to

F (X1, X2).

We define the degree sequence of a bipartitioned graph G(V1, V2) to be the
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Figure 3.8: The chair graph and its associated bipartitioned graph.
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Figure 3.9: A bipartitioned 2-switch and a non-bipartitioned 2-switch.

ordered pair (d; d′), where d and d′ are lists of the degrees in G of the vertices in

V1 and V2, respectively, written in nonincreasing order. If G(V1, V2) has degree

sequence (d; d′), then we say that G(V1, V2) is a realization of (d; d′).

Example 3.46. The chair graph G is shown on the left in Figure 3.8. Its unique

associated bipartitioned graph Gb(V1, V2) is shown on the right, with vertices in

V1 on the bottom row and vertices in V2 on the top row. The degree sequence of

Gb(V1, V2) is (1, 1, 1; 2, 1).

We note that nonisomorphic bipartitioned graphs may have a common degree

sequence. We define a set F = {F1(V
1
1 , V 1

2 ), . . . , Fk(V
k
1 , V k

2 )} of bipartitioned

graphs to be degree-sequence-forcing if whenever a bipartitioned graph G(W1, W2)

with degree sequence (d; d′) induces no element of F , no other realization of (d; d′)

induces an element of F .

In examining degree-sequence-forcing sets of bipartitioned graphs, we begin

with the following useful note:

Remark 3.47. Given a set F of bipartitioned graphs, let F c denote the collection

of bicomplements of elements of F . The set F is degree-sequence-forcing if and

only if F c is degree-sequence-forcing.

We define a bipartitioned 2-switch on G(V1, V2) as the deletion of two edges

uv, xy of G and the addition of edges uy, xv not already belonging to G, where
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we require that u, x ∈ V1 and v, y ∈ V2, as shown on the left in Figure 3.9. As

before, we denote this 2-switch by {uv, yx} ⇉ {uy, vx}. A bipartitioned 2-switch

is a 2-switch on the underlying graph. However, the definition of a bipartitioned

2-switch is more restrictive; after the 2-switch {uv, yx} ⇉ {uy, vx} on G(V1, V2),

the sets V1, V2 still partition V (G) into two independent sets. This need not be

the case for an arbitrary 2-switch on a bipartite graph, as shown on the right in

Figure 3.9, where the bottom and top rows of vertices contain subsets of V1 and

V2, respectively.

As with general 2-switches, a bipartitioned 2-switch does not change the degree

of any vertex in the bipartitioned graph. We arrive at an analogue of Theorem 3.8:

Proposition 3.48. Bipartitioned graphs G(W1, W2) and H(W1, W2) on the same

vertex set satisfy dG(v) = dH(v) for every vertex v ∈ W1 ∪ W2 if and only if H

can be obtained by performing a sequence of bipartitioned 2-switches on G.

Proof. Let G(W1, W2) and H(W1, W2) be bipartitioned graphs as described in the

hypothesis. We proceed by induction on |W1|. When |W1| = 1 there is noth-

ing to prove; suppose that |W1| > 1. Let u be a vertex of maximum degree ∆

among vertices in W1, and let v1, . . . , v∆ be a set of vertices in W2 with the ∆

highest degrees among vertices in W2. We show that by means of bipartitioned

2-switches we can arrive at a bipartitioned graph where N(u) = {v1, . . . , v∆}.

Suppose that uvi /∈ E(G) for some i ∈ {1, . . . , ∆}. The vertex u has a neighbor

w in W2 − {v1, v2, . . . , v∆}. Since vi has degree at least as large as that of w,

the vertex vi has a neighbor x in W1 − N(w). We may perform the 2-switch

{uw, vix} ⇉ {uvi, wx} and obtain a graph where |N(u) ∩ {v1, . . . , v∆}| is larger

than it previously was. Repeating this procedure as necessary, we arrive at a graph

G∗ where N(u) = {v1, . . . , v∆}. We may also perform a sequence of 2-switches on

H(W1, W2) to form a graph H∗(W1, W2) such that N(u) = {v1, . . . , v∆}. The bi-
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partitioned graphs G∗(W1, W2)−u and H∗(W1, W2)−u agree on the degrees of all

vertices, and by the inductive hypothesis there exists a finite sequence of biparti-

tioned 2-switches that changes G∗(W1, W2)−u into H∗(W1, W2)−u. None of these

bipartitioned 2-switches involve the vertex u, so the bipartitioned 2-switches that

change G(W1, W2) into G∗(W1, W2), followed by the same bipartitioned 2-switches

that change G∗(W1, W2) − u into H∗(W1, W2) − u, followed by the bipartitioned

2-switches that change H∗(W1, W2) into H(W1, W2), give a sequence of biparti-

tioned 2-switches that change G(W1, W2) into H(W1, W2). The result follows by

induction.

We are now in a position to show the relationship between degree-sequence-

forcing sets of graphs and degree-sequence-forcing sets of bipartitioned graphs.

Theorem 3.49. Let F be a collection of {2K2, C4}-free graphs that either all

induce C5 or are all C5-free. Let G be the set of all bipartitioned graphs associated

with elements of F . The set {2K2, C4} ∪ F is a degree-sequence-forcing set of

graphs if and only if G is a degree-sequence-forcing set of bipartitioned graphs.

Proof. Let F and G be as defined above. Suppose first that {2K2, C4} ∪ F

is degree-sequence-forcing. Let H(W1, W2) be a bipartitioned graph inducing

G(V1, V2), where G(V1, V2) is an element of G. By definition, V1 ⊆ W1 and

V2 ⊆ W2. Let H ′(W1, W2) be any other realization of the degree sequence of

H(W1, W2), and let J1 and J2 be pseudo-split graphs for which H and H ′ are

associated bipartitioned graphs, respectively, such that J1 and J2 induce C5 if

and only if the graphs in F do. It is clear that J1 and J2 have the same de-

gree sequence, and that J1 induces some element of F . Since {2K2, C4} ∪ F is

degree-sequence-forcing, it follows that J2 also induces some element of F ; thus

H ′(W1, W2) induces some element of G. We conclude that G is degree-sequence-

forcing.
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Conversely, let G be degree-sequence-forcing, and suppose that {2K2, C4} ∪F

is not degree-sequence-forcing. By Remark 3.29 there exists a {2K2, C4} ∪ F -

breaking pair (H1, H2) of {2K2, C4}-free graphs. There exists a sequence of 2-

switches that transforms H1 into H2; by Proposition 3.33 there exists a partition

W1, W2, W3 of V (H1) = V (H2) such that in both H1 and H2 the set W1 is an

independent set, W2 is a clique, and W3 is either empty or the vertex set of

an induced C5. Consider the bipartitioned graphs Hb
1(W1, W2) and Hb

2(W1, W2)

associated with H1 and H2. We have that Hb
1(W1, W2) induces G(V1, V2), where

G(V1, V2) is some element of G. Since G is degree-sequence-forcing, Hb
2(W1, W2)

also induces some element G′(V ′
1 , V

′
2) of G. Let F be the element of F having

G′(V ′
1 , V

′
2) as an associated bipartitioned graph. The only way that F may not

be induced in H2 is for H2 to be C5-free while F is not. However, if F induces

C5, then by assumption every element of F induces C5, which implies that H1

and hence H2 induce C5 as well. This is a contradiction, since H2 then induces

an element of F . We conclude that {2K2, C4}∪F is degree-sequence-forcing.

As we noted at the beginning of this subsection, the use of order-preserving

parameters for general graphs as outlined in Remark 3.13 yields no new require-

ments of a potential non-minimal degree-sequence-forcing set. However, if we

adapt the approach to the context of bipartitioned graphs, then we are able to

obtain some necessary conditions on degree-sequence-forcing sets of bipartitioned

graphs, as follows.

Proposition 3.50. Every degree-sequence-forcing set G of bipartitioned graphs

contains an element whose underlying graph is a forest.

Proof. Let ρ(H) denote the number of cycles in a graph H . Note that ρ is order-

preserving: if F is an induced subgraph of H , then ρ(F ) ≤ ρ(H). Let G be a set

of bipartitioned graphs, and let G(V1, V2) be an element of G whose underlying
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graph G minimizes ρ. If ρ(G) > 0, then let uv be an edge of G on a cycle,

where u ∈ V1 and v ∈ V2. For vertices x, y /∈ V1 ∪ V2, define V ′
1 = V1 ∪ {x}

and V ′
2 = V2 ∪ {y}; define H(V ′

1 , V
′
2) to be the bipartitioned graph whose edge set

consists of all edges of G+xy, plus the edge xy. Let H ′(V ′
1 , V

′
2) be the bipartitioned

graph resulting from the bipartitioned 2-switch {uv, xy} ⇉ {uy, xv} on H(V ′
1 , V

′
2).

Note that ρ(H ′) < ρ(G). Since ρ is order-preserving and G(V1, V2) is minimal

with respect to ρ, we have that H ′(V ′
1 , V

′
2) is G-free. Since H(V ′

1 , V
′
2) has the same

degree sequence as H ′(V ′
1 , V

′
2) and clearly induces an element of G, we conclude

that G is not degree-sequence-forcing. Thus every degree-sequence-forcing set of

bipartitioned graphs contains an element G(V1, V2) such that ρ(G) = 0, and the

result follows.

Proposition 3.51. Every degree-sequence-forcing set G of bipartitioned graphs

contains an element whose underlying graph is of the form Kℓ,m + nK2 + pK1 for

ℓ, m, n, p ≥ 0.

Proof. For any bipartitioned graph H(V1, V2), let ρ(H(V1, V2)) denote the mini-

mum number of edges that can be added to H(V1, V2) so that the resulting un-

derlying graph has the form Kℓ,m + nK2 + pK1 and is still bipartite with partite

sets V1, V2. Note that if F (W1, W2) is induced in H(V1, V2), then ρ(F (W1, W2)) ≤

ρ(H(V1, V2)). Now let G be a set of bipartitioned graphs, and let G(V1, V2) be an

element of G that minimizes ρ. Suppose that ρ(G(V1, V2)) > 0. Choose u ∈ V1

and v ∈ V2 such that uv belongs to a set of ρ(G(V1, V2)) edges, each having

an endpoint in each of V1 and V2, that can be added to G to make it of the

form Kℓ,m + nK2 + pK1. For vertices x, y /∈ V1 ∪ V2, define V ′
1 = V1 ∪ {x} and

V ′
2 = V2 ∪ {y}, and define H(V ′

1 , V
′
2) to be the bipartitioned graph whose edge

set consists of all edges of G, plus the edges uy and xv. Let H ′(V ′
1 , V

′
2) be the

bipartitioned graph resulting from the bipartitioned 2-switch {xv, uy} ⇉ {uv, xy}

82



on H(V ′
1 , V

′
2). It is easily seen that ρ(H ′(V ′

1 , V
′
2)) < ρ(G(V1, V2)). Since ρ is order-

preserving and G(V1, V2) is minimal with respect to ρ, we find that H ′(V ′
1 , V

′
2) is

G-free. Since H(V ′
1 , V

′
2) has the same degree sequence as H ′(V ′

1 , V
′
2) and clearly

induces an element of G, we conclude that G is not degree-sequence-forcing. Thus

if G is a degree-sequence-forcing set of bipartitioned graphs, then some element

G(V1, V2) in G satisfies ρ(G(V1, V2)) = 0, and the result follows.

Corollary 3.52. Every degree-sequence-forcing set of bipartitioned graphs con-

tains two elements G(V1, V2) and H(W1, W2) such that G(V1, V2) has a forest

for its underlying graph, and H(W1, W2) has an underlying graph of the form

Kℓ,m + nK2 + pK1 for some ℓ, m, n, p ≥ 0.

Proof. This follows from Remark 3.47 and Propositions 3.50 and 3.51.

Our first application of these results will be to characterize the degree-sequence-

forcing singleton sets {G(V1, V2)} of bipartitioned graphs.

Lemma 3.53. Bipartitioned graphs G(V1, V2) and G(V1, V2) both have the property

that their underlying graphs are forests and graphs of the form Kℓ,m + nK2 + pK1

where ℓ, m, n, p ≥ 0 if and only if either min{|V1|, |V2|} ≤ 1 or G ∼= K1,m + Kn,

where 1 ≤ n ≤ 2.

Proof. If min{|V1|, |V2|} ≤ 1 or G ∼= K1,m + Kn, where 1 ≤ n ≤ 2, then G(V1, V2)

and its bicomplement satisfy the properties required. We now prove the converse.

Let G(V1, V2) and its bicomplement both have underlying graphs that have the

forms specified. The graph G then has the form Kℓ,m + nK2 + pK1 for some

ℓ, m, n, p ≥ 0 with ℓ ≤ m. Since G is also a forest, we have 0 ≤ ℓ ≤ 1.

Suppose first that ℓ = n = 0. In this case, G ∼= (m + p)K1. Since the

bicomplement of G(V1, V2) is also a forest, either V1 or V2 contains at most one

vertex.
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If ℓ = 0 and n ≥ 1, then G ∼= nK2 +(m+ p)K1. Fix an edge uv in G. For any

x ∈ V1 − {u, v} and y ∈ V2 − {u, v}, we have x adjacent to y; otherwise, u, v, x, y

belong to a component in G(V1, V2) that is not complete bipartite, a contradiction

to our assumption. Thus either min{|V1|, |V2|} = 1, or m = p = 0 and n = 2 and

hence G ∼= 2K2
∼= K1,1 + K2.

Suppose instead that ℓ = 1. We may assume that m ≥ 2 since otherwise we

could write G as n′K2 + p′K1, which was handled in the previous case. Suppose

that min{|V1|, |V2|} ≥ 2. We may also assume that the component K1,m has its

center in V2 (otherwise, the bicomplement of G(V1, V2) contains a star component

on 3 or more vertices whose center belongs to V2, and we may proceed in the

proof with the bicomplement). There is some vertex u in V2 not belonging to

the copy of K1,m. If there is another vertex v in V2 not belonging to the copy

of K1,m, then G(V1, V2) is not a forest; hence |V2| = 2. Since G has the form

K1,m + nK2 + pK1, the vertex u has at most one neighbor in V1. Any vertex in

V1 not contained in the copy of K1,m is adjacent to u; otherwise, u belongs to a

component in G(V1, V2) that is not complete bipartite. Thus G is isomorphic to

either K1,m + K2 or K1,m + K1.

Proposition 3.54. The set G = {G(V1, V2)} is degree-sequence-forcing if and

only if G(V1, V2) satisfies one of the following:

(i) min{|V1|, |V2|} ≤ 1;

(ii) G ∼= 2K2;

(iii) G ∼= K1,2 + Kn, where 1 ≤ n ≤ 2.

Proof. Let G be a degree-sequence-forcing set. By Propositions 3.50 and 3.51,

Lemma 3.53, and Corollary 3.52, we have that either min{|V1|, |V2|} ≤ 1 or G ∼=

K1,m+Kn for 1 ≤ n ≤ 2. Suppose first that G ∼= K1,m+K2, with min{|V1|, |V2|} ≥
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2. We have m > 0; suppose that m ≥ 3. Assume first that the center y of the copy

of K1,m in G belongs to V2. Let V ′
2 = V2 ∪ {x}, where x /∈ V1 ∪ V2, and form the

bipartitioned graph H1(V1, V
′
2) whose edge set consists of E(G) plus an edge from

x to a vertex in V1 in each component of G. Let a be the neighbor of x belonging

to the component of order 2 in G, and let b be a leaf of the copy of K1,m to

which x is not adjacent in H1. Form H2(V1, V
′
2) by performing on H1(V1, V

′
2) the

bipartitioned 2-switch {xa, yb} ⇉ {xb, ya}. Since G is degree-sequence-forcing,

H2(V1, V
′
2) induces G(V1, V2), and to obtain a copy of G(V1, V2) we must delete x,

the only vertex of degree 2 in V ′
2 . However, deleting x yields an isolated vertex in

H2(V1, V
′
2), a contradiction, since G has no isolated vertex. A similar contradiction

arises if we assume that y belongs to V1; we simply interchange the roles of V1

and V2. Thus m ≤ 2; hence G ∼= 2K2 or G ∼= K1,2 + K2.

Suppose next that G ∼= K1,m + K1 with min{|V1|, |V2|} ≥ 2. We have m > 0,

and the isolated vertex z in G belongs to the same partite set as the center y

of the copy of K1,m. Suppose that m ≥ 3, and assume that y and z belong to

V2. Let V ′
2 = V2 ∪ {x} and V ′

1 = V1 ∪ {a}, where x, a /∈ V1 ∪ V2, and let b, c be

two neighbors of y in V1. Form the bipartitioned graph H1(V
′
1 , V

′
2) whose edge set

consists of E(G) plus the edges xc, xa, and za. Form H2(V
′
1 , V

′
2) by performing

on H1(V
′
1 , V

′
2) the bipartitioned 2-switch {yb, xa} ⇉ {ya, xb}. For H2(V

′
1 , V

′
2) to

induce G(V1, V2), the vertex y must be the center of the copy of K1,m, as it is

the only vertex with degree greater than 2; the neighbors of y must be the leaves

of the copy of K1,m. However, both x and z are adjacent to a neighbor of y,

so G(V1, V2) is not induced in H2(V
′
1 , V

′
2), a contradiction. A similar argument

produces a contradiction when y and z belong to V1. We conclude again that

m ≤ 2, which produces the desired result.

We have shown that the degree-sequence-forcing set G must satisfy the condi-

tions stated in the proposition. To see that these conditions are sufficient for G
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to be degree-sequence-forcing, we apply Theorem 3.49 to the C5-inducing graphs

F from Corollary 3.35, Proposition 3.37, and Corollary 3.44. Every bipartitioned

graph of the form described in the proposition appears as the associated biparti-

tioned graph of some such F .

In preparation for later results we now present a proposition on the structure

of split graphs.

Proposition 3.55. Suppose that S is a split graph with more than one associated

bipartitioned graph, up to isomorphism. It follows that S has exactly two associ-

ated bipartitioned graphs G(V1, V2) and H(W1, W2), up to isomorphism, with |V2|

equal to the clique number ω(S) and |W2| = ω(S) − 1. The graph G(V1, V2) has

some isolated vertex u ∈ V2, and the graph H(W1, W2) has some vertex v ∈ W1

that dominates W2 such that G(V1, V2) − u ∼= H(W1, W2) − v.

Proof. Let S be a split graph. Suppose that G(V1, V2) and H(W1, W2) are two bi-

partitioned graphs associated with S, where |V2| = |W2|. We show that G(V1, V2) ∼=

H(W1, W2). We may assume without loss of generality that V1 ∪V2 = W1 ∪W2 =

V (S). Since the independent set W1 can intersect the clique V2 in at most one

vertex, we have |V2 ∩ W2| ≥ |V2| − 1. If |V2 ∩ W2| = |V2|, then V2 = W2 and in

fact G(V1, V2) = H(W1, W2). Suppose instead that |V2 ∩ W2| = |V2| − 1. We may

write V2 − W2 = {v} and W2 − V2 = {w}, and we have v ∈ W1 and w ∈ V1.

Since V1 and W1 are independent sets, we find that NS(v) ⊆ W2 and NS(w) ⊆ V2.

Since NS(v) and NS(w) both contain V2 ∩ W2, the map φ : V (S) → V (S) that

transposes v and w and fixes all other vertices in S is an automorphism such that

φ(V2) = W2. This same map translates to an isomorphism between bipartitioned

graphs. Thus we have shown that if |V2| = |W2|, then G(V1, V2) ∼= H(W1, W2).

Suppose now that G(V1, V2) and H(W1, W2) are two nonisomorphic biparti-

tioned graphs associated with S. We have |V2| 6= |W2|; assume without loss of
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generality that |V2| > |W2|. Since at most one vertex of a maximum clique can

belong to W1, we have |W2| ≥ ω(S) − 1; hence |V2| = ω(S) and |W2| = ω(S)− 1.

Let Q be a clique of size ω(S) in S. Since W1 is an independent set in S, at most

one vertex of Q can belong to W1. It follows that we may write Q = W2 ∪ {q},

where q is some vertex in W1. Note that q is adjacent to every vertex in W2

in S and hence in H . Since W1 is an independent set, q has no other neigh-

bors in S. Thus (W1 − {q}, W2 ∪ {q}) is a splitting partition of V (S). Let

H∗(W1 − {q}, W2 ∪ {q}) be the bipartitioned graph associated with this parti-

tion. The vertex q is an isolated vertex in W2 ∪ {q}, and |W2 ∪ {q}| = ω(S). As

we showed above, H∗(W1 − {q}, W2 ∪ {q}) is isomorphic to G(V1, V2). Let q′ be

the image of q under an isomorphism from H∗(W1 − {q}, W2 ∪ {q}) to G(V1, V2).

The vertex q′ is an isolated vertex in V2 whose deletion from G(V1, V2) yields a

bipartitioned graph isomorphic to H(W1, W2) − q, as desired.

As a consequence of Proposition 3.55, if a split graph has two associated

bipartitioned graphs, we may express them in the form G(V1, V2 + u) and H(V1 +

u, V2) for some graphs G, H on the same vertex set.

Proposition 3.56. Let F = {G(V1, V2+u), H(V1+u, V2)} be the set of associated

bipartitioned graphs of a split graph S. Let G′ = G−u and H ′ = H −u. If F is a

degree-sequence-forcing pair of bipartitioned graphs, then G′(V1, V2) ∼= H ′(V1, V2)

is one of the following:

(i) nK1, with n ≥ 0 and |V2| ≤ 1,

(ii) K2,

(iii) K1,2,

(iv) K2 + K1, with |V2| = 1,
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Figure 3.10: Bipartitioned graphs from Subcase 1b of Proposition 3.56.

(v) K1,2 + K1, with |V2| = 1,

(vi) the bicomplement of one of the graphs above.

Proof. By Proposition 3.55 we may assume that F has the form F = {G(V1, V2 +

u), H(V1 +u, V2)} and that G′(V1, V2) ∼= H ′(V1, V2) as bipartitioned graphs, where

G′ = G − u and H ′ = H − u. By Propositions 3.50 and 3.51, Corollary 3.52, and

the fact that the classes of forests, bicomplements of forests, graphs of the form

Kℓ,m + nK2 + pK1, and bicomplements of these last graphs are hereditary under

induced subgraphs, we find that G′(V1, V2) (and hence H ′(V1, V2)) must be one of

the graphs mentioned in Lemma 3.53.

Case 1: min{|V1|, |V2|} ≤ 1.

Subcase 1a: min{|V1|, |V2|} = 0. In this case all vertices belong to one part of

the bipartition in both G′ and H ′, and F is clearly degree-sequence-forcing.

Subcase 1b: min{|V1|, |V2|} = 1. We assume that |V2| = 1, since if |V1| = 1

then the bicomplement of G′(V1, V2) falls under this case. With |V2| = 1, we find

that G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m + nK1, where m, n ≥ 0.

Claim 1: If m ≥ 3 and n ≥ 0, then {G(V1, V2 + u), H(V1 + u, V2)} is not degree-

sequence-forcing.
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Proof. Graphs G and H are as shown in Figure 3.10. Let c denote the center of

the nontrivial star component in G, let v1, . . . , vm denote the leaves adjacent to c,

and let a1, . . . , an denote the isolated vertices in V1. Form H1(V1 + y, V2 + u + x)

by adding to G vertices x and y and edges xv1, xy, uy, as shown in Figure 3.10.

Let H2(V1 + y, V2 + u + x) be the bipartitioned graph resulting from the 2-switch

{cvm, xy} ⇉ {xvm, cy}. Suppose that a copy of G(V1, V2 + u) is induced in

H2(V1 + y, V2 + u + x). We may obtain this copy by deleting a vertex in each

of V1 + y and V2 + u + x. Because of degree and distance conditions, we cannot

delete c and hence must delete both u and x, a contradiction. We also see that H

is not induced in H2. Thus {G(V1, V2 + u), H(V1 + u, V2)} is not degree-sequence-

forcing.

Claim 2: If m ∈ {1, 2} and n ≥ 2, then {G(V1, V2 + u), H(V1 + u, V2)} is not

degree-sequence-forcing.

Proof. Graphs G and H are as shown in Figure 3.11 (we have illustrated the

case m = 2). Again let c denote the center of the nontrivial star component in

G, let v1, . . . , vm denote the leaves adjacent to c, and let a1, . . . , an denote the

isolated vertices in V1. As shown in Figure 3.11, form H1(V1 + y, V2 + u + x) by

adding to G vertices x and y and edges xy, xa1, xa2, . . . , xan, uy; also add edge

xv2 if m = 2. Form the bipartitioned graph H2(V1 + y, V2 + u + x) by performing

on H1 the 2-switch {cv1, xy} ⇉ {cy, xv1}. Suppose that H2(V1 + y, V2 + u + x)

induces a copy of G(V1, V2 + u). We may obtain this copy (call it G′′(W1, W2))

by deleting one vertex in H2 from each of V1 + y and V2 + u + x. In order to

leave n isolated vertices in W1 ∩ (V1 + y), we must delete x; in order to leave an

isolated vertex in W2 ∩ (V2 + u + x), we must delete y. However, no vertex in W2

would then have degree at least m in G′′, a contradiction. Furthermore, if a copy

of H(V1 +u, V2) were induced in H2(V1 + y, V2 +u+x), then deleting two vertices

of V2 + u + x would yield this subgraph, and for no pair is this the case. Thus
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Figure 3.11: Bipartitioned graphs from Subcase 1b of Proposition 3.56.
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Figure 3.12: Bipartitioned graphs from Subcase 2a of Proposition 3.56.

{G(V1, V2 + u), H(V1 + u, V2)} is not degree-sequence-forcing.

Case 2: G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m + Kn for 1 ≤ n ≤ 2. If m + n ≤ 2

then Case 1 applies, so we assume that m + n ≥ 3.

Subcase 2a: G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m + K1, where m ≥ 2. Graphs G

and H are as shown in Figure 3.12. Form H1(V1 +y, V2+u) by adding to G vertex

y and edges yb, yu. Let H2(V1 + y, V2 + u) be the bipartitioned graph resulting

from the 2-switch {cvm, by} ⇉ {cy, bvm}. If a copy of G(V1, V2 + u) is induced

in H2(V1 + y, V2 + u), it may be obtained by deleting a vertex in V1 + y. Since

c is the only vertex in V2 + u having degree m, none of its neighbors may be the

deleted vertex; however, deleting vm leaves a subgraph not isomorphic to G. No

vertex of H2 has degree m + 1, so H(V1 + u, V2) is also not an induced subgraph

of H2(V1 + y, V2 + u). Thus {G(V1, V2 + u), H(V1 + u, V2)} is not degree-sequence-

forcing.

Subcase 2b: G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m + K2, where m ≥ 1. Graphs

G and H must be as shown in Figure 3.13. Form H1(V1 + u + y, V2 + x) by

adding to H the vertices x, y and edges xv for v ∈ {v1, v2, . . . , vm, y}. Obtain
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Figure 3.13: Bipartitioned graphs from Subcase 2b of Proposition 3.56.

H2(V1 + u + y, V2 + x) by performing on H1 the 2-switch {xy, bu} ⇉ {xu, by}.

If a copy of H(V1 + u, V2) is induced in H2(V1 + u + y, V2 + x), we may isolate

it by deleting from H2 one vertex in each of V1 + u + y, V2 + x. However, H is

connected, and there is no suitable pair of vertices in H2 that may be deleted to

leave a connected subgraph. Thus H2(V1 + u + y, V2 + x) is {H(V1 + u, V2)}-free.

Graph H2(V1 +u+y, V2+x) is also {G(V1, V2+u)}-free, since no two vertices may

be deleted to leave in V1 + u + y exactly two vertices of degree 1 with different

neighbors. Thus {G(V1, V2 +u), H(V1+u, V2)} is not degree-sequence-forcing.

We conclude with the characterization of all non-minimal degree-sequence-

forcing triples of graphs.

Proof of Theorem 3.27. By the results of Section 3.4.1, it suffices to show that

every degree-sequence-forcing triple F is listed in the statement of the theorem.

As indicated by items 1 and 2(i) in the theorem, we may assume that F has the

form {2K2, C4, F}, where F is {2K2, C4}-free. It follows from Theorem 3.49 that

to characterize F such that F is degree-sequence-forcing, it suffices to characterize

the degree-sequence-forcing sets G of bipartitioned graphs such that G consists of

the bipartitioned graph or graphs associated with a single pseudo-split graph F .
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Propositions 3.54 and 3.56 provide requirements on the structure of F , which

we now examine in detail. Suppose first that F has a unique pseudo-splitting

partition. This implies that F induces C5, or F s has a unique partition into

a clique and independent set. In either case G consists of a single graph, and

from Proposition 3.54 it follows that F is one of the graphs listed in items 2(iii),

2(iv), 2(vi), and 2(viii) in the statement of the theorem. Suppose instead that

F has more than one pseudo-splitting partition. This happens only if F is split,

and it implies that G consists of two graphs as described in Proposition 3.56. It

follows that F is one of the graphs listed in items 2(ii), 2(v), 2(vii), or 2(ix) in

the theorem.

3.5 Minimal degree-sequence-forcing sets

In this section we present results on minimal degree-sequence-forcing sets, those

degree-sequence-forcing sets that contain no proper subset that is also degree-

sequence-forcing. As we observed in Section 3.4.2, arguments that use order-

preserving parameters to impose conditions on a degree-sequence-forcing set are

neutralized when the set considered contains a degree-sequence-forcing proper

subset; this approach yields no information on the other elements of the larger

degree-sequence-forcing set. In contrast, as we now show, every element of a min-

imal degree-sequence-forcing set is subject to bounds on the numbers of vertices

and edges that it may contain.

Proposition 3.57. Let F = {F1, . . . , Fk}, where the graphs in F are indexed in

order of the sizes of their vertex sets, from smallest to largest. If F is a minimal

degree-sequence-forcing set, then |V (Fi+1)|−|V (Fi)| ≤ 2 for all i ∈ {1, . . . , k−1}.

Proof. Let F be a minimal degree-sequence-forcing set with elements indexed as

described. For any i ∈ {1, . . . , k − 1}, let G be the set {F1, . . . , Fi}. Since F
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is minimal, G is not degree-sequence-forcing. By Proposition 3.11 there exists

a G-breaking pair (H, H ′) such that |V (H ′)| ≤ |V (Fi)| + 2. Since F is degree-

sequence-forcing, H ′ induces an element Fj of F ; note that j > i. Thus

|V (Fi+1)| − |V (Fi)| ≤ |V (Fj)| − |V (Fi)| ≤ |V (H ′)| − |V (Fi)| ≤ 2,

as claimed.

Proposition 3.58. Let F = {F ′
1, . . . , F

′
k}, where the graphs in F are indexed in

order of the sizes of their edge sets, from smallest to largest. If F is a minimal

degree-sequence-forcing set, then

|E(F ′
i+1)| ≤ max

j≤i

{

|E(F ′
j)| + 2|V (F ′

j)|
}

for all i ∈ {1, . . . , k − 1}.

Proof. Let F be a minimal degree-sequence-forcing set with elements indexed as

described. For any i ∈ {1, . . . , k − 1}, let G′ be the set {F ′
1, . . . , F

′
i}. Since F

is minimal, G′ is not degree-sequence-forcing. As we see in the proof of Proposi-

tion 3.11 there exists a G′-breaking pair (H, H ′) such that every vertex of H not

belonging to a chosen induced copy of an element F ′
j of G′ belongs to one of the

edges involved in the 2-switch that changes H into H ′; there are at most two such

vertices. These vertices are incident with all edges of H that do not belong to the

chosen copy of F ′
j ; thus H contains at most |E(F ′

j)| + 2|V (F ′
j)| edges (note that

any vertex not in the copy of F ′
j is involved in the 2-switch changing H into H ′

and hence is not a dominating vertex in H). Note that H ′ has the same number

of edges as H , and since F is degree-sequence-forcing, H ′ induces an element F ′
ℓ
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of F where ℓ > i. It follows that

|E(F ′
i+1)| ≤ |E(F ′

ℓ)| ≤ |E(H ′)| ≤ |E(F ′
j)| + 2|V (F ′

j)|,

which completes the proof.

These restrictions imply that degree-sequence-forcing sets with few elements

contain graphs that do not differ greatly in the numbers of vertices and edges

they contain. It also implies that small degree-sequence-forcing sets contain small

graphs, as the next result shows.

Theorem 3.59. If F is a minimal degree-sequence-forcing set of k graphs, then

the number of vertices in any element of F is at most

4k −
3

2
+

√

12k2 − 10k +
1

4
;

hence there are finitely many minimal degree-sequence-forcing k-sets.

Proof. Let F be a minimal degree-sequence-forcing set of k graphs, and denote

the graphs of F both by {F1, . . . , Fk} and by {F ′
1, . . . , F

′
k}, where the graphs are

indexed in order of the sizes of their vertex sets and edge sets, respectively, from

smallest to largest. Let n1 = |V (F1)|. As a consequence of Proposition 3.57, we

observe that

|V (Fk)| ≤ n1 + 2(k − 1).

Using this result and Proposition 3.58, we find that

|E(F ′
j)| ≤ max

i<j
{|E(F ′

i )| + 2|V (F ′
i )|}

≤ |E(F ′
j−1)| + 2|V (Fk)|

≤ |E(F ′
j−1)| + 2n1 + 4(k − 1).
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Summing the values of |E(F ′
j)| − |E(F ′

j−1)| as j ranges from 2 to k yields

|E(F ′
k)| − |E(F ′

1)| ≤ 2(k − 1)n1 + 4(k − 1)2. (3.1)

We thus arrive at an upper bound on the difference in the number of edges between

any two graphs in the set F . To find a lower bound on this difference, we recall

from Proposition 3.12 and Corollary 3.14 that some element Fs of F is a forest of

stars, while some element Fc of F is the complement of a forest of stars. Recall

that an n-vertex graph has n(n − 1)/2 edges, and a forest on n vertices has at

most n− 1 edges, so the number of edges in the complement of a forest is at least

n(n − 1)/2 − (n − 1), which simplifies to (n − 2)(n − 1)/2. We have

|E(F ′
k)| − |E(F ′

1)| ≥ |E(Fc)| − |E(Fs)|

≥
(n1 − 2)(n1 − 1)

2
− (|V (Fk)| − 1)

≥
(n1 − 2)(n1 − 1)

2
− (n1 + 2(k − 1) − 1) .

Combining this inequality and the one in (3.1), we find that

(n1 − 2)(n1 − 1)

2
− (n1 + 2(k − 1) − 1) ≤ 2(k − 1)n1 + 4(k − 1)2,

which reduces to

n1 ≤ 2k +
1

2
+

√

12k2 − 10k +
1

4
.

Since |V (Fk)| ≤ n1 + 2(k − 1), the result follows.

The bound on |V (Fk)| in Theorem 3.59 does not appear to be tight. The

theorem implies that the largest graphs that minimal degree-sequence-forcing sin-

gletons and pairs can contain have at most four and at most nine vertices, respec-

tively, when in fact the largest graph in any degree-sequence-forcing singleton has
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two vertices, and the largest graph in any minimal degree-sequence-forcing pair

has five vertices.

As an illustration of Theorem 3.59, observe that Theorems 3.17 and 3.18 show

that there are finitely many minimal degree-sequence-forcing singletons and pairs.

Theorems 3.18 and 3.27 demonstrate that the condition of minimality is necessary,

as there are infinitely many non-minimal degree-sequence-forcing pairs and triples.

Although for any natural number k there are finitely many minimal degree-

sequence-forcing k-sets, we observe that there are infinitely many minimal degree-

sequence-forcing sets. To see this, note that for any natural number n the set F of

all graphs on n vertices is a degree-sequence-forcing set: given a graphic sequence

π, a realization of π induces an element of F if and only if π has at least n

entries. The set F may not be a minimal degree-sequence-forcing set, but by

definition it must contain such a subset. Thus for any natural number n there

exists a minimal degree-sequence-forcing set F containing only n-vertex graphs.

Theorem 3.59 implies a lower bound on the size of such a set. Thus minimal

degree-sequence-forcing sets can be arbitrarily large. We conclude this section

with a question: Does there exist an infinite minimal degree-sequence-forcing set?

3.6 Edit-leveling sets

Our motivation for defining degree-sequence-forcing sets came, in part, from the

characterizations that split graphs have in terms of their degree sequences and

forbidden subgraphs. The split graphs also provide the motivation for the final

topic of this chapter on degree-sequence-forcing sets. In the paper [20] in which

they gave a degree sequence characterization of split graphs, Hammer and Simeone

defined the splittance σ(G) of a graph G to be the minimum number of edges that

can be added to or deleted from G to produce a split graph. The split graphs are
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precisely those graphs G for which σ(G) = 0. Hammer and Simeone showed that

the splittance of a graph G may be computed directly from the degree sequence

of G.

Theorem 3.60 ( [20]). Let G be a graph with degree sequence (d1, d2, . . . , dn) such

that d1 ≥ d2 ≥ · · · ≥ dn. Let m = max{k : 1 ≤ k ≤ n and dk ≥ k − 1}. The

splittance of G is given by

σ(G) =
1

2

(

m(m − 1) −
m
∑

i=1

di +

n
∑

i=m+1

di

)

.

Thus, if F = {2K2, C4, C5}, then F has the property that for every graph G

the degree sequence not only determines whether G is F -free, but also provides

an exact measure of how far G is from being F -free. We seek to generalize this

property.

For a graph G and a graph class P, the edit distance from G to P, denoted

dist(G,P), is the minimum number of edges that can be added or deleted to G

to produce an element of P (if this is possible); in other words,

dist(G,P) = min{|E(G)△E(G′)| : G′ ∈ P and |V (G)| = |V (G′)|},

where A△B denotes the symmetric difference of sets A and B. If P contains no

graphs on |V (G)| vertices, then we define dist(G,P) = ∞.

Define a graph class P to be edit-level if for every graph sequence π and two

realizations G and G′ of π we have dist(G,P) = dist(G′,P). Thus the degree

sequence of a graph uniquely determines the edit distance from the graph to an

edit-level graph class. Define a set F of graphs to be edit-leveling if the class of

F -free graphs is edit-level.

With these definitions, the set {2K2, C4, C5} is edit-leveling. Furthermore, for
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each natural number n the set F of all graphs on n vertices is edit-leveling, since

the edit distance from a graph G to the F -free graphs is either 0 or ∞, depending

on how many vertices G contains, and this can be determined immediately from

the degree sequence of G. Thus there are infinitely many edit-leveling sets. We

present another example of one.

Proposition 3.61. For any natural number k, let

Fk = {F : k ≤ |E(F )| ≤ k + δ(F ) − 1}.

The set Fk is edit-leveling.

Proof. If G has at most k − 1 edges, then G is Fk-free. We show that the inverse

of this statement is true. If G has k or more edges, then we iteratively delete

vertices from G that leave the remaining graph with at least k edges until this is

no longer possible. Let G′ be the resulting induced subgraph. Since deleting any

vertex from G′ yields a graph with fewer than k edges, |E(G′)| − δ(G′) < k; thus

G′ has at most k + δ(G′) − 1 edges. We conclude that G induces a subgraph G′

isomorphic to an element of Fk.

By the Degree Sum Formula, we may determine from the degree sequence

of a graph how many edges it has; thus if G is a graph with degree sequence

(d1, . . . , dn), then the edit distance from G to the class of Fk-free graphs is given

by 1
2

∑

di − (k − 1). Since the edit distance depends only on the degree sequence

of G and not on G itself, Fk is edit-leveling.

If F is any set of graphs and P is the class of F -free graphs, then for every

nonnegative integer k define P(k) to be the set of graphs at edit-distance at most

k from P. Observe that P(k) is a hereditary family of graphs, so it can be char-

acterized in terms of a set of minimal forbidden subgraphs; let F (k) denote this

set.
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As an example, if F = {K2} and P is the set of F -free (that is, edgeless)

graphs, then P(k) is set of graphs on at most k edges, so F (k) = Fk+1, another

edit-leveling set. In general, we have the following.

Proposition 3.62. If F is an edit-leveling set of graphs, then for every nonneg-

ative integer k the set F (k) is edit-leveling.

Proof. Let P denote the set of F -free graphs. The statement follows from ob-

serving that dist(G,P(k)) = max{dist(G,P) − k, 0} for every graph G, and the

quantity on the right-hand side of the equation is uniquely determined by the

degree sequence of G, since F is assumed to be edit-leveling.

For an edit-level family P of graphs, knowing the degree sequence of a graph

G is enough to determine whether dist(G,P) = 0, that is, whether G ∈ P. Hence

edit-level families are degree-determined, and edit-leveling sets are necessarily

degree-sequence-forcing. Not every degree-sequence-forcing set is edit-leveling,

however. For example, let F be the set {2K2, C4}, and let P be the set of

{2K2, C4}-free graphs. The graphs C5 + K2 and C4 + P3 are both realizations

of the degree sequence (2, 2, 2, 2, 2, 1, 1). We have dist(C5 + K2,P) = 1, since

C5 + K2 induces 2K2 but C5 + 2K1 is {2K2, C4}-free and may be obtained by

deleting an edge from C5 +K2. We have dist(C4 +P3,P) > 1, since no single edge

may be added or deleted from C4 + P3 to produce a {2K2, C4}-free graph. Hence

{2K2, C4} is not edit-leveling.

As our final result of this section, we give a characterization of edit-leveling

sets in terms of degree-sequence-forcing sets.

Proposition 3.63. A set F is edit-leveling if and only if the set F (k) is degree-

sequence-forcing for every nonnegative integer k.

Proof. Let P be the set of F -free graphs. Suppose first that F is edit-level. Let

G and G′ be any two graphs having the same degree sequence. Fix a nonnegative

99



integer k, and suppose that G is F (k)-free. We have

dist(G′, P (k)) = max{dist(G′,P) − k, 0}

= max{dist(G,P) − k, 0}

= dist(G, P (k))

= 0,

so G′ is also F (k)-free. It follows that F (k) is degree-sequence-forcing.

Suppose now that F is not edit-level. This implies the existence of two graphs

G and G′ having the same degree sequence for which dist(G,P) < dist(G′,P).

Let k = dist(G,P). Note that G belongs to P(k) and is hence F (k)-free; note also

that dist(G′,P(k)) = dist(G′,P) − k > 0, so G′ is not F (k)-free. Thus (G′, G) is

an F (k)-breaking pair, and F (k) is not degree-sequence-forcing.
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CHAPTER 4

The A4-structure of a graph

4.1 Introduction

Given a simple graph G, the P4-structure of G is the 4-uniform hypergraph with

the same vertex set as G whose edges are the vertex subsets inducing 4-vertex

paths. Chvátal [13] defined the P4-structure in 1984 in studying the complexity of

recognizing perfect graphs. Since its introduction, the P4-structure has also been

used in refinements of the modular decomposition of a graph (see [29] and [46])

and in defining or characterizing several classes of graphs (see [11] for a hierarchy

of several graph classes defined in terms of their P4-structure).

If F is any set of unlabeled graphs, we may similarly define the F -structure

of a graph G as the hypergraph on the vertex set of G having as edges the vertex

subsets on which G induces elements of F . Such structures have been considered

for the cases where F is {P3}, {C5, paw, P3 + K1}, {2K2, C4, C5}, {P3, K2 + K1},

and {K3, 3K1} (see [24–28]). A realization of an F -structure H is a graph whose

F -structure is H , up to hypergraph isomorphism.

In this chapter we consider the A4-structure of a graph G, which we define

as the 4-uniform hypergraph on the vertex set of G having as edges those vertex

subsets that induce an element of {2K2, C4, P4}. The name for this hypergraph

comes from the fact that 2K2, C4, and P4 are the 4-vertex graphs that have an

alternating 4-cycle, as shown in Chapter 3. Consider an alternating 4-cycle on

vertex set {a, b, c, d} in the graph G, such that ab, cd ∈ E(G) and bc, ad /∈ E(G).
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Figure 4.1: The configuration C.

We will denote such a configuration by [a, b : c, d].

Our motivation for studying this hypergraph comes from several sources. First,

alternating 4-cycles are a fundamental notion in the study of degree sequences.

Recall our definition of a 2-switch from Section 3.2 and in particular the result of

Fulkerson, Hoffman, and McAndrew [17] cited in Theorem 3.8. Since alternating

4-cycles play an important role in the study of realizations of a degree sequence,

we might expect to find relationships between the A4-structure and the degree

sequence of a graph.

As a second motivation, we note that alternating 4-cycles have been used in

defining or characterizing several interesting classes of graphs. For example, the

threshold graphs are precisely those graphs containing no alternating 4-cycle [14],

matroidal graphs are those graphs for which the pairs of edges inducing alternating

4-cycles are exactly the circuits of a matroid on the edge set of the graph [42], and

matrogenic graphs are the graphs for which the vertex sets of induced copies of

2K2, C4, and P4 form the circuits of a matroid on the vertex set of the graph [15].

Matroidal and matrogenic graphs also have characterizations in terms of other

forbidden structures. Matroidal graphs were characterized in [42] as those graphs

that do not contain an induced 5-cycle or the configuration C shown in Figure 4.1.

Matrogenic graphs were characterized in [15] as those graphs that forbid C (but

allow induced 5-cycles).

Characterizations exist in terms of the A4-structure for threshold, matroidal,

and matrogenic graphs. Examining the A4-structures of all graphs on five vertices,
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we see that C5 is the only one having more than three edges in its A4-structure,

and that those in which C occurs are the ones whose A4-structures have exactly

two or three edges.

Observation 4.1. A graph is a threshold graph if and only if its A4-structure

contains no edges. A graph is matroidal if and only if no five of its vertices induce

more than one edge in the A4-structure. A graph is matrogenic if and only if no

five of its vertices induce exactly two or three edges in the A4-structure.

A similar notion arises in the study of P4-structures. The (q, t)-graphs were

defined in [2] as those graphs on which no q vertices induce more than t copies of

P4; the P4-free graphs are the (4, 0)-graphs, and the P4-sparse graphs [23] are the

(5, 1)-graphs. If we were to define the [q, t]-graphs as those in which no q vertices

induced more than t edges in the A4-structure, then the threshold graphs would

be the [4, 0]-graphs, and the matroidal graphs would be the [5, 1]-graphs.

As a final motivation for our study of A4-structure, we note that alternating

4-cycles and degree sequences are closely related to the canonical decomposition

of a graph, defined by Tyshkevich in [51] (see also [49]). As we will show in this

chapter, a graph is indecomposable with respect to the canonical decomposition

if and only if its A4-structure is connected.

In the remainder of this thesis, we provide some initial results on the A4-

structure of a graph. In Section 4.2 we examine the A4-structures of cycles. We

show that long cycles and their complements are the unique realizations of their

respective A4-structures; as a consequence, perfect graphs are recognizable from

their A4-structures. We also show that the A4-structure in some sense determines

the structure of matchings in a triangle-free graph. In Section 4.3 we show how

the A4-structure of a graph is related to its canonical decomposition, as defined by

Tyshkevich [49, 51]. In Section 4.4 we show that A4-structure, canonical decom-
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position, and vertex subsets known as strict modules satisfy analogues of several

results on P4-structure, modular decomposition, and graph modules. Finally, in

Section 4.5 we discuss the problem of obtaining all realizations of a given A4-

structure, which leads us to characterize the A4-split graphs, those graphs having

the same A4-structure as some split graph.

We conclude this section with some definitions. Given two graphs G and G′

with A4-structures H and H ′, respectively, we define a bijection ϕ : V (G) → V (G′)

to be an A4-isomorphism from G to G′ if it is a hypergraph isomorphism from H

to H ′. If an A4-isomorphism exists from G to G′, then we say that G and G′ have

the same A4-structure, or that they are A4-isomorphic.

4.2 A4-structure and cycles

In this section we show that long cycles and their complements are characterized

by their A4-structures. As a consequence, perfect graphs may also be recognized

from their A4-structures. We conclude the section by showing how A4-structure

and matchings are related in triangle-free graphs.

In [13], Chvátal showed that odd cycles of length at least 5 and their comple-

ments are the only realizations of their respective P4-structures, and he conjec-

tured that two graphs with the same P4-structure are either both perfect or both

imperfect. Reed [47] proved this conjecture, now known as the Semistrong Perfect

Graph Theorem since it implies the Perfect Graph Theorem of Lovász [34] and is

in turn implied by the Strong Perfect Graph Theorem. This last result, proved

much later by Chudnovsky et al. [12] states that a graph G is perfect if and only

if no odd cycle of length at least 5 or its complement is an induced subgraph of

G.

Motivated by the results of Chvátal and Reed, we show that for n = 5 and
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n ≥ 7, the cycle Cn and its complement are the only realizations of their A4-

structure. By the Strong Perfect Graph Theorem, it then follows that graphs

with the same A4-structures are either both perfect or both imperfect.

For any cycle Cn, the edges of the A4-structure of Cn are the 4-sets consisting

of two disjoint consecutive pairs of vertices in the cycle. We begin with some

fundamental observations.

Observation 4.2. If four vertices induce an alternating 4-cycle in a graph, then

they also induce an alternating 4-cycle in the complement of the graph. Hence a

graph and its complement have the same A4-structure.

Lemma 4.3. In any graph, four vertices comprise an edge in the A4-structure

of the graph if and only if none of the vertices dominates or is isolated from the

other three. Four vertices also comprise an edge in the A4-structure if and only if

no three of them form a clique or independent set in the graph.

Proof. Recall that 2K2, P4, and C4 are the only 4-vertex graphs in which an

alternating 4-cycle occurs. Of the eleven graphs on four vertices, these three

graphs are the only graphs having neither a dominating nor an isolated vertex,

and they are also the only graphs having no 3-clique or independent set of size

3.

In the discussion that follows, suppose that Cn is A4-isomorphic to a graph

G. Denoting Cn by [u1, . . . , un], we name the vertices of G as v1, . . . , vn so that

ui is mapped to vi by a given A4-isomorphism. Note that Cn is A4-isomorphic to

both G and G under this map. We will show that if v1v2 is an edge in G, then

the A4-isomorphism from Cn to G is in fact a graph isomorphism.

Let all addition and subtraction in the indices of vertices be done modulo n.

Lemma 4.4. No triangle or independent set of size 3 in G can contain both vi

and vi+1 for some i.
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Proof. For any i, j ∈ {1, . . . , n}, from the description of the A4-structure of Cn

there is some edge of the A4-structure containing vi, vi+1, and vj ; by Lemma 4.3,

these vertices induce no triangle or 3K1 in G.

In what follows, define an alternating path 〈u1, . . . , uj〉 to be a configuration on

distinct vertices {u1, . . . , uj} such that pairs of consecutive vertices are alternately

adjacent and non-adjacent. (Note that the usage of 〈u1, . . . , uj〉 to denote an

alternating path is a departure from the notation of previous chapters, where it

was used to describe paths. We will use this new notation throughout the rest of

the thesis.) We denote the vertex set of an alternating path A by V (A).

Lemma 4.5. If n ≥ 7, then the pairs vi, vi+1 are either all adjacent or all non-

adjacent in G.

Proof. Suppose that the pairs vi, vi+1 are not all adjacent and not all non-adjacent.

There exists an index j such that exactly one of vj−1vj and vjvj+1 is an edge of

G. Since exactly one of these pairs is an edge of G, and G and G have the

same A4-structure, we may assume that vj−1vj+1 /∈ E(G), and by symmetry we

may assume that vj−1vj ∈ E(G) and vjvj+1 /∈ E(G). We illustrate the vertices

vj−3, . . . , vj+2 of G in Figure 4.2. Since n ≥ 7, these vertices are all distinct, and

vj−3 and vj+2 are not consecutively-indexed vertices.

Let H be the A4-structure of G. Since E(H) contains both {vj−2, vj−1, vj , vj+1}

and {vj−1, vj , vj+1, vj+2}, Lemma 4.3 implies that vj−2vj+1, vj+1vj+2 ∈ E(G). By

Lemma 4.4, we have vj−2vj+2 /∈ E(G). Since {vj−3, vj−2, vj+1, vj+2} ∈ E(H), we

have vj−3vj+1 /∈ E(G) by Lemma 4.3. By Lemma 4.4 we have vj−3vj ∈ E(G).

Since 〈vj , vj+1, vj−2, vj+2〉 is an alternating path in G but {vj−2, vj , vj+1, vj+2} /∈

E(H), we have vjvj+2 /∈ E(G). However, we then have {vj−3, vj, vj+2, vj+1} ∈

E(H), a contradiction.
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Figure 4.2: The subgraph of G from Lemma 4.5.

Assume now that n ≥ 7. Since G and its complement have the same A4-

structure, we will also assume that v1v2 ∈ E(G).

Lemma 4.6. The graph G has no edges of the form vivj where |j − i| 6= 1.

Consequently, G is isomorphic to Cn.

Proof. By Lemma 4.5, [v1, . . . , vn] is a spanning cycle of G. By Lemma 4.4,

vivi+2 /∈ E(G) for all i. Suppose that G has a chord vjvk for vertices vj and vk

at a distance of at least 3 on the cycle. By Lemma 4.4, vjvk−1, vjvk+1 /∈ E(G).

It follows that [vj , vk : vk−2, vk−1] and [vj , vk : vk+2, vk+1] are alternating 4-cycles

in G. Since n ≥ 7, either vk−2 or vk+2 is not consecutive to vj , which contradicts

the description of the A4-structure of Cn. Thus G has no chords and hence is

isomorphic to Cn.

Recall that C5 is the only graph with five vertices whose A4-structure has more

than three edges. The results above imply the following.

Theorem 4.7. If n = 5 or n ≥ 7, then Cn and its complement are the only graphs

having their A4-structure.

Corollary 4.8. If two graphs have the same A4-structure, then they are either

both perfect or both imperfect.
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Proof. Suppose that G and G′ have the same A4-structure, and let ϕ : V (G) →

V (G′) be an A4-isomorphism. Let n be an odd integer such that n ≥ 5. By

Theorem 4.7, G induces Cn or Cn on a vertex subset S if and only if G′ induces

Cn or Cn on ϕ(S). The Strong Perfect Graph Theorem then implies the result.

The conclusion of Theorem 4.7 does not hold when n = 6; the graph C6 shares

its A4-structure with G′ and G′, where G′ is any graph obtained by deleting up to

three pairwise non-incident edges from K3,3. Note also that Theorem 4.7 applies

to long cycles of both parities, whereas Chvátal’s analogous result for P4-structure

deals only with odd cycles.

We conclude our discussion of cycles and A4-structure by presenting a result

on matchings in triangle-free graphs. A graph G has a perfect matching if it has

a matching of size 1
2
|V (G)|.

Lemma 4.9. If G is a 6-vertex triangle-free graph whose vertex set can be parti-

tioned into three pairs of vertices such that the union of any two of these pairs is

an edge in the A4-structure of G, then G has a perfect matching.

Proof. Let H be the A4-structure of G, and let A, B, and C denote the vertex

pairs described, so that V (G) = A∪B∪C and A∪B, A∪C, B∪C ∈ E(H). If the

vertices in each of A, B, and C induce an edge in G, then G has a perfect matching.

If not, then we may assume without loss of generality that a1a2 /∈ E(G), where

A = {a1, a2}. Since A ∪ B ∈ E(H), vertices a1 and a2 belong to non-incident

edges a1b1, a2b2 in G[A ∪ B]. Similarly, there exist non-incident edges a1c1, a2c2

in G[A∪C]. Since G is triangle-free, b1c1, b2c2 /∈ E(G). However, B ∪C ∈ E(H),

so B ∪ C induces two non-incident edges. It follows that G has a spanning cycle

and hence a perfect matching.

For graphs G and G′, we say that a bijection ϕ : V (G) → V (G′) preserves

matchings if a set S is the vertex set of a matching of size at least 2 in G if and
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only if ϕ(S) is the vertex set of a matching in G′.

Theorem 4.10. Let G and G′ be triangle-free graphs, and let ϕ : V (G) → V (G′)

be a bijection. The map ϕ is an A4-isomorphism if and only if it preserves match-

ings.

Proof. Suppose that ϕ preserves matchings. In a triangle-free graph G, the four

vertices spanned by a matching of size 2 contain no 3-clique or independent set

of size 3, so by Lemma 4.3 these vertices form an edge in the A4-structure of G.

Conversely, the three 4-vertex graphs 2K2, P4, and C4 that have an alternating

4-cycle all have perfect matchings. Thus a vertex subset S in G induces an

alternating 4-cycle if and only if ϕ(S) induces an alternating 4-cycle in G′; hence

ϕ is an A4-isomorphism.

Suppose instead that ϕ : V (G) → V (G′) is an A4-isomorphism, and let S be

the vertex set of some matching in G of size at least 2. We may partition the

edges of the matching on S into pairs and triples of edges; let S1, S2, . . . , Sj be

the vertex sets of these edge sets. By the previous paragraph and Lemma 4.9,

the sets ϕ(Si) are the vertex sets of disjoint matchings in G′. The union of these

matchings is a matching on ϕ(S), so ϕ preserves matchings.

4.3 Canonical decomposition and A4-structure

In this section we describe the relationship that the A4-structure of a graph has

with its canonical decomposition, as defined by Tyshkevich [49, 51].

A splitted graph is a triple (G, A, B) such that G is a split graph whose vertices

partition into an independent set A and a clique B. Two splitted graphs (G, A, B)

and (G′, A′, B′) are isomorphic if there exists a graph isomorphism ϕ : V (G) →

V (G′) such that ϕ(A) = A′. Given a splitted graph (G, A, B) and a graph H

on disjoint vertex sets, we define the composition of (G, A, B) and H to be the
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A

B

V (H)

Figure 4.3: The compositions (G, A, B) ◦ H and (G, A, B) ◦ (G, A, B) ◦ H .

graph (G, A, B) ◦H formed by adding to G+H all edges uv such that u ∈ B and

v ∈ V (H). For example, when H = K3 and G = P4, with A the set of endpoints

and B the set of midpoints of G, the composition (G, A, B) ◦ K3 is the graph on

the left in Figure 4.3 (here and in the future, heavy lines joining sets of vertices

imply that all edges joining vertices from one set to the other are present). On the

right we show (G, A, B)◦((G, A, B)◦K3). The operation ◦ is associative, so in the

future we will omit grouping parentheses when performing multiple compositions.

Observe that in a composition (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦G0, each vertex in

Bi is adjacent to every vertex in
⋃

j<i V (Gj), each vertex in Ai is adjacent to none

of the vertices in
⋃

j<i V (Gj), and only the rightmost graph in the composition

can fail to be a split graph.

A graph is decomposable if it can be written as a composition (G, A, B) ◦ H ,

where G and H both have at least one vertex. Otherwise, it is indecomposable.

Tyshkevich showed the following:

Theorem 4.11 (Tyshkevich [49]). (i) Every graph G can be expressed as a

composition

G = (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦ G0 (∗)

of indecomposable components. Here the (Gi, Ai, Bi) are indecomposable

splitted graphs and G0 is an indecomposable graph. (If G is indecomposable,

then k = 0; that is, there are no splitted components in (∗)).
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(ii) Graphs G and G′ expressed as (∗) and

G′ = (G′
ℓ, A

′
ℓ, B

′
ℓ) ◦ · · · ◦ (G′

1, A
′
1, B

′
1) ◦ G′

0

are isomorphic if and only if the following conditions hold:

(1) G0
∼= G′

0,

(2) k = ℓ,

(3) (Gi, Ai, Bi) ∼= (G′
i, A

′
i, B

′
i) for 1 ≤ i ≤ k.

Theorem 4.11 implies that there is only one such composition of a graph G into

indecomposable components, up to isomorphism of the components. Therefore,

we call it the canonical decomposition.

The following result provides a characterization of indecomposable graphs in

terms of their A4-structures.

Theorem 4.12. A graph is indecomposable with respect to canonical decomposi-

tion if and only if its A4-structure is connected. Hence, the vertex sets of the Gi

in the canonical decomposition

G = (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦ G0

are exactly the vertex sets of the components in the A4-structure of G.

The proof is lengthy, so we first prove several preliminary results. Given an

alternating 4-cycle C = [a, b : c, d], let V (C) denote the set {a, b, c, d}.

Observation 4.13. If a graph G has more than one vertex and has canonical

decomposition (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦G0, then G has an isolated vertex

or dominating vertex if and only if k ≥ 1 and Gk has exactly one vertex. The

vertex is dominating in G if Ak = ∅ and is isolated in G if Bk = ∅.
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Observation 4.14. If G = (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦ G0, then G =

(Gk, Bk, Ak) ◦ · · · ◦ (G1, B1, A1) ◦ G0.

Proposition 4.15. If G is an indecomposable graph with more than one vertex,

then every vertex of G belongs to an alternating 4-cycle in G.

Proof. We prove the contrapositive. Suppose that some vertex v in G belongs

to no alternating 4-cycle. If v is a dominating or isolated vertex, then G is

decomposable by Observation 4.13, so we may assume that v is neither. Let

V1 = N(v) and V2 = V (G) \ N [v].

If V1 is not a clique, then there exist u, w ∈ V1 such that uw /∈ E(G). For

a ∈ V2, since neither [v, w : u, a] nor [v, u : w, a] is an alternating 4-cycle (both

contain v), a is adjacent to neither u nor w. Hence if A = {x ∈ V1 : NG(x)∩V2 6=

∅}, then each vertex in A dominates V1, which makes A a clique. Furthermore,

V2 is independent, since if a and b were adjacent vertices in V2, then [v, u : a, b]

would be an alternating 4-cycle containing v. Letting B = V1 \ A, we obtain

a decomposition G = (G′, V2, A) ◦ (K1, ∅, {v}) ◦ G[B], where G′ = G[V2 ∪ A].

Since G has more than one vertex, at least one of V2, A, B is nonempty, so G is

decomposable. Hence we may assume that V1 is a clique in G.

We note that the complement of an alternating 4-cycle is an alternating 4-

cycle, so v belongs to no alternating 4-cycle in G. Since NG(v) = V2 and

V (G) \ NG[v] = V1, the preceding argument shows that either G (and hence

G, by Observation 4.14) is decomposable or V2 is a clique in G and hence an

independent set in G. We assume the latter.

With V1 a clique and V2 an independent set, we have G = (G′, V2, V1)◦G[{v}],

where G′ = G[V2 ∪ V1]. Hence in all cases G is decomposable.

Given alternating 4-cycles A = [a, b : c, d] and B = [e, f : g, h] in G, we define

the relation A → B to mean that G[V (A)] ∼= P4, the midpoints of G[V (A)]
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dominate V (B), and the endpoints of G[V (A)] are nonadjacent to each vertex in

V (B).

Lemma 4.16. If A and B are disjoint alternating 4-cycles in a graph G such

that no alternating 4-cycle in G intersects both A and B, then either A → B or

B → A.

Proof. Let A = [a, b : c, d] and B = [e, f : g, h]. Since {a, b, e, f} is not the

vertex set of an alternating 4-cycle in G, by Lemma 4.3 one of these four vertices

dominates the other three; suppose that a is this vertex. Since neither [a, f : g, h]

nor [a, e : h, g] is an alternating 4-cycle in G, we have ag, ah ∈ E(G). Thus a

dominates V (B). It follows that d has no neighbor v in V (B), for otherwise

[a, u : v, d] would be an alternating 4-cycle, where u is the non-neighbor of v in B.

Making the same argument starting with {c, d, g, h} now implies that c dominates

B and b has no neighbor in V (B).

Finally, note that bd /∈ E(G), since otherwise [b, d : e, f ] would be an alternat-

ing 4-cycle, and ac ∈ E(G), since otherwise [a, e : h, c] would be an alternating

4-cycle. We conclude that G[V (A)] ∼= P4, with midpoints a, c dominating B and

endpoints b, d adjacent to no vertex of B. Thus A → B.

The same conclusion holds by a symmetric argument if b dominates {a, e, f}.

If instead e or f dominates the other three vertices of {a, b, e, f}, then we arrive

similarly at B → A.

This last result shows, incidentally, that if two vertices each belong to an

induced 2K2 or C4, then they have distance at most 3 in the A4-structure of the

graph, since some edge of the A4-structure must intersect these edges containing

them. We also have the following result.

Corollary 4.17. Let G be a graph, and let H be the A4-structure of G. If A

and B are alternating 4-cycles in G such that V (A) and V (B) are contained in
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distinct components of H, then A → B or B → A.

Lemma 4.18. If A, B, and C are alternating 4-cycles in a graph G such that

A → B and V (A) ∩ V (C) is nonempty, then B 9 C.

Proof. If B → C, then the midpoints of the path induced by B dominate C, and

the endpoints have no neighbors in C. Hence no vertex in C can dominate or be

independent of B. This requires V (A) ∩ V (C) = ∅.

Proposition 4.19. Let G be a graph, and let H be the A4-structure of G. Let Q1

and Q2 be distinct components of H, and let A and B be alternating 4-cycles in

G such that V (A) ⊆ V (Q1) and V (B) ⊆ V (Q2). If A → B, then C → D for any

alternating 4-cycles C and D in G such that V (C) ⊆ V (Q1) and V (D) ⊆ V (Q2).

Proof. Since V (B) and V (D) both lie in V (Q2), there are alternating 4-cycles

R0, R1, . . . , Rk such that B = R0, D = Rk, and V (Ri−1)∩V (Ri) 6= ∅ for 1 ≤ i ≤ k.

By Corollary 4.17, A → Ri or Ri → A for each i. If R1 → A, then Lemma 4.18

implies A 9 B, which is false. Hence A → R1. Iterating the argument yields

A → Ri for all i ∈ {1, . . . , k}. In particular, A → D.

Similarly, since V (A) and V (C) lie in V (Q1), there are alternating 4-cycles

S0, . . . , Sℓ with A = S0, C = Sℓ, and V (Si−1) ∩ V (Si) 6= ∅ for i = 1, . . . , ℓ.

Corollary 4.17 implies that Si → D or D → Si for each i. Since A → D, Lemma

4.18 yields S1 → D. Again iterating the argument, we conclude that C → D.

In the following, let H be the A4-structure of a graph G. We define a relation

on the components of H . Given components Q1, Q2 of H , we write Q1 → Q2 if

Q1 contains an alternating 4-cycle A and Q2 contains an alternating 4-cycle B

such that A → B. By Proposition 4.19, Q1 → Q2 implies Q2 9 Q1.

Assume now that G is indecomposable in the canonical decomposition. Propo-

sition 4.15 implies that each component of H contains at least one alternating
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4-cycle, so for any two components Q1, Q2 of H , either Q1 → Q2 or Q2 → Q1.

We may now define a tournament T whose vertices are the components of H , with

edges oriented according to the relation → on the components of H .

Lemma 4.20. The tournament T is acyclic.

Proof. If T contains a cycle, then T contains a cyclic triangle with vertices

Q1, Q2, Q3 in order. By Proposition 4.19, it follows that there are alternating

4-cycles A1, A2, A3 with V (Ai) ⊆ V (Qi) for i ∈ {1, 2, 3}, such that A1 → A2,

A2 → A3, and A3 → A1. In particular, G[V (A1)] ∼= G[V (A2)] ∼= G[V (A3)] ∼= P4.

Let a denote a vertex of degree 2 in G[V (A1)], let b denote a vertex of degree

1 in G[V (A2)], let c denote a vertex of degree 2 in G[V (A3)], and let d denote

the vertex of degree 1 in G[V (A3)] adjacent to c. The adjacencies implied by the

→ relation on the Ai imply that [a, b : c, d] is an alternating 4-cycle in G. This

contradicts that Q1, Q2, and Q3 are distinct components in H .

Proposition 4.21. Any two vertices that lie on an alternating 4-cycle in G belong

to the same component in the canonical decomposition of G.

Proof. Let (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦ G0 be the canonical decomposition

of G. Suppose that some alternating 4-cycle [u, v : w, x] has vertices in more

than one Gi. Let j be the largest index such that Gj contains some vertex of

the alternating 4-cycle, and assume without loss of generality that u belongs to

V (Gj). Suppose first that u ∈ Bj. Since x is not adjacent to u, x cannot belong to

Bj or to V (Gi) for i < j; thus x ∈ Aj . Since w is adjacent to x, vertex w cannot

belong to Aj or to V (Gi) for i < j; hence w ∈ Bj . Repeating the argument for

x now yields v ∈ Aj. Thus {u, v, w, x} ∈ V (Gj). A similar result follows if we

instead start with u ∈ Aj .

We are now ready to prove our main result:
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Proof of Theorem 4.12. Let G be an arbitrary graph, and let H be its A4-

structure.

Suppose first that H is connected. For u, v ∈ V (G), there exist edges E0, . . . , Ek

of H such that u ∈ E0 and v ∈ Ek, and Ei ∩ Ei−1 6= ∅ for 1 ≤ i ≤ k. Applying

Proposition 4.21 to vertices in the sets E0, . . . , Ek in turn, we find that u and v

belong to the same component in the canonical decomposition of G. Thus G is

indecomposable.

Suppose instead that H is disconnected. If G is not decomposable, then Propo-

sition 4.15 implies that each component of H contains at least one alternating

4-cycle, so the relation → is defined on the components of H , and the acyclic

tournament T described above exists. Let Q be the component of H that is the

source vertex of T . Every alternating 4-cycle in G[V (Q)] corresponds to an in-

duced P4 in G whose midpoints dominate every vertex not in V (Q), and whose

endpoints only have neighbors in V (Q). These adjacency requirements ensure

that no vertex in V (Q) is both a midpoint of some induced P4 and an endpoint of

another. Thus we may partition V (Q) into sets A and B, where A and B denote

the set of all endpoints and the set of all midpoints of induced P4’s in G[V (Q)],

respectively. Let [a, b : c, d] be an alternating 4-cycle of G whose vertices belong

to V (G) \ V (Q). Further let s and t be any vertices in A, and let u and v be

any vertices of B. If s and t are adjacent, then [s, t : a, b] is an alternating 4-cycle

in G, which contradicts the assumption that a, b /∈ V (Q). Similarly, if u, v are

non-adjacent in G, then G contains the alternating 4-cycle [b, u : v, c], again a

contradiction. We conclude that B is a clique and A is an independent set in

G. Hence G = (G′, A, B) ◦ G[V (G) \ V (Q)], where G′ = G[A ∪ B], and G is

decomposable.

Having shown that G is indecomposable if and only if H is connected, it follows

immediately that the components of H partition the set V (G) into exactly the
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same subsets that the components in the canonical decomposition do.

Theorem 4.12 provides a connection between the A4-structure of a graph and

its degree sequence. This is not surprising, since alternating 4-cycles play an

important role in realizations of degree sequences. Tyshkevich [49,51] provided a

characterization of indecomposable graphs in terms of their degree sequences and

showed how the canonical decomposition of a graph corresponds precisely to a

decomposition of the degree sequence of the graph. In particular, she showed the

following.

Proposition 4.22 (Tyshkevich [49,51]). For every graph G, the degree sequence

of G uniquely determines the number of indecomposable components present in

the canonical decomposition of G and how many vertices each indecomposable

component contains.

It follows immediately that graphs with the same degree sequence have A4-

structures with some features the same.

Corollary 4.23. If G and G′ are graphs with the same degree sequence, then G

and G′ have the same number and sizes of components in their A4-structures.

4.4 A4-structure and modules

Based on the results of the previous section, we show in this section how A4-

structures and the canonical decomposition have a relationship much like that

of P4-structures and other graph decompositions. We begin with some facts

about modules and the P4-structure of a graph. Our presentation follows that

of Hougardy [28].

A module in a graph G is a set S of vertices such that every vertex outside S

is either adjacent to all vertices of S or to no vertex of S. A module S is trivial if
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|S| = 1 or S = V (G), and a graph is prime if it has no nontrivial modules. The

modules in a graph are related to the vertex sets inducing P4 via the following

result.

Lemma 4.24 (Seinsche [48]). The following hold for every graph G.

(i) The vertex set of an induced P4 in G and a module in G can only intersect

in zero, one, or four vertices.

(ii) G is P4-free if and only if every induced subgraph with at least three vertices

contains a nontrivial module.

The modular decomposition of a graph recursively partitions its vertex set into

modules via the following result.

Theorem 4.25 (Gallai [18]). Let G be a graph with at least two vertices. Exactly

one of the following conditions holds.

(i) G is disconnected.

(ii) G is disconnected.

(iii) There exists a subset Y of V (G), where |Y | ≥ 4, and a unique partition

V1, . . . , Vk of V (G) such that Y induces a maximal prime subgraph in G and

every Vi is a module with |Vi ∩ Y | = 1.

Jamison and Olariu [29] provided a refinement of the modular decomposition

called the primeval decomposition, which makes use of the P4-structure of the

graph. A graph G is p-connected if for every partition of its vertex set into two

nonempty disjoint sets, there exists an edge in the P4-structure that intersects

both sets. A maximal p-connected induced subgraph of G is a p-component. A

p-connected graph G is separable if its vertex set can be partitioned into two

nonempty disjoint sets such that each P4 in G that is not completely contained
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within one of the sets has its endpoints in one set and its midpoints in the other

set. The primeval decomposition of a graph partitions its vertex set into modules

via applications of the following theorem.

Theorem 4.26 (Jamison–Olariu [29]). For a graph G, exactly one of the following

conditions holds.

(i) G is disconnected.

(ii) G is disconnected.

(iii) G is p-connected.

(iv) There is a unique proper separable p-component Q of G with a partition

Q1, Q2 of V (Q) such that every vertex not in V (Q) is adjacent to all vertices

in Q1 and not adjacent to any vertex in Q2.

We now define a type of module that will play for A4-structures much the

same role that ordinary modules do for P4-structures. Observe that a vertex

subset S in a graph G is a module if and only if there is no triple v1, v2, v3 in G

such that v1, v3 ∈ S, v2 /∈ S, v1v2 ∈ E(G), and v2v3 /∈ E(G). We generalize this

forbidden configuration: an alternating path 〈v1, . . . , vp〉 is S-terminal if p ≥ 3

and S ∩ {v1, . . . , vp} = {v1, vp}. We allow the possibility that the v1 = vp, but

otherwise the vertices are distinct. Define a strict module to be a vertex subset S of

V (G) such that G has no S-terminal alternating path. Strict modules are clearly

modules. We show next that the condition for strict modules can be simplified.

The length of an alternating path 〈v1, . . . , vp〉 is defined to be p − 1.

Proposition 4.27. A vertex subset S is a strict module of G if and only if G has

no S-terminal alternating paths of length 2 or 3.
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Proof. If S is a strict module, then by definition G contains no S-terminal al-

ternating paths of lengths 2 or 3. If S is not a strict module, then there is an

S-terminal alternating path in G; let 〈v1, . . . , vp〉 be a shortest one. If p ≥ 5,

then consider v3. Whether v3 is adjacent to v1 or not, the alternating nature

of the original allows a new path to be continued from v3 to v2 or v4. That is,

〈v1, v3, v2, v1〉 or 〈v1, v3, v4, . . . , vp〉 is a shorter S-terminal alternating path. Thus

p ≤ 4.

As with modules, let us call a strict module S in a graph G trivial if S =

V (G). Note, however, that single vertices in G need not comprise strict modules.

Proposition 4.29 below provides an analogue to Lemma 4.24. First, we recall that

the threshold graphs are those that have no alternating 4-cycles. The threshold

graphs have the following two characterizations.

Theorem 4.28 (Chvátal–Hammer [14]). The following are equivalent and char-

acterize the threshold graphs G.

(i) G is {2K2, C4, P4}-free.

(ii) G can be constructed by starting with a single vertex and iteratively adding

either an isolated vertex or a dominating vertex to the graph.

Proposition 4.29. The following hold for every graph G.

(i) Every alternating 4-cycle in G and strict module in G intersect in zero or

four vertices.

(ii) G contains no alternating 4-cycles if and only if every induced subgraph with

at least two vertices contains a nontrivial strict module.

Proof. (i) One easily checks that if a vertex subset S in G contains exactly one,

two, or three vertices of an alternating 4-cycle in G, then some subset of the
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vertices of the alternating 4-cycle comprise an S-terminal alternating path, so S

is not a strict module.

(ii) If every induced subgraph with more than one vertex has a strict module,

then G is {2K2, C4, P4}-free, since none of these graphs has a strict module. By

Theorem 4.28, G has no alternating 4-cycle. Conversely, if G has no alternating

4-cycles, then G is a threshold graph. Hence every induced subgraph H with at

least two vertices has a vertex u that is either dominating or isolated in H . Now

V (H) − u is a strict module in H .

We shall later prove an analogue of Theorem 4.26 related to the A4-structure of

a graph. First, we examine the structure of a graph in terms of its strict modules.

Proposition 4.30. Let G be a graph with strict module S. If A and B are the sets

of all vertices in V (G)−S that are adjacent to none of S or to all of S, respectively,

then A is an independent set and B is a clique in G. Hence G = (G1, A, B)◦G[S],

where G1 = G[A ∪ B].

Proof. If two vertices in A are non-adjacent, or if two vertices of B are adjacent,

then these vertices form the midpoints of a (possibly closed) S-terminal alternating

path of length 3, which cannot happen when S is a strict module.

In any composition (G, A, B) ◦ H , the vertex set of H is a strict module. We

thus conclude the following.

Corollary 4.31. A graph G is indecomposable with respect to canonical decom-

position if and only if it has no nontrivial strict module.

Corollary 4.31 shows that in the study of strict modules, the indecomposable

graphs play a role analogous to that of the prime graphs for (ordinary) modules.

We turn our attention now to presenting an analogue of Theorem 4.26 in terms

of A4-structures and the canonical decomposition. Define an A4-component of a
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Figure 4.4: Alternating 4-cycles in an A4-separable graph.

graph G to be an induced subgraph of G whose vertex set is the vertex set of some

component of the A4-structure of G. Theorem 4.12 shows that the A4-components

of G are precisely the components of the canonical decomposition of G.

Define a graph to be A4-separable if there exists a partition of its vertex set into

two subsets V and W such that every induced P4 has its endpoints in one of V, W

and its midpoints in the other, every induced 2K2 has one pair of nonadjacent

vertices in V and the other two vertices in W , and every induced C4 has two

adjacent vertices in V and the other two in W . In other words, a graph is A4-

separable if every 4-vertex induced subgraph having an alternating 4-cycle has

an alternating 4-cycle whose vertices alternate between V and W , as shown in

Figure 4.4.

Note that every split graph S is A4-separable; letting V and W partition V (S)

into an independent set and a clique, respectively, this claim follows immediately

from the following results.

Proposition 4.32 (Földes–Hammer [16]). A graph is split if and only if it is

{2K2, C4, C5}-free.

Observation 4.33. In any partition of the vertex set of a split graph S into a

clique Q and an independent set I, every induced path on four vertices has its

midpoints in Q and its endpoints in I.

We will say more about A4-separable graphs in the following section. We

conclude this section with the analogue for A4-structure of Theorem 4.26.
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Proposition 4.34. For any graph G having more than one vertex and having

canonical decomposition

G = (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦ G0,

exactly one of the following is true:

(i) G has an isolated vertex.

(ii) G has an isolated vertex.

(iii) G has a connected A4-structure.

(iv) k ≥ 1, and Gk is the unique A4-separable A4-component Q of G having a

partition of V (Q) into nonempty subsets Q1, Q2 such that every vertex not

in V (Q) is adjacent in G to no vertices in Q1 and to all vertices in Q2; here

Q1 = Ak and Q2 = Bk.

Proof. We have observed already that no two of (i), (ii), (iii) can simultaneously

hold. If (iv) holds, then since Gk has at least two vertices, it follows from Obser-

vation 4.13 and Theorem 4.12 that none of (i), (ii), or (iii) holds. Hence at most

one of these statements holds for G.

If none of (i), (ii), or (iii) holds, then k ≥ 1. By the definition of the canonical

decomposition, Gk induces a split graph with independent set Ak and clique Bk,

and it follows from Observation 4.13 that Ak and Bk are nonempty. Since split

graphs are A4-separable, we see that Gk is an A4-component of G having the

properties described in (iv). That Gk is the only such A4-component follows

immediately from the definition of canonical decomposition when Ak and Bk are

nonempty.
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4.5 A4-split graphs

In this section we characterize the A4-split graphs, those having the same A4-

structure as some split graph. As motivation, we show that this problem arises

in the problem of constructing all graphs having a given A4-structure.

Example 4.35. Graphs with the same A4-structures. As shown in Proposi-

tion 4.21, any alternating 4-cycle is contained within a single component of the

canonical decomposition. It follows that permuting the indecomposable compo-

nents in a canonical decomposition does not change the A4-structure of a graph.

By Theorem 4.12 and Proposition 4.21, each component of the A4-structure of

a graph is uniquely determined by the indecomposable component of the canoni-

cal decomposition on the same vertex set. If we replace an indecomposable com-

ponent of the canonical decomposition with another subgraph having the same

A4-structure, the resulting graph will have the same A4-structure as the original.

To illustrate these two A4-structure-preserving operations, let G2 be a graph

consisting of a single vertex u, let G1 consist of the single vertex v, and let

G0 = K2 + P3. Given the graph G with canonical decomposition (G2, ∅, {u}) ◦

(G1, {v}, ∅) ◦ G0, let H be the graph formed by transposing the first two of

the indecomposable components in the canonical decomposition; that is, H =

(G1, {v}, ∅)◦ (G2, ∅, {u})◦G0. Let G′
0 be the 5-vertex graph with degree sequence

(3, 2, 1, 1, 1); note that G0 and G′
0 have the same A4-structure. Let I be the

graph formed from G by replacing the indecomposable component G0 with G′
0;

this is, I = (G2, ∅, {u}) ◦ (G1, {v}, ∅) ◦ G′
0. Graphs G, H , and I are illustrated

in Figure 4.5. Though the graphs are pairwise nonisomorphic, all have the same

A4-structure.

For a graph G with canonical decomposition (Gk, Ak, Bk)◦· · ·◦(G1, A1, B1)◦G0,

we refer to the subgraph G0 of G as the core of G. Note that the indecomposable
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Figure 4.5: Different graphs with the same A4-structure.

components of G other than the core are all split graphs. In order to generate

other graphs having the same A4-structure as G, we may wish to permute the

indecomposable components of G under the canonical decomposition. However,

if the core G0 is not split, then we may not move the vertices of G0 to a different

position in the canonical decomposition unless we first replace G0 by a split sub-

graph G′
0 having the same A4-structure. In order to determine if this is possible,

we need a characterization of those graphs having the same A4-structure as a split

graph, i.e., the A4-split graphs.

We preface our characterization with a few definitions. An A4-structure H is

balanced if there is a partition of V (H) into two sets V1 and V2 such that every

edge e of H has two vertices in V1 and two vertices in V2; the sets V1 and V2 then

form a balancing partition of V (H). A graph is A4-balanced if its A4-structure is

balanced.

Given a balanced A4-structure with a fixed balancing partition V1, V2 and a

vertex v belonging to Vi, the v-restriction of H is the graph on V3−i where two

vertices are adjacent if and only if they are the two vertices in V3−i of some edge of

H containing v. A balanced A4-structure H has the bipartite restriction property

if there is a balancing partition of V (H) such that for every vertex v ∈ V (H) the

v-restriction of H is bipartite.

The k-pan is the graph obtained by attaching a pendant vertex to a vertex of

a k-cycle; the co-k-pan is its complement. The 4-pan and co-4-pan are illustrated
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(a) (b)

Figure 4.6: (a) The 4-pan; (b) the co-4-pan.

in Figure 4.6.

Finally, recall that a graph G is A4-separable if there is a partition of V (G)

into two sets V1 and V2 such that every 4-vertex induced subgraph having an

alternating 4-cycle has an alternating 4-cycle whose vertices alternate between V1

and V2. The partition V1, V2 is an A4-separating partition of V (G).

Theorem 4.36. For a graph G with core G0 and A4-structure H, the following

statements are equivalent.

(a) G is A4-split.

(b) H is balanced and has the bipartite restriction property.

(c) G and G are both {C5, P5, K2 +K3, co-4-pan, K2 +P4, K2 +C4, 2K2 ∨ 2K1}-

free.

(d) G is split, or G0 or G0 is a disjoint union of stars.

(e) G is A4-separable.

Proof. We first show that (a) implies (b). Let G be an A4-split graph, let H be its

A4-structure, and let G′ be a split graph whose A4-structure also is H . If V1, V2 is

a partition of V (G′) into a clique and an independent set, then Proposition 4.32

and Observation 4.33 imply that V1, V2 is a balancing partition of V (G); thus H is

balanced. Furthermore, in an arbitrary copy of P4 in G′ with vertices a1, a2 ∈ V1
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and b1, b2 ∈ V2, each ai has exactly one neighbor in {b1, b2}, and each bi has exactly

one neighbor in {a1, a2}. Hence if v is a vertex of G′, and B is the v-restriction

of H , then for any edge xy in B, v is adjacent in G′ to exactly one of x and y. It

follows that giving the neighbors and nonneighbors of v in V (B) opposite colors

yields a proper 2-coloring of B. Thus B is bipartite. We conclude that H has the

bipartite restriction property.

The property of being A4-balanced is preserved under graph complementation

and taking induced subgraphs, as is the property of having an A4-structure with

the bipartite restriction property. To show that (b) implies (c), it thus suffices to

show that each of the graphs listed in (c) is either not A4-balanced or does not

have an A4-structure with the bipartite restriction property. One verifies easily

that C5 is not A4-balanced. The graphs P5, K2 + K3, and the co-4-pan each have

the same A4-structure H∗. In H∗, the unique balancing partition has two vertices

in one set and three vertices in the other, and the v-restriction of H∗ for a vertex

v in the set of size two is isomorphic to K3, so H∗ does not have the bipartite

restriction property. The A4-structures of K2 + P4, K2 + C4, and 2K2 ∨ 2K1 each

have a unique balancing partition and a vertex v in each set of the partition such

that the v-restriction of the A4-structure is isomorphic to K3.

We next show that (c) implies (d). Suppose that neither G nor G contains

any of the graphs listed in (c) as an induced subgraph, and further suppose that

G is not split. It follows that the indecomposable core G0 of G is not split.

Since G0 is C5-free, Proposition 4.32 implies that G0 induces 2K2 or C4. Suppose

first that G0 induces 2K2 on vertices a, b, c, d, with edges ab and cd. Since G is

{K2 + K3, P5, P}-free, every other vertex in G0 is adjacent to 0, 1, or 4 vertices

in {a, b, c, d}. Let X denote the set of vertices adjacent to all four vertices in

{a, b, c, d}, and let Y be the set of vertices adjacent to none of a, b, c, and d.

Let A, B, C, and D denote the sets of vertices from V (G0) − {a, b, c, d} whose
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Figure 4.7: The graph G from Theorem 4.36.

neighborhoods intersect {a, b, c, d} in {a}, {b}, {c}, and {d}, respectively. These

vertices and sets are illustrated in Figure 4.7.

Since G0 is (2K2∨2K1)-free, X must be a clique. Suppose that X is nonempty,

and let x be an arbitrary vertex in X. Since G0 is co-4-pan-free, A, B, C, and

D must all be empty. Let Y ′ be the set of vertices in Y having a neighbor in Y ,

and let Y ′′ = Y − Y ′. Note that Y ′′ is an independent set. Any two adjacent

vertices y1, y2 ∈ Y ′ are both adjacent to x; otherwise, G0 would induce K2 + K3

or the co-4-pan on {y1, y2, x, a, b}. Thus G contains all edges uv such that u ∈ X

and v ∈ Y ′, and we may write G0 = (G0[X ∪ Y ′′], Y ′′, X) ◦ G0[{a, b, c, d} ∪ Y ′], a

contradiction, since G0 is indecomposable.

Hence X = ∅. Since G0 is (K2 + P4)-free, at least one of A and B must be

empty, as must one of C and D. By symmetry we may assume that B = D = ∅.

Since G0 is {K2 + K3, P5}-free, A and C must be independent sets, and G has no

edge uv such that u ∈ A and v ∈ C. Since G0 is (K2 +P4)-free, no vertex of Y has

a neighbor in either A or C. Thus G0[A∪{a, b}] and G0[C∪{c, d}] are components

of G0 that are stars. Since G0 is {K2 +K3, K2 +P4, K2 +C4}-free, G0[Y ] must be

{K3, P4, C4}-free. Note that the {K3, P4, C4}-free graphs are necessarily forests

with diameter at most 2 and hence are disjoint unions of stars.

Thus if G0 induces 2K2, then G0 is a disjoint union of stars. If instead G0

induces C4, then G0 induces 2K2, and by the argument above G0 is a disjoint

union of stars.

We now show that (d) implies (e). As we have observed, the clique and in
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dependent set of a split graph form an A4-separating partition. Since G is split if

G0 is split, we may assume that G0 or G0 is a disjoint union of stars G′. Let A′ be

a maximum independent set in G′, and let B′ = V (G′)−A′. Any 4-vertex induced

subgraph of G′ having an alternating 4-cycle is isomorphic to 2K2 and has a pair

of nonadjacent vertices in each of A′ and B′; thus A′, B′ is A4-separating. If G

has canonical decomposition (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦ G0, then it follows

from Proposition 4.21 that the sets Ak ∪ · · ·∪A1 ∪A′ and Bk ∪ · · · ∪B1 ∪B′ form

an A4-separating partition of V (G). The graph G is thus A4-separable.

Finally, we show that (e) implies (a). Suppose that G is A4-separable, and let

V1 and V2 form an A4-separating partition of V (G). Form G′ by deleting all edges

of G having both endpoints in V1 and adding every edge uv such that u, v ∈ V2

(and uv was not already an edge in G). The graph G′ is clearly a split graph, and

we claim that its A4-structure H ′ is the same as that of G. Indeed, each induced

2K2, C4, or P4 in G becomes an induced P4 in G′, so E(H) ⊆ E(H ′). Conversely,

consider an edge of H ′ arising from an alternating 4-cycle [a, b : c, d] in G′, where

we may assume that a ∈ V1. By Proposition 4.32 and Observation 4.33, this

alternating 4-cycle occurs in an induced P4 in G′ having its endpoints in V1 and

its midpoints in V2; thus a, c ∈ V1 and b, d ∈ V2. Undoing the edge additions and

deletions that created G′ from G cannot destroy the alternating 4-cycle [a, b : c, d],

so [a, b : c, d] was an alternating 4-cycle in G. Thus E(H ′) = E(H), and we have

shown that G′ has the same A4-structure as the split graph G.
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In Problèmes combinatoires et théorie des graphes, volume 260 of Colloques
Internationaux du Centre National de la Recherche Scientifique [International
Colloquia of the CNRS], pages 139–140. Éditions du Centre National de la
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