(c) 2009 Michael David Barrus

# ON INDUCED SUBGRAPHS, DEGREE SEQUENCES, AND GRAPH STRUCTURE 

BY<br>MICHAEL DAVID BARRUS

B.S., Brigham Young University, 2002
M.S., Brigham Young University, 2004
M.S., University of Illinois at Urbana-Champaign, 2008

## DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:
Professor Alexandr V. Kostochka, Chair
Professor Douglas B. West, Director of Research
Professor Zoltán Füredi
Assistant Professor József Balogh

## ABSTRACT

A major part of graph theory is the study of structural properties of graphs. In this thesis we focus on three topics in structural graph theory that each deal with the set of induced subgraphs of a graph and the degrees of its vertices.

For example, the Graph Reconstruction Conjecture states that any graph on at least three vertices is uniquely determined by the multiset of its unlabeled subgraphs obtained by deleting a single vertex from the graph. This multiset is called the deck of the graph, and the induced subgraphs it contains are the cards. The degree-associated reconstruction number of a graph is the minimum number of cards that suffice to determine the graph when each card is accompanied by the degree of the vertex that was deleted to form it. We obtain results on the degreeassociated reconstruction number for graphs in general and for various special classes of graphs, including regular graphs, vertex-transitive graphs, trees, and caterpillars.

Several interesting classes of graphs are characterized by specifying a (possibly infinite) list of forbidden subgraphs, that is, graphs that are not allowed to appear as induced subgraphs of graphs in the given class. A number of graph classes have forbidden subgraph characterizations and also have characterizations that rely solely on the degree sequence; examples of such graph classes include the classes of complete graphs and split graphs. We consider the problem of determining which sets $\mathcal{F}$ of forbidden subgraphs are degree-sequence-forcing, that is, the set of $\mathcal{F}$-free graphs has a characterization requiring no more information about a
graph than its degree sequence.
Finally, we define the $A_{4}$-structure $H$ of a graph $G$ to be the 4 -uniform hypergraph on the vertex set of $G$ where four vertices comprise an edge in $H$ if and only if they form the vertex set of an alternating 4-cycle in $G$. Our definition is a variation of the notion of the $P_{4}$-structure, a hypergraph which has been shown to have important ties to the various decompositions of a graph. We show that $A_{4}$-structure has many properties analogous to those of $P_{4}$-structure, including connections to a special type of graph decomposition called the canonical decomposition. We also give several equivalent characterizations of the class of $A_{4}$-split graphs, those having the same $A_{4}$-structure as some split graph.

To my wife Michelle.

## Acknowledgments

This thesis was made possible through the support of several people. I would like to thank Professors József Balogh, Zoltán Füredi, Alexandr V. Kostochka, and Douglas B. West for serving as my thesis committee and for giving me encouragement as I have begun my research career. I am especially grateful to Professor West for the many hours he has spent helping me as my teacher and advisor. I have gained from him an appreciation for the vast landscape of graph theory. He has also shown me how important good mathematical writing is and how ideas and results can be mulled over, rethought, and reworked to produce an outcome that is elegant and beautiful. I have benefitted from this tutelage several times, and this reworking has made this thesis much better than it began.

I wish also to thank Professor Stephen G. Hartke of the University of NebraskaLincoln and Mohit Kumbhat for the hours (and years) we have spent discussing degree-sequence-forcing sets. I have appreciated Mohit's companionship as we have progressed through our graduate program, and Stephen has shared invaluable experience and advice, especially as I have neared the end of that program.

Thanks also go to Professor Wayne W. Barrett of Brigham Young University for introducing me to graph theory and for getting me started on organized mathematical research. Much of this thesis owes its existence to questions and germs of ideas I was first exposed to as Professor Barrett's student.

I would like to thank my parents Michael and Sandy Barrus for their support through my years of schooling. They have always encouraged me to take advantage
of opportunities to learn, and without their support I could never have started or continued my education.

Finally, my deepest thanks go to my wife Michelle and our daughters Katy and Abigail. My wife has stood beside me through several trying times in these past years, and I could not have finished graduate school or this thesis without her patience, encouragement, good sense, and love. Thanks, Michelle, for your and the girls' smiles. They have meant everything to me.

## TABLE OF CONTENTS

CHAPTER 1 Introduction ..... 1
1.1 Degree-associated reconstruction numbers ..... 2
1.2 Degree-sequence-forcing sets ..... 4
1.3 The $A_{4}$-structure of a graph ..... 6
1.4 Definitions and notation ..... 8
CHAPTER 2 Degree-associated reconstruction numbers ..... 13
2.1 Introduction ..... 13
2.2 Small reconstruction numbers and regular graphs ..... 15
2.3 Vertex-transitive graphs ..... 18
2.4 Trees ..... 27
2.5 Caterpillars of the form $C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$ ..... 32
2.6 General caterpillars ..... 39
CHAPTER 3 Degree-sequence-forcing sets ..... 47
3.1 Introduction ..... 47
3.2 Conditions on degree-sequence-forcing sets ..... 49
3.3 Singletons and pairs ..... 55
3.4 Non-minimal degree-sequence-forcing triples ..... 64
3.4.1 Proof of sufficiency in Theorem 3.27 ..... 66
3.4.2 Proof of necessity in Theorem 3.27 ..... 76
3.5 Minimal degree-sequence-forcing sets ..... 92
3.6 Edit-leveling sets ..... 96
CHAPTER 4 The $A_{4}$-structure of a graph ..... 101
4.1 Introduction ..... 101
$4.2 \quad A_{4}$-structure and cycles ..... 104
4.3 Canonical decomposition and $A_{4}$-structure ..... 109
4.4 $\quad A_{4}$-structure and modules ..... 117
4.5 $A_{4}$-split graphs ..... 124
REFERENCES ..... 130
AUTHOR'S BIOGRAPHY ..... 134

## CHAPTER 1

## Introduction

A major part of graph theory is the study of structural properties of graphs. (We refer the reader to Section 1.4 at the end of the chapter for basic graph theory definitions and notation.) In this thesis we focus on three topics in structural graph theory that each deal with the set of induced subgraphs of a graph and the degrees of its vertices.

For example, the Graph Reconstruction Conjecture states that any graph on at least three vertices is uniquely determined by the multiset of its unlabeled subgraphs obtained by deleting a single vertex from the graph. This multiset is called the deck of the graph, and the induced subgraphs it contains are the cards. The degree-associated reconstruction number of a graph is the minimum number of cards that suffice to determine the graph when each card is accompanied by the degree of the vertex that was deleted to form it. In Chapter 2 we obtain results on the degree-associated reconstruction number for graphs in general and for various special classes of graphs, including regular graphs, vertex-transitive graphs, trees, and caterpillars. This is joint work with Douglas B. West and appears in [6].

Several interesting classes of graphs are characterized by specifying a (possibly infinite) list of forbidden subgraphs, that is, graphs that are not allowed to appear as induced subgraphs of graphs in the given class. A number of graph classes have forbidden subgraph characterizations and also have characterizations that rely solely on the degree sequence; examples of such graph classes include the classes of complete graphs and split graphs. In Chapter 3 we consider the problem of
determining which sets $\mathcal{F}$ of forbidden subgraphs are degree-sequence-forcing, that is, the set of $\mathcal{F}$-free graphs has a characterization requiring no more information about a graph than its degree sequence. This is joint work with Stephen G. Hartke and Mohit Kumbhat and appears in [3] and [4].

Finally, in Chapter 4 we define the $A_{4}$-structure $H$ of a graph $G$ to be the 4-uniform hypergraph on the vertex set of $G$ where four vertices comprise an edge in $H$ if and only if they form the vertex set of an alternating 4-cycle in $G$. Our definition is a variation of the notion of the $P_{4}$-structure, a hypergraph which has been shown to have important ties to the various decompositions of a graph. We show that $A_{4}$-structure has many properties analogous to those of $P_{4^{-}}$ structure, including connections to a special type of graph decomposition called the canonical decomposition. We also give several equivalent characterizations of the class of $A_{4}$-split graphs, those having the same $A_{4}$-structure as some split graph. This is joint work with Douglas B. West and appears in [5].

### 1.1 Degree-associated reconstruction numbers

Our first results deal with a problem in graph reconstruction. A card of a graph $G$ is an unlabeled subgraph obtained by deleting a single vertex from $G$. The deck of $G$ is the multiset of cards of $G$. The Graph Reconstruction Conjecture, one of the most prominent unsolved problems in graph theory, is due to Kelly [30] and Ulam [52]. It states that no two nonisomorphic graphs on at least three vertices have identical decks. Results so far have shown how to determine many properties of a graph from its deck, and the conjecture has been proved for various classes of graphs. However, the problem in its full generality remains open at this time.

Motivated by questions on the reconstruction of directed graphs, Ramachandran [44] proposed that the Reconstruction Conjecture be weakened by present-
ing each vertex-deleted subgraph along with the degree of the deleted vertex in a degree-associated card, or dacard. Ramachandran's conjecture that each graph is uniquely determined by its degree-associated deck, or dadeck, is equivalent to the Graph Reconstruction Conjecture for graphs on at least three vertices, since from the entire deck of a graph one can determine the degrees of the deleted vertices. Each dacard, however, gives more information about the graph than the corresponding card does, and dacards provide more information than cards in situations when an entire (da)deck is not specified.

One does not always need the entire deck or degree-associated deck to uniquely reconstruct a graph. Harary and Plantholt [22] defined the reconstruction number $\operatorname{rn}(G)$ of a graph $G$ to be the minimum size of a subdeck for which $G$ is the only graph having those cards. Ramachandran [45] modified this definition to define the degree-associated reconstruction number $\operatorname{drn}(G)$ of a graph $G$ as the minimum number of dacards that suffice to uniquely determine $G$. The Reconstruction Conjecture is equivalent to showing that $\operatorname{drn}(G)$ is defined (and at most $|V(G)|)$ for each graph $G$. We observe that $\operatorname{drn}(G) \leq 2$ for almost all graphs $G$ (asymptotically), and we show that a graph $G$ satisfies $\operatorname{drn}(G)=1$ if and only if $G$ or its complement has an isolated vertex or a pendant vertex whose deletion yields a vertex-transitive graph.

We also study the degree-associated reconstruction number for vertex-transitive graphs. These graphs are of interest because they are the graphs for which all dacards are the same. Vertex-transitive graphs are regular; we show that if $G$ is any $k$-regular graph, then $\operatorname{drn}(G) \leq \min \{k+2, n-k+1\}$. We show that $\operatorname{drn}(G) \geq 3$ for every vertex-transitive graph $G$ that is not a complete or edgeless graph. We define a vertex-transitive graph $G$ to be coherent if in any two-vertexdeleted subgraph the only way to add a vertex $v$ back to form a card of $G$ is to give $v$ the same neighborhood as one of the deleted vertices. We show that $\operatorname{drn}(G)=3$
for coherent vertex-transitive graphs, and we show that the Petersen graph, hypercubes, prisms of complete graphs, and disjoint copies of identical coherent graphs are coherent. Nevertheless, we show that vertex-transitive graphs can have large degree-associated reconstruction numbers. Let $G$ be a non-complete vertex-transitive graph in which no two vertices have the same neighborhood. Let $G^{(m)}$ denote the graph obtained by replacing each vertex of $G$ by an independent set of size $m$ and making copies of vertices adjacent in $G^{(m)}$ if the corresponding original vertices are adjacent in $G$. We prove that $\operatorname{drn}\left(G^{(m)}\right)=m+2$ for any $m \geq 2$.

We also study the degree-associated reconstruction number of trees. Myrvold [41] showed that $\operatorname{rn}(T) \leq 3$ (and hence $\operatorname{drn}(T) \leq 3$ ) for any tree $T$ other than $P_{4}$; we show that $\operatorname{drn}(T)=2$ when $T$ is a caterpillar (a tree that becomes a path when all its leaves are deleted) other than a star or a particular six-vertex tree. The proofs of many of our results make use of the centroid of a tree, a notion employed extensively in Myrvold's paper, and we show that $\operatorname{drn}(T)=2$ for any tree $T$ having exactly one centroid vertex $u$ and a leaf $\ell$ adjacent to $u$ such that $T-\ell$ also has exactly one centroid vertex.

### 1.2 Degree-sequence-forcing sets

We next consider the problem of determining which hereditary graph families have characterizations that can be stated strictly in terms of their degree sequences. Such degree sequence characterizations are desirable because conditions depending only on the degree sequence can often be tested by linear-time algorithms. Call a graph family $\mathcal{G}$ degree-determined if the question of whether a graph $H$ belongs to $\mathcal{G}$ can be answered knowing only the degree sequence of $H$. Unfortunately, most graph classes of broad interest are not degree-determined. Some, however, are:
examples include the complete, split, matrogenic, and matroidal graphs (these last two classes will be defined in Chapter 4. Each of these families has a linear-time recognition algorithm based on a degree sequence characterization [20,50].

A class $\mathcal{G}$ of graphs is hereditary if every induced subgraph of an element of $\mathcal{G}$ is also in $\mathcal{G}$. For every hereditary class $\mathcal{G}$ there is a minimal set $\mathcal{F}$ of graphs such that a graph $H$ is in $\mathcal{G}$ if and only if it is $\mathcal{F}$-free, that is, it contains no induced subgraph isomorphic to an element of $\mathcal{F}$. We call the elements of $\mathcal{F}$ forbidden subgraphs for the class $\mathcal{G}$.

We seek to characterize degree-determined hereditary families by studying their associated minimal forbidden subgraphs. We define a set $\mathcal{F}$ of graphs to be degree-sequence-forcing if the class of $\mathcal{F}$-free graphs is degree-determined. We observe that if the $\mathcal{F}$-free graphs are the unique realizations of their respective degree sequences, then $\mathcal{F}$ is degree-sequence-forcing. We show that every degree-sequence-forcing set must contain a disjoint union of complete graphs, a complete multipartite graph, a forest of stars, and the complement of a forest of stars. As a consequence, there are only three singleton sets and eleven pairs of graphs that are minimal degree-sequence-forcing sets, meaning that no proper subset is also degree-sequence-forcing.

We also characterize the non-minimal degree-sequence-forcing triples, showing that they all belong to one of ten infinite families or a collection of twenty-seven other sets. In the process, we consider an analogue of degree-sequence-forcing sets for bipartite graphs with a fixed bipartition. We also study minimal degree-sequence-forcing sets, showing that for any natural number $k$, there are finitely many minimal degree-sequence-forcing $k$-sets.

For certain hereditary families $\mathcal{G}$, the degree sequence of a graph $H$ determines not only whether $H$ is in $\mathcal{G}$, but also how many edges must be added to or deleted from $H$ to produce a graph in $\mathcal{G}$. When $\mathcal{G}$ is the class of split graphs, this
parameter is known as the splittance of $H$; Hammer and Simeone [20] defined the splittance and gave a formula for it in terms of the degree sequence. Degreedetermined families having this additional degree sequence property are called edit-level. If a hereditary class of graphs is edit-level, then its set of minimal forbidden subgraphs is edit-leveling. Edit-leveling sets of graphs are necessarily degree-sequence-forcing, though the converse is not true. We give examples of edit-leveling sets and a show that if $\mathcal{F}$ is edit-leveling, then so is $\mathcal{F}^{(k)}$, the set of minimal forbidden subgraphs for the family of graphs that can be produced by adding or deleting at most $k$ edges from an $\mathcal{F}$-free graph. We prove that a set of graphs is edit-leveling if and only if $\mathcal{F}^{(k)}$ is degree-sequence-forcing for every natural number $k$.

### 1.3 The $A_{4}$-structure of a graph

In work related to Berge's Strong Perfect Graph Conjecture, Chvátal [13] defined the $P_{4}$-structure of a graph $G$ as the 4 -uniform hypergraph having the same vertex set as $G$ in which four vertices form an edge if and only if they induce a path (a copy of $P_{4}$ ) in $G$. He conjectured that two graphs having the same $P_{4}$-structure are either both perfect or both imperfect (this result, initially called the Semi-Strong Perfect Graph Conjecture, was later proved by Reed [47]). Research on the $P_{4^{-}}$ structure has since grown beyond a focus on perfect graphs; the $P_{4}$-structure has been used to define several graph classes with interesting structural properties in which several optimization problems can be solved more efficiently than on general graphs. It has also appeared in several schemes of graph decomposition (partitioning the vertex set of a graph into subsets with prescribed properties).

An induced $P_{4}$ in a graph gives rise to an alternating 4-cycle, a configuration on four vertices in which two edges and two non-edges of the graph alternate in a
cyclic fashion. We define the $A_{4}$-structure of a graph $G$ by modifying the definition of the $P_{4}$-structure to include as edges the vertex sets of all alternating 4-cycles. We observe that the threshold graphs (which will be defined in Chapter 4) are those whose $A_{4}$-structures contain no edges, and the matrogenic and matroidal graphs are those whose $A_{4}$-structures contain no five vertices inducing exactly two or three edges, and contain no five vertices containing more than one edge, respectively. We also show that cycles of length 5 or at least 7 are, together with their complements, the unique graphs having their particular $A_{4}$-structure. As a consequence, we give an $A_{4}$-structure analogue of the Semi-Strong Perfect Graph Theorem. We also prove that triangle-free graphs $G$ and $H$ have the same $A_{4^{-}}$ structure if and only if there is a bijection $\varphi: V(G) \rightarrow V(H)$ such that whenever $S$ is the vertex set of a matching of size at least 2 in $G, \varphi(S)$ is the vertex set of a matching in $H$.

Several results on $P_{4}$-structure have analogues in the context of graph $A_{4}$ structures. In particular, a module in a graph is a vertex subset $S$ such that no vertex outside $S$ has both a neighbor and a non-neighbor in $S$. We introduce an analogous concept by defining a strict module to be a module $S$ such that no alternating path (a configuration to be defined in Chapter 4) begins and ends in $S$. We show that the relationship between the $P_{4}$-structure and the modules of a graph is analogous to the relationship between the $A_{4}$-structure and the strict modules of the graph; in particular, 4-vertex graphs having alternating 4-cycles are the minimal graphs not having any nontrivial strict modules.

We show further that strict modules and $A_{4}$-structure are closely related to the canonical decomposition of a graph, as defined by Tyshkevich [49,51]. In particular, the indecomposable components of a graph under this decomposition have the same vertex sets as the connected components of the $A_{4}$-structure of the graph. As a result, the role of the $A_{4}$-structure of a graph in its canonical decomposi-
tion is an analogue of the role of the $P_{4}$-structure in the primeval decomposition defined by Jamison and Olariu [29].

Finally, we show that the canonical decomposition of a graph can be used to generate other graphs having the same $A_{4}$-structure. Motivated by these results, we define the $A_{4}$-split graphs, those having the same $A_{4}$-structure as some split graph. We give five equivalent characterizations of the $A_{4}$-split graphs, including a list of eleven forbidden induced subgraphs and a characterization in terms of the canonical decomposition.

### 1.4 Definitions and notation

A graph $G$ consists of two sets $V(G)$ and $E(G)$ called the vertex set and the edge set of $G$, respectively. Each member of $V(G)$ is called a vertex; each member of $E(G)$ is an unordered pair of distinct vertices, called an edge. The order of a graph is the size of its vertex set. All graphs in this thesis are assumed to have positive, finite order.

In writing edges of a graph, we use $u v$ to denote an edge $\{u, v\}$, and we refer to $u$ and $v$ as the endpoints of the edge. If $u v$ is an edge, then $u$ and $v$ are adjacent, and the edge $u v$ is incident with $u$ and $v$. The neighborhood $N_{G}(v)$ of a vertex $v$ in $G$ is the set of all vertices adjacent to $v$; these are the neighbors of $v$. The closed neighborhood $N_{G}[v]$ is $N_{G}(v) \cup\{v\}$.

An ismorphism from a graph $G$ to a graph $H$ is a bijection $\varphi: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ if and only if $\varphi(u) \varphi(v) \in E(H)$. If such an isomorphism exists, we say that $G$ and $H$ are isomorphic and denote this by $G \cong H$. An isomorphism from $G$ to itself is an automorphism of $G$. A graph $G$ is vertextransitive if for every pair $(u, v)$ of vertices in $G$ there exists an automorphism of $G$ mapping $u$ to $v$.

Graph isomorphism defines an equivalence relation on graphs, and the equivalence class containing a graph $G$ is the isomorphism class of $G$. Often we will refer to an isomorphism class as a single graph, such as when we speak of the graph on $n$ vertices with no edges. When we wish to emphasize that an isomorphism class of graphs is meant, rather than a single member of the isomorphism class, we use the term unlabeled graph. A graph $G$ is a copy of a graph or isomorphism class if $G$ is isomorphic to the graph or belongs to the isomorphism class in question.

A subgraph of a graph $G$ is a graph $H$ such that $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$. If $H$ is (isomorphic to) a subgraph of $G$, then we may say that $G$ contains $H$ or that $H$ is contained in $G$. The graph $H$ is an induced subgraph of $G$ if $H$ is a subgraph of $G$ with the property that two vertices are adjacent in $H$ if and only if they are adjacent in $G$. If $H$ is (isomorphic to) an induced subgraph of $G$, we say that $H$ is induced in $G$, or that $G$ induces (a copy of) $H$. If $S \subseteq V(G)$, the subgraph induced by $S$, denoted $G[S]$, is the induced subgraph of $G$ having vertex set $S$.

To delete a vertex $v$ from a graph $G$ is to remove $v$ from $V(G)$ and to remove from $E(G)$ all edges containing $v$. The resulting graph equals $G[V(G)-\{v\}]$ and is denoted by $G-v$. We may denote the result of deleting all vertices in a set $S$ from $G$ by $G-S$. The graph $H$ is induced in $G$ if and only if $H$ may be obtained by deleting vertices from $G$. To delete an edge $u v$ from a graph $G$ is to remove $u v$ from $E(G)$; we denote the resulting graph by $G-u v$.

The complement $\bar{G}$ of a graph $G$ is the graph with vertex set $V(G)$ where any two vertices are adjacent if and only if they are not adjacent in $G$.

The degree of a vertex $v$ in a graph $G$ is the number of edges of $G$ incident with $v$. We denote the degree of $v$ in $G$ by $d_{G}(v)$, or simply $d(v)$ when $G$ is understood. The maximum and minimum vertex degrees in $G$ are denoted by $\Delta(G)$ and $\delta(G)$, respectively. If $\Delta(G)=\delta(G)$, then $G$ is regular; if $d_{G}(v)=k$ for all $v \in V(G)$,
then $G$ is $k$-regular. A vertex of degree 0 is an isolated vertex, a vertex of degree 1 is a leaf or pendant vertex, and a vertex in $G$ whose degree is $|V(G)|-1$ (that is, the vertex is adjacent to all other vertices in $G$ ) is a dominating vertex. Given a vertex subset $S$ and a vertex $v$, we say that $v$ is isolated from $S$ if $v$ is adjacent to no vertex of $S$, and $v$ dominates $S$ if $S \subseteq N_{G}(v)$.

The list of vertex degrees in an $n$-vertex graph is the degree sequence, and it is usually written as an $n$-tuple with its entries in nonincreasing order. If a graph $G$ has degree sequence $d$, then $G$ is a realization of $d$. If $G$ is a realization of $\left(d_{1}, \ldots, d_{n}\right)$ and $m$ is the number of edges in $G$, then since each edge is incident with its two endpoints, we have the well-known Degree-Sum Formula, which states that

$$
\sum_{i=1}^{n} d_{i}=2 m
$$

An independent set is a set of vertices that are pairwise nonadjacent. A clique is a set of vertices that are pairwise adjacent. A $k$-clique is a clique of size $k$.

The chromatic number of a graph $G$ is the smallest number of independent sets that together partition $V(G)$. A graph $G$ is perfect if for every induced subgraph $G^{\prime}$ of $G$ the chromatic number of $G^{\prime}$ equals the maximum size of a clique in $G^{\prime}$.

A path on $n$ vertices, denoted $P_{n}$, is a graph whose vertex set may be indexed $\left\{v_{1}, \ldots, v_{n}\right\}$ so that its edge set is $\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. We denote such a path in Chapters $1-3$ by $\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$. (In Chapter 4 our focus will be on alternating paths, and we will redefine this notation then.) The first and last vertices are the endpoints of the path, and the remaining vertices are the interior vertices. The length of the path is the number of edges it contains. A cycle on $n$ vertices, also called an $n$-cycle and denoted $C_{n}$, is a graph formed by adding an edge joining the endpoints of a path on $n$ vertices. We denote a cycle with vertices $v_{1}, \ldots, v_{n}$ in cyclic order by $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$. A triangle is a graph isomorphic to $C_{3}$.

A graph is connected if for any two vertices $u$ and $v$ in the graph, there is a path having $u$ and $v$ as its endpoints; it is disconnected otherwise. A component in a graph is a maximal connected subgraph. A cut-vertex in a graph is a vertex whose deletion leaves the resulting graph with more components than the original graph had; a cut-edge is an edge having the same property.

The distance between two vertices $u$ and $v$ in $G$ is the number of edges on a shortest path having endpoints $u$ and $v$. We write $\operatorname{diam}(G)$ for the diameter of $G$, which is the largest distance between vertices in $G$.

A tree is a connected graph with no cycles. A forest is a graph in which every component is a tree. A tree on $n$ vertices has exactly $n-1$ edges. A graph $G$ is bipartite if its vertex set may be partitioned into two sets $A$ and $B$, called the partite sets, such that $A$ and $B$ are independent sets in $G$. A matching in $G$ is a set of pairwise disjoint edges.

A graph $G$ is edgeless if $V(G)$ is an independent set. A graph is complete if its vertex set is a clique. We use $K_{n}$ to denote the complete graph on $n$ vertices, and we denote by $K_{n}-e$ the unlabeled graph obtained by deleting any edge of $K_{n}$. A complete multipartite graph, denoted $K_{n_{1}, \ldots, n_{k}}$, is a graph whose vertex set may be partitioned into subsets $V_{1}, \ldots, V_{k}$ (the partite sets) with orders $n_{1}, \ldots, n_{k}$, respectively, such that vertices $u \in V_{i}$ and $v \in V_{j}$ are adjacent if and only if $i \neq j$. If $k=2$, we refer to the graph as a complete bipartite graph. A star is a graph of the form $K_{1, m}$; equivalently, it is a tree with diameter at most 2. A graph is a split graph if its vertex set can be partitioned into a clique and an independent set.

The disjoint union of graphs $G$ and $H$, denoted $G+H$, is the graph whose vertex set is $V(G) \cup V(H)$ and whose edge set is $E(G) \cup E(H)$, where we assume that $G$ and $H$ have disjoint vertex sets and disjoint edge sets. When a disjoint union is taken of a graph with itself, we denote the result with a coefficient; the
graph $G+G+\cdots+G$ ( $m$ copies) is denoted $m G$. The join of disjoint graphs $G$ and $H$, denoted $G \vee H$, is the graph whose vertex set is $V(G) \cup V(H)$ and whose edge set is $E(G) \cup E(H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$.

The cartesian product $G \square H$ of graphs $G$ and $H$ is the graph with vertex set $V(G) \times V(H)$ such that $(u, v)$ and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent precisely when (i) $u=u^{\prime}$ and $v v^{\prime} \in E(H)$ or (ii) $v=v^{\prime}$ and $u u^{\prime} \in E(G)$. When $H=K_{2}$, the special case $G \square K_{2}$ of the cartesian product is formed from $2 G$ by adding a matching of size $|V(G)|$ joining the two copies of each vertex of $G$; this is the prism over $G$.

A hypergraph is a pair $(V, E)$ where the set $V$ contains vertices of the hypergraph, and the set $E$ contains subsets of $V$ of any size (as opposed to graphs). A hypergraph is $k$-uniform if every edge contains exactly $k$ vertices. A hypergraph $H$ is connected if for every two vertices $u$ and $v$ in $H$ there is a list $u_{1}, \ldots, u_{k}$ of vertices such that $u_{1}=u$ and $u_{k}=v$ and every two consecutive vertices in the list belong to an edge of $H$. If the shortest such list has length $\ell$, then the distance between $u$ and $v$ is $\ell-1$. The maximal connected subhypergraphs of a hypergraph are its components.

A hypergraph $H^{\prime}$ is a subhypergraph of $H$ if $V\left(H^{\prime}\right) \subseteq V(H)$ and $E\left(H^{\prime}\right) \subseteq$ $E(H)$ ). Given hypergraphs $H$ and $J$, a hypergraph isomorphism from $H$ to $J$ is a map $\varphi: V(H) \rightarrow V(J)$ such that for every subset $A$ of $V(H)$, we have $\varphi(A) \in E(J)$ if and only if $A \in E(H)$.

## CHAPTER 2

## Degree-associated reconstruction numbers

### 2.1 Introduction

The well-known Graph Reconstruction Conjecture of Kelly [30] and Ulam [52] has been open for more than 50 years. It asserts that every graph with at least three vertices can be (uniquely) reconstructed from its "deck" of vertex-deleted subgraphs. Here the deck of a graph $G$ is the multiset of unlabeled induced subgraphs formed by deleting one vertex from $G$, and these subgraphs are cards in the deck. Saying that $G$ is reconstructible is the same as saying that all graphs with the same deck as $G$ are isomorphic to $G$. The conjecture has been proved for many special classes of $G$, and many results show that various properties of $G$ may be deduced from its deck. Nevertheless, the full conjecture remains open. Surveys of results on reconstruction include $[9,10,33,35]$.

It may not be necessary to know the entire deck to reconstruct the graph. Harary and Plantholt [22] defined the reconstruction number of a graph $G$, denoted $\operatorname{rn}(G)$, to be the minimum number of cards from the deck that suffice to determine $G$. The Reconstruction Conjecture is the statement that $\operatorname{rn}(G)$ is defined (at most $|V(G)|)$ for each graph $G$ with at least three vertices. Reconstruction numbers are known for various classes of graphs; see [1,22,38-41].

Motivated by reconstruction questions for directed graphs, Ramachandran [44] proposed a slightly different model. A degree-associated card (or dacard) of a graph (or digraph) is a pair $(C, d)$ consisting of a card $C$ in the deck and the
degree (or in/out-degree pair) $d$ of the deleted vertex. The multiset of dacards is the dadeck (the degree-associated deck). For graphs with at least three vertices, knowing the degree of the deleted vertex is equivalent to knowing the total number of edges. A simple counting argument computes $|E(G)|$ when the entire deck is known, so the dadeck gives the same information as the deck. However, the counting argument requires the entire deck, so an individual dacard gives more information than the corresponding card. Ramachandran [45] defined the degreeassociated reconstruction number $\operatorname{drn}(G)$ of a graph $G$ to be the minimum number of dacards that suffice to determine $G$. Clearly $\operatorname{drn}(G) \leq \operatorname{rn}(G)$. Ramachandran studied this parameter for complete graphs, edgeless graphs, cycles, complete bipartite graphs, and disjoint unions of identical graphs.

In this chapter we continue this study. Bollobás [8] proved that $\operatorname{rn}(G)=3$ for almost every graph. In Section 2.2 we conclude from this that $\operatorname{drn}(G) \leq 2$ for almost every graph, and we characterize the graphs $G$ for which $\operatorname{drn}(G)=1$. We also prove that $\operatorname{drn}(G) \leq \min \{k+2, n-k+1\}$ when $G$ is a $k$-regular graph with $n$ vertices.

In Section 2.3 we study vertex-transitive graphs. Let $G$ be vertex-transitive. We prove that $\operatorname{drn}(G) \geq 3$ and give a sufficient condition for equality; it holds for the Petersen graph, the $k$-dimensional hypercube, and the cartesian product $K_{n} \square K_{2}$. Also, if $G$ has nonadjacent vertices with distinct neighborhoods, and $G^{(m)}$ arises from $G$ by expanding each vertex into $m$ independent vertices, then $\operatorname{drn}\left(G^{(m)}\right)=t m+2$, where $t$ is the maximum number of vertices having the same neighborhood in $G$.

In Sections 2.4-2.6 we study trees. Section 2.4 gives sufficient conditions for $\operatorname{drn}(G)=2$ when $G$ is a tree. These aid subsequently in computing the value for all trees whose non-leaf vertices form a path; these trees are called caterpillars. If $G$ is a caterpillar, then $\operatorname{drn}(G)=2$ unless $G$ is a star or the one 6 -vertex tree with
four leaves and maximum degree 3 . We consider special families of caterpillars in Section 2.5 and complete the general proof in Section 2.6.

### 2.2 Small reconstruction numbers and regular graphs

In this section we show that $\operatorname{drn}(G) \leq 2$ for almost every graph $G$, and we determine when $\operatorname{drn}(G)=1$. Our observation relies heavily on the result of Bollobás [8] about $\operatorname{rn}(G)$, which also implies that almost every graph is reconstructible.

Theorem 2.1 (Bollobás [8]). Almost every graph has reconstruction number 3. Furthermore, for almost every graph, any two cards in the deck determine everything about the graph except whether the two deleted vertices are adjacent.

The reconstruction number of any graph is at least 3 , since $G-u$ and $G-v$ are cards for both $G$ and $G^{\prime}$, where $G$ and $G^{\prime}$ differ only on whether the edge uv is present. Thus, the previous result is sharp. The degree information determines the last unknown bit of information without introducing another card.

Corollary 2.2. For almost every graph $G, \operatorname{drn}(G) \leq 2$.
Proof. Let $G$ be a graph with two cards that determine the graph except for whether the deleted vertices are adjacent. In the dadeck of $G$ the cards $G-u$ and $G-v$ are paired with $d_{G}(u)$ and $d_{G}(v)$. The degree information determines whether $u v$ is present, thereby reconstructing $G$; thus $\operatorname{drn}(G) \leq 2$.

It is natural to ask when $\operatorname{drn}(G)=1$. We answer this question in the next few results.

Lemma 2.3. For any graph $G, \operatorname{drn}(G)=\operatorname{drn}(\bar{G})$.
Proof. Let $v$ be a vertex in an $n$-vertex graph $G$. Since $d_{\bar{G}}(v)=n-1-d_{G}(v)$ and $\overline{G-v}=\bar{G}-v$, it follows that $(C, d)$ is a dacard of $G$ if and only if $(\bar{C}, n-1-d)$ is a dacard of $\bar{G}$.

Consider a multiset $\left\{\left(C_{1}, d_{1}\right), \ldots,\left(C_{r}, d_{r}\right)\right\}$ of dacards that determine $G$. Since these can be obtained from $\left\{\left(\bar{C}_{1}, n-1-d_{1}\right), \ldots,\left(\bar{C}_{r}, n-1-d_{r}\right)\right\}$ and $\bar{G}$ can be obtained from $G$, we conclude that $\operatorname{drn}(\bar{G}) \leq \operatorname{drn}(G)$. Reversing the roles of $G$ and $\bar{G}$ yields $\operatorname{drn}(G)=\operatorname{drn}(\bar{G})$.

Note that $\operatorname{drn}(G)=1$ if and only if $G$ has a dacard that does not occur in the dadeck of any other graph. We next determine all dacards of this type.

Theorem 2.4. The dacard $(C, d)$ belongs to the dadeck of only one graph (up to isomorphism) if and only if one of the following holds:
(1) $d=0$ or $d=|V(C)|$;
(2) $d=1$ or $d=|V(C)|-1$, and $C$ is vertex-transitive;
(3) $C$ is complete or edgeless.

Proof. Let $n=|V(C)|$. In each case listed, there is exactly one way (up to isomorphism) to form a graph $G$ with $n+1$ vertices by adding to $C$ a vertex with $d$ neighbors in $C$.

Suppose now that $(C, d)$ is a dacard for only one graph. That is, adding a vertex adjacent to $d$ vertices in $C$ produces a graph in the same isomorphism class no matter which $d$ vertices of $C$ are chosen. If $(C, d)$ is not in the list above, then $d \notin\{0, n\}$ and $C \notin\left\{K_{n}, \bar{K}_{n}\right\}$. We must show that then $d \in\{1, n-1\}$ and $C$ is vertex-transtive.

Because $(C, d)$ is a dacard for only one graph, the same isomorphism class is produced no matter what set of $d$ vertices is chosen for the neighborhood of the added vertex $v$. Since isomorphic graphs have the same number of triangles, and the number of triangles after adding $v$ is the number of triangles in $C$ plus the number of edges in $C$ induced by neighbors of $v$, we conclude that every induced subgraph of $C$ with $d$ vertices has the same number of edges. It is a well-known exercise (Exercise 1.3.35 on page 50 of [53]) that when $1<d<n-1$, this property
forces $C \in\left\{K_{n}, \bar{K}_{n}\right\}$.
Hence we may assume that $d \in\{1, n-1\}$. Since $(C, d)$ determines $G$ if and only if $(\bar{C}, n-1-d)$ determines $\bar{G}$, we many assume that $d=1$. Note that adding a vertex of degree 1 adds 1 to some vertex degree in $C$. In particular, $(C, d)$ is a dacard for some graph with maximum degree $\Delta(C)+1$. If $C$ is not regular, then also $(C, d)$ is a dacard for some graph with maximum degree $\Delta(C)$. Hence $C$ must be regular.

If $C$ is regular of degree 0 or 1 , then automatically $C$ is vertex-transitive. For larger degree, every automorphism of the resulting graph $G$ fixes $v$, since it is the only vertex of degree 1 . Since attaching $v$ to any vertex yields the same graph, $C$ must have automorphisms taking each vertex to any other. Hence $C$ is vertex-transitive.

Corollary 2.5. A graph $G$ satisfies $\operatorname{drn}(G)=1$ if and only if $G$ or $\bar{G}$ has an isolated vertex or has a pendant vertex whose deletion leaves a vertex-transitive graph.

Proof. We have $\operatorname{drn}(G)=1$ if and only if the dadeck of $G$ has a dacard $(C, d)$ as described in Theorem 2.4. If $C$ is complete or edgeless, or if $d \in\{0,|V(C)|\}$, then $G$ or $\bar{G}$ has an isolated vertex. Case 2 of Theorem 2.4 yields the second possibility here.

We close this section with a general bound for regular graphs. Regular graphs are well known to be reconstructible, since the degree list can be determined from the deck, and the deficient vertices in any card must be the neighbors of the missing vertex. One dacard gives the degree of the missing vertex, but it does not give the degree list and hence does not determine $G$. Nevertheless, we obtain an upper bound on $\operatorname{drn}(G)$.

Theorem 2.6. If $G$ is a $k$-regular graph on $n$ vertices, then $\operatorname{drn}(G) \leq \min \{k+$ $2, n-k+1\}$.

Proof. Since $G$ is $k$-regular, each card has $k$ vertices of degree $k-1$ and $n-1-k$ vertices of degree $k$. Let $H$ be a graph that shares $k+2$ dacards with $G$. Let $(C, k)$ be one such dacard, with $C=G-v$, so there exists $u \in V(H)$ with $C=H-u$.

If $H \not \approx G$, then $u$ has a neighbor $w$ in $H$ with degree $k$ in $C$, and $\Delta(H)=k+1$. The $k+2$ given dacards of $H$ imply that $H$ has at least $k+2$ vertices of degree $k$ whose deletion from $H$ leaves a subgraph with maximum degree at most $k$. Since $d_{H}(w)=k+1$, deleting $w$ cannot yield a dacard of $G$. Hence vertices in $H$ whose deletion yields a dacard of $G$ lie in $N_{H}(w)$. There are only $k+1$ such vertices, so any graph agreeing with $G$ on $k+2$ dacards must be isomorphic to it, and $\operatorname{drn}(G) \leq k+2$.

The complement of a $k$-regular graph is $(n-1-k)$-regular, so Lemma 2.3 and the argument above yield $\operatorname{drn}(G)=\operatorname{drn}(\bar{G}) \leq(n-1-k)+2$, completing the proof.

Equality holds in the bound of Theorem 2.6 for graphs of the form $t K_{m, m}$ with $t>1$, proved by Ramachandran [45]. Ramachandran [45] also proved for $k, t \geq 2$ that if $G$ is a connected $k$-regular graph on $n$ vertices, where $n \geq 3$, then $\operatorname{drn}(t G) \leq n-k+2$.

### 2.3 Vertex-transitive graphs

For regular graphs that are vertex-transitive, we obtain sharper results. Observe that a graph is vertex-transitive if and only if its dacards are pairwise isomorphic. Since vertex-transitive graphs are regular, Theorem 2.6 provides an upper bound. We will prove further lower and upper bounds and give sufficient conditions for equality in the bounds.

Since $\operatorname{drn}(G)=2$ almost always, only special graphs need more dacards. When the dacards are identical, there is no clever choice of dacards, so it is natural to expect vertex-transitive graphs to be hard to reconstruct. Ramachandran [45] showed that $\operatorname{drn}\left(t K_{m, m}\right)=m+2$ when $t>1$. On the other hand, the value can remain small: for $t, m>1$, Ramachandran [45] showed that $\operatorname{drn}\left(t K_{m}\right)=3$ even though $\operatorname{rn}\left(t K_{m}\right)=m+2$ (Myrvold [40]). Note that by setting $t=2$ and applying $\operatorname{drn}(\bar{G})=\operatorname{drn}(G)$, one also obtains $\operatorname{drn}\left(K_{m, m}\right)=3$.

Definition 2.7. A twin of $v$ is a vertex having the same neighborhood as $v$. A clone of a vertex $x$ in a graph is a vertex having the same closed neighborhood as $x$.

Theorem 2.8. If $G$ is vertex-transitive but is not complete or edgeless, then $\operatorname{drn}(G) \geq 3$.

Proof. Let $(C, d)$ denote the only dacard of $G$. To show that $\operatorname{drn}(G)>2$, we construct a graph $H$ different from $G$ that has at least two copies of $(C, d)$ in its dadeck.

Let $v$ be a vertex of $G$, so $C=G-v$. If every neighbor of $v$ in $G$ is a clone of $v$, then $G$ is a disjoint union of complete graphs, say $m K_{r}$ with $m \geq 2$ and $r \geq 2$. In this case, $C=(m-1) K_{r}+K_{r-1}$. Let $x$ be a nonneighbor of $v$ in $G$. Form $H$ by adding to $C$ a vertex $x^{\prime}$ with the same neighborhood as $x$. Now $H$ has a noncomplete component, so $H \not \approx G$, but $H-x^{\prime}=H-x=C$, so $H$ has $(C, d)$ as a dacard twice.

Otherwise, let $u$ be a neighbor of $v$ with $N_{G}[u] \neq N_{G}[v]$. There exist vertices $w \in N_{G}(u)-N_{G}(v)$ and $w^{\prime} \in N_{G}(v)-N_{G}(u)$. Form $H$ by adding to $C$ a vertex $u^{\prime}$ such that $N_{H}\left[u^{\prime}\right]=N_{G}[u]-\{v\}$. Note that $d_{H}(w)>d_{C}(w)>d_{C}\left(w^{\prime}\right)=d_{H}\left(w^{\prime}\right)$, so $H$ is not regular; thus $H \not \approx G$. Since $N_{H}\left[u^{\prime}\right]=N_{H}[u]$, we have $H-u=H-u^{\prime}=$ $C=G-v$, so $H$ has $(C, d)$ as a dacard twice.

We will shortly give sufficient conditions for equality in this bound. The bound can be arbitrarily bad, since Ramachandran proved that $\operatorname{drn}\left(t K_{m, m}\right)=m+2$. We next extend Ramachandran's result by proving this value for a more general family of vertex-transitive graphs. The graph produced is $t K_{m, m}$ when the construction begins with $t K_{2}$.

Definition 2.9. An expansion of a graph $G$ is a graph $H$ obtained by replacing each vertex of $G$ with an independent set such that copies in $H$ of two vertices of $G$ are adjacent in $H$ if and only if the original vertices were adjacent in $G$. The $m$-fold expansion $G^{(m)}$ is the expansion of $G$ in which each vertex expands into an independent set of size $m$. A twin-set in a graph is a maximal vertex subset containing vertices with identical neighborhoods.

Theorem 2.10. Let $G$ be a vertex-transitive graph other than a complete graph, and suppose that $G$ has no twins. If $m \geq 2$, then $\operatorname{drn}\left(G^{(m)}\right)=m+2$.

Proof. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. In $G^{(m)}$, each vertex $v_{i}$ of $G$ becomes an independent set $V_{i}$ of size $m$. All vertices in $V_{i}$ have the same neighborhood, while vertices in distinct such sets have different neighborhoods, since $G$ has no twins. Thus the sets $V_{1}, \ldots, V_{n}$ are twin-sets. Note that $G^{(m)}$ is vertex-transitive and $k m$-regular, where $G$ is $k$-regular, and every vertex neighborhood in $G^{(m)}$ is a union of twin-sets. Let $C$ be the unique card of $G^{(m)}$.

We first show that $\operatorname{drn}\left(G^{(m)}\right) \geq m+2$. Since $G$ is not a complete graph and has no twins, it has nonadjacent vertices $v_{i}$ and $v_{j}$ with distinct neighborhoods. View $C$ as $G-x$, where $x \in V_{i}$. Construct $H$ by adding to $C$ a vertex $u$ with neighborhood $N\left(V_{j}\right)$ (the common neighborhood of all vertices of $V_{j}$ ). Since $x \notin$ $N\left(V_{j}\right)$, we have $d_{H}(u)=k m$. In $G^{(m)}$ every set of $m+1$ vertices contains two vertices having distinct neighborhoods, but in $H$ the $m+1$ vertices in $V_{j} \cup\{u\}$ all have the same neighborhood. Hence $H \not \nexists G^{(m)}$. Furthermore, the dacards for
these vertices of $H$ are the same as the dacards for $G^{(m)}$. Thus $\operatorname{drn}\left(G^{(m)}\right) \geq m+2$.
Now let $H$ be a graph having vertices $u_{1}, \ldots, u_{m+2}$ of degree $k m$ such that $H-u_{i} \cong C$ for $1 \leq i \leq m+2$. Since $m \geq 2$, there are $n$ twin-sets in $C$, one of which has size $m-1$; call it $U$. Treating a deleted vertex of $G^{(m)}$ (assume it is $\left.u_{1}\right)$ as a member of $V_{1}$, we may let $V_{1}-\left\{u_{1}\right\}, V_{2}, \ldots, V_{n}$ be the twin-sets of $C$. There are exactly $n$ distinct vertex neighborhoods in $C$. Suppose that $N_{H}\left(u_{1}\right)$ is none of these. Since $|U|=m-1$, among $u_{2}, \ldots, u_{m+2}$ there is a vertex $u_{j}$ not in $U$. In $C-u_{j}$, there remain $n$ distinct neighborhoods (since the $n$ twin-sets of $C$ remain nonempty), and none of them is $N_{H}\left(u_{1}\right)-\left\{u_{j}\right\}$. Replacing $u_{1}$, we find that $H-u_{j}$ has $n+1$ distinct neighborhoods, contradicting $H-u_{j} \cong C$.

Thus $N_{H}\left(u_{1}\right)$ is a vertex neighborhood in $C$. If it is the neighborhood of the deficient set, then $H \cong G^{(m)}$. Otherwise, $H$ is an expansion of $G$ in which one twin-set $T$ has size $m+1$, one twin-set $U$ has size $m-1$, and the others have size $m$. The only way to delete a vertex from $H$ so that the twin-sets in the resulting graph have the same sizes as in $C$ is to delete a vertex of $T$. Since $|T|=m+1$, the dacard $(C, k m)$ cannot occur $m+2$ times for $H$.

In a vertex-transitive graph, the twin-sets all have the same size.

Corollary 2.11. If $G$ is a vertex-transitive graph other than a complete multipartite graph, then $\operatorname{drn}\left(G^{(m)}\right)=t m+2$ for every $m \geq 2$, where $t$ is the size of the twin-sets in $G$.

Proof. Collapsing the twin-sets of $G$ into single vertices yields a vertex-transitive graph $G_{0}$ having no twins, and $G=G_{0}^{(t)}$. Since $G$ is not a complete multipartite graph, $G_{0}$ is not a complete graph. Hence Theorem 2.10 applies to $G_{0}$, and $\operatorname{drn}\left(G^{(m)}\right)=\operatorname{drn}\left(G_{0}^{(t m)}\right)=t m+2$.

In the remainder of this section we study sharpness in the lower bound of

Theorem 2.8. We give a sufficient condition for $\operatorname{drn}(G)=3$ in the family of vertextransitive graphs and show that hypercubes and some other products satisfy it.

Definition 2.12. A vertex-transitive graph $G$ is coherent if a card $C$ of $G$ formed by adding one vertex $z$ to a two-vertex-deleted subgraph $G-\{x, y\}$ can only be formed by making $z$ adjacent to $N_{G-y}(x)$ or $N_{G-x}(y)$.

Coherence prevents the deletion of two vertices from $G$ in such a way that the card can be recreated by adding a vertex adjacent to some set of deficient vertices other than the full neighborhood of one of the deleted vertices.

Theorem 2.13. Let $G$ be a $k$-regular vertex-transitive graph. If $G$ is coherent and has no clones or twins, then $\operatorname{drn}(G)=3$.

Proof. Let $C$ be the unique card of $G$. We must show that if some graph $H$ has vertices $u, v, w$ of degree $k$ such that deleting any one yields $C$, then $H \cong G$.

Let $S$ be the set of vertices of degree $k-1$ in $H-u$. Since $H-u \cong C \cong G-x$, we may assume that $H-u=G-x$ (using the same vertex names), so $N_{G}(x)=S$ and $|S|=k$. Now $H-u-v$ is obtained by deleting $x$ and $v$ from $G$. The card $H-v$ is obtained by adding $u$ and the appropriate edges to $H-u-v$; doing this adds $u$ and appropriate edges to $G-x-v$ to produce a graph isomorphic to $C$. By coherence, $N_{H-v}(u)$ is $N_{G-v}(x)$ or $N_{G-x}(v)$.

If $N_{H-v}(u)=N_{G-v}(x)$, then $S-\{v\} \subseteq N_{H}(u)$. Also, $|S-\{v\}|$ is $k-1$ or $k$, depending on whether $v \in N_{G}(x)$. Since we are given $d_{H}(u)=k$, we obtain $N_{H}(u)=S$ and $H \cong G$.

If $N_{H-v}(u)=N_{G-x}(v)$, then $\left|N_{H}(u) \cap N_{H}(v)\right| \in\{k-1, k\}$, depending on whether $v \in N_{G}(x)$. This makes $u$ and $v$ clones or twins in $H$, respectively, since $d_{H}(u)=k$. Now we look at $H-w$. Whether $w$ is adjacent to neither or both of $\{u, v\}$ in $H$, still $u$ and $v$ are clones or twins in $H-w$. Since $G$ is regular, $H-w \cong C \cong G-x$, and $d_{H-w}(u)=d_{H-w}(v)$, forming $G$ from $H-w$ makes $w$


Figure 2.1: The Petersen graph.
adjacent to neither or both of $\{u, v\}$. As a result, $u$ and $v$ are clones or twins in $G$, which contradicts the prohibition of such pairs.

It is easy to see that $t K_{m, m}$ and $t K_{m}$ are coherent, but $t K_{m, m}$ has twins and $t K_{m}$ has clones. We have noted that $\operatorname{drn}\left(t K_{m, m}\right)=m+2$ and $\operatorname{drn}\left(t K_{m}\right)=3$.

Proposition 2.14. If $G$ is a coherent 2-connected vertex-transitive graph, then $t G$ is coherent.

Proof. Vertices $u$ and $v$ to be deleted from $t G$ may lie in the same component or not. If they don't, then a vertex added to turn $t G-u-v$ into the card $C$ must restore one of the components of $G$. If $u$ and $v$ lie in the same component of $t G$, then the needed property follows from the coherence of $G$.

We close this section with several natural examples to illustrate the role of coherence.

The Petersen graph is shown in Figure 2.1; it is the graph whose vertices are the 2-element subsets of a set of five elements, with two vertices adjacent if and only if the associated subsets are disjoint.

Example 2.15. If $G$ is the Petersen graph, then $\operatorname{drn}(G)=3$. Any two nonadjacent vertices in $G$ have exactly one common neighbor, and any two adjacent vertices have no common neighbors; hence $G$ has no twins or clones. It therefore
suffices to check coherence. Let $C$ be the card. There are only two types of vertex pairs in $G$; adjacent or nonadjacent.

Deleting two adjacent vertices leaves four vertices with degree 2. Any two of them that did not have a common neighbor among the deleted vertices have a common neighbor among the remaining vertices. Adding a vertex adjacent to both of them creates a 4-cycle, which does not exist in $C$.

Deleting two nonadjacent vertices leaves one vertex with degree 1, and the vertices having degree 2 induce $2 K_{2}$. A vertex added to form $C$ must be adjacent to the leaf and to one vertex from each edge of this $2 K_{2}$. To avoid creating a 4-cycle, only two of the four such choices are allowable, and these yield the vertex neighborhoods of the deleted vertices.

We next consider the $k$-dimensional hypercube $Q_{k}$, the graph with vertex set $\{0,1\}^{k}$ in which two vertices are adjacent if and only if they differ in exactly one coordinate.

It is well known that vertices separated by distance 2 in $Q_{k}$ have exactly two common neighbors.

Theorem 2.16. If $k \geq 2$, then $\operatorname{drn}\left(Q_{k}\right)=3$.

Proof. The lower bound follows from Theorem 2.8. Ramachandran [45] showed that $\operatorname{drn}\left(C_{4}\right)=3$. Since $Q_{2} \cong C_{4}$, we may assume that $k \geq 3$. Since $Q_{k}$ has no clones or twins, it suffices by Theorem 2.13 to show that $Q_{k}$ is coherent. Let $C$ be the unique card of $Q_{k}$. Given $u, v \in V\left(Q_{k}\right)$, let $F=Q_{k}-\{u, v\}$, and let $S=N_{Q_{k}-v}(u)$ and $S^{\prime}=N_{Q_{k}-u}(v)$. Let $z$ be a vertex added to $F$ to obtain $C$; we must show that $N_{C}(z) \in\left\{S, S^{\prime}\right\}$.

The vertex $z$ cannot have have neighbors in both partite sets of $F$, since $C$ is bipartite. Also it has no neighbor with degree $k$ in $F$, since $\Delta(C) \leq k$. Hence $N_{C}(z) \in\left\{S, S^{\prime}\right\}$ when $u$ and $v$ lie in opposite partite sets.

Now consider $u$ and $v$ in the same partite set. Since $\delta(C)=k-1$ and $\Delta(C) \leq k$, we have $S \cap S^{\prime} \subseteq N_{C}(z) \subseteq S \cup S^{\prime}$. If $N_{C}(z) \notin\left\{S, S^{\prime}\right\}$, then $z$ has neighbors in both $S-S^{\prime}$ and $S^{\prime}-S$. Since $d_{C}(z)=k=|S|=\left|S^{\prime}\right|$, there also exist $w \in S-S^{\prime}$ and $w^{\prime} \in S^{\prime}-S$ outside $N_{C}(z)$. Now $d_{C}(w)=d_{C}\left(w^{\prime}\right)=k-1$. Hence $w$ and $w^{\prime}$ have a common neighbor in $Q_{k}$ deleted to obtain $C$. Since the distance between them in $Q_{k}$ is 2 , they have exactly two common neighbors in $Q_{k}$, and hence exactly one remains in $C$. However, since by choice neither lies in $S \cap S^{\prime}$, neither $u$ nor $v$ is one of their common neighbors. Hence their common neighbors in $Q_{k}$ both remain in $F$ and hence in $C$. The contradiction implies that $N_{C}(z) \in\left\{S, S^{\prime}\right\}$.

The hypercube $Q_{k}$ is the cartesian product of $k$ factors isomorphic to $K_{2}$. It would be nice to generalize Theorem 2.16 to all cartesian products of complete graphs. Our next result does this for one special case. As noted in Chapter 1, the cartesian product $G \square K_{2}$ is also called the prism over $G$.

Unfortunately, $K_{3} \square K_{2}$ is not coherent, since it has $C_{4}$ as a double-vertexdeleted subgraph, and the card can be obtained by adding $z$ adjacent to any two consecutive vertices on the cycle. Hence we cannot apply Theorem 2.13 to this graph.

Lemma 2.17. $\operatorname{drn}\left(K_{3} \square K_{2}\right) \leq 3$.

Proof. It suffices to show that three dacards determine $K_{3} \square K_{2}$. Let $C$ be the unique card of $K_{3} \square K_{2}$, and consider a graph $H$ having three cards isomorphic to $C$, obtained by deleting any one of $\{u, v, w\}$, all having degree 3 in $H$.

If $H$ has a vertex $x$ of degree 4 , then $\{u, v, w\} \subseteq N_{H}(x)$, since $\Delta(C)=3$. Let $z$ be a vertex added to $C$ to form $H$. Since $x$ has only one neighbor with degree 3 in $C, z$ is adjacent to a neighbor of $x$ with degree 2 in $C$. If $z$ is also adjacent to the unique nonneighbor $y$ of $x$, then $z$ is a clone or twin of a vertex $t$ in $H$ and
hence in one of $\{H-u, H-v, H-w\}$. Since $C$ has no clones or twins, this is a contradiction. Thus $d_{H}(y) \leq 2$. Since $x y \notin E(H)$, deleting one of $\{u, v, w\}$ leaves $d_{C}(y) \leq 1$. This contradicts $\delta(C)=2$.

Hence $\Delta(H)=3$, which yields $G \cong K_{3} \square K_{2}$.

Theorem 2.18. If $k \geq 2$, then $\operatorname{drn}\left(K_{k} \square K_{2}\right)=3$.

Proof. Again the lower bound is from Theorem 2.8. Let $G=K_{k} \square K_{2}$. We have observed that $\operatorname{drn}(G) \leq 3$ when $k \leq 3$, so consider $k \geq 4$. Let $C$ be the unique card of $G$. Since $G$ has no clones or twins, by Theorem 2.13 it suffices to show that $G$ is coherent. Given $u, v \in V(G)$, let $F=G-\{u, v\}$, and let $S=N_{G-v}(u)$ and $S^{\prime}=N_{G-u}(v)$. Let $z$ be a vertex added to $F$ to obtain $C$; we must show that $N_{C}(z) \in\left\{S, S^{\prime}\right\}$. Let $A$ and $B$ be the two $k$-cliques in $G$. By symmetry, we have two cases.

Case 1: $u, v \in A$. Vertices remaining in $A$ have degree $k-2$ in $F$, and the neighbors of $u$ and $v$ in $B$ have degree $k-1$ in $F$. Since $\delta(C)=k-1$ and $\Delta(C)=k$, we conclude that $N_{C}(z)$ contains all of $A-\{u, v\}$ and the neighbor of $u$ or $v$ in $B$. Hence $N_{C}(z) \in\left\{S, S^{\prime}\right\}$.

Case 2: $u \in A, v \in B$. Here $F \subseteq K_{k-1} \square K_{2}$, with equality if $u v \in E(G)$ and one missing "cross-edge" if $u v \notin E(G)$. Since $k \geq 4$, the only $(k-1)$-cliques in $F$ are $A-u$ and $B-v$. Since $C$ has a $k$-clique, $z$ must be adjacent to all of $A-u$ or $B-v$. Since $C$ has exactly $k$ vertices of degree $k-1, z$ has no other neighbor if $u v \in E(G)$ and is adjacent to the remaining vertex of degree $k-2$ in $F$ if $u v \notin E(G)$. In either case, $N_{C}(z) \in\left\{S, S^{\prime}\right\}$.

Similar arguments can be made for other families of vertex-transitive graphs. For example, it follows also that $\operatorname{drn}\left(C_{k} \square K_{2}\right)=3$ for $k \geq 3$, where $C_{k}$ is the $k$-cycle. We ask which vertex-transitive graphs are coherent, or at least which vertex-transitive graphs have coherent cartesian products with $K_{2}$.


Figure 2.2: Trees with degree-associated reconstruction number 3.

### 2.4 Trees

In one of the first papers on reconstruction, Kelly [30] proved that trees with at least three vertices are reconstructible. Several papers have studied reconstruction of trees given only some of the cards from the deck. Harary and Palmer [21] showed that every tree is uniquely determined by its leaf-deleted subgraphs, and Lauri [32] showed that every tree with at least three cut-vertices is reconstructible from its cut-vertex-deleted subgraphs.

Myrvold [41] proved that every tree with at least 5 vertices has reconstruction number 3. Together with Corollary 2.5, this implies the following.

Corollary 2.19. If $T$ is a tree, then $\operatorname{drn}(T) \leq 3$, and $\operatorname{drn}(T)=1$ if and only if $T$ is a star.

By Corollary 2.2, almost every graph has degree-associated reconstruction number 2, and Prince [43] proved the "almost-always" statement also for the class of all trees. The trees $H_{1}$ and $H_{2}$ in Figure 2.2 do satisfy $\operatorname{drn}\left(H_{1}\right)=\operatorname{drn}\left(H_{2}\right)=3$.

Example 2.20. $\operatorname{drn}\left(H_{1}\right)=3$. The graph $H_{1}$ has only two distinct dacards. They are $\left(P_{3}+2 K_{1}, 3\right)$ and $(S, 1)$, where $S$ is the tree obtained by subdividing one edge of $K_{1,3}$ (that is, replacing an edge $u v$ by a vertex $w$ and two edges $u w$ and $w v$ ). Hence there are three ways to take two dacards; two of the first, two of the second, and one of each. For these three cases, other graphs having the same two dacards are the graph obtained from $2 K_{1}+K_{4}$ by deleting one edge, the tree obtained from
$K_{1,4}$ by subdividing one edge, and the tree obtained from $K_{1,3}$ by subdividing one edge twice, respectively.

Three dacards suffice, using one leaf and the two central vertices. For any reconstruction $G$, the leaf card forces $G$ to be a tree, and the other two force $G$ to have two vertices of degree 3 . Hence $G$ is obtained from $S$ by appending a leaf to the one vertex of degree 2 .

The argument for $H_{2}$ is similar but longer. We have particular interest in $H_{1}$ because it lies in the family we will study for the rest of this chapter. First, the fact that we know of no tree $T$ other than $H_{1}$ and $H_{2}$ such that $\operatorname{drn}(T)=3$ suggests a conjecture.

Conjecture. Only finitely many trees $T$ satisfy $\operatorname{drn}(T)=3$.

A caterpillar is a tree whose non-leaf vertices induce a path called the spine of the caterpillar. In the remainder of this chapter, we prove that the tree $H_{1}$ and the stars $K_{1, m}$ are the only caterpillars $T$ such that $\operatorname{drn}(T) \neq 2$.

By Corollary 2.19, it suffices to prove that $\operatorname{drn}(T) \leq 2$ for caterpillars other than $H_{1}$. In this section we give sufficient conditions for $\operatorname{drn}(T) \leq 2$ when $T$ is a tree. In the subsequent sections of this chapter, we prove this inequality for various classes of caterpillars described by conditions on the list of degrees of the spine vertices, culminating in the full proof. The task is to select for each caterpillar $T$ a pair of dacards that together determine $T$.

The skeleton of a tree $T$ is the subtree $T^{\prime}$ obtained by deleting all leaves from $T$. Thus caterpillars are the trees whose skeletons are paths, and the spine of a caterpillar is its skeleton. We use $C\left(a_{1}, \ldots, a_{s}\right)$ to denote a caterpillar with spine $\left\langle v_{1}, \ldots, v_{s}\right\rangle$ by attaching $a_{i}$ leaf neighbors to $v_{i}$ for each $i \in\{1, \ldots, s\}$. We call $\left(a_{1}, \ldots, a_{s}\right)$ the spine list. Note that $C\left(a_{1}, \ldots, a_{s}\right) \cong C\left(a_{s}, \ldots, a_{1}\right)$ and that $a_{1}$ and $a_{s}$ are both positive. Where convenient, we denote a repeated string in this
notation by enclosing it in parentheses and writing its multiplicity as a superscript in parentheses. For example, $C(a, b, c, d, b, c, d, b, c, d, e, f)=C\left(a,(b, c, d)^{(3)}, e, f\right)$.

The weight $w(u)$ of a vertex $u$ in a tree $T$ is the maximum number of vertices in a component of $T-u$; note that all leaves in an $n$-vertex tree have weight $n-1$. The centroid of a tree is the set of vertices having minimum weight. Myrvold [41] used centroids of trees extensively in her analysis of reconstruction number of trees. To keep our presentation self-contained, we include short proofs of some elementary observations.

Lemma 2.21 (Myrvold [41]). The centroid of an n-vertex tree $T$ consists of one vertex or two adjacent vertices. Also, $w(v) \leq n / 2$ if and only if $v$ is in the centroid of $T$, and the centroid of $T$ has size 1 if and only if $T$ has a vertex with weight strictly less than $n / 2$.

Proof. For each vertex $v$, mark an incident edge from $v$ toward a largest component of $T-v$. Since $T$ has $n$ vertices and $n-1$ edges, some edge $a b$ is marked twice. Let $A$ and $B$ the vertex sets of the components of $T-a b$, with $a \in A$ and $b \in B$. Note that $w(a)=|B|$ and $w(b)=|A|$, so $w(a)+w(b)=n$.

If $w(a)=w(b)=n / 2$, then $|A|=|B|=n / 2$; for $c \in V(T)-\{a, b\}$, we have $w(c)>|B|$ if $c \in A$ and $w(c)>|A|$ if $c \in B$. Thus the centroid of $T$ is $\{a, b\}$, the set of two adjacent vertices with weight at most $n / 2$.

Suppose that $w(a)<n / 2$. Let $C_{1}, \ldots, C_{d(a)}$ denote the vertex sets of the components of $T-a$. For a vertex $c \in C_{i}$, note that $T-c$ has a component of order at least $n-\left|C_{i}\right|$; hence $w(c) \geq n-\left|C_{i}\right|>n / 2$, since $\left|C_{i}\right| \leq w(a)<n / 2$. Thus the centroid of $T$ is $\{a\}$ and consists of the single vertex with weight strictly less than $n / 2$. A similar conclusion holds if $w(b)<n / 2$.

A tree is unicentroidal or bicentroidal depending on whether its centroid has size 1 or 2 , respectively. For simplicity, we refer to the centroid vertex of a
unicentroidal tree as the centroid. A centroidal vertex is a vertex in the centroid.
Lemma 2.22 (Myrvold [41]). Let $v$ be the centroid in a unicentroidal tree $T$. If $\ell$ is a leaf in $T$, then $v$ is centroidal in $T-\ell$.

Proof. Let $T$ have $n$ vertices. By Lemma 2.21, $w(v)<n / 2$. The weight of $v$ in $T^{\prime}$ is at most $(n-1) / 2$, since deleting $\ell$ simply reduces one component of $T-v$. By Lemma 2.21, $v$ is centroidal in $T^{\prime}$.

These facts about centroids can be useful in reconstructing a tree from its dacards. Note that if $G$ has a card that is a tree obtained by deleting a vertex of degree 1 , then $G$ is a tree.

Proposition 2.23. If $T$ is a unicentroidal tree with a leaf $\ell$ adjacent to the centroid vertex, and $T-\ell$ is unicentroidal, then $\operatorname{drn}(T) \leq 2$.

Proof. Let $T^{\prime}=T-\ell$, and let $\hat{T}$ be the card obtained by deleting the centroid from $T$. Thus $\left(T^{\prime}, 1\right)$ and $(\hat{T}, d)$ are the corresponding dacards, and $\ell$ is an isolated vertex in $\hat{T}$.

Let $G$ be a graph having these dacards, obtained by deleting vertices $u$ and $v$, respectively. From the first dacard, $G$ is a tree. From the sizes of the components of $\hat{T}$, Lemma 2.21 tells us that $G$ is unicentroidal with centroid $v$.

Since $u$ is a leaf and $G-u$ is unicentroidal (being isomorphic to $T^{\prime}$ ), Lemma 2.22 identifies $v$ in $G-u$ as the centroid of $G-u$, Since $\hat{T}=G-v$, the $d$ components of $\hat{T}$ agree with the components obtained by deleting the centroid from $T^{\prime}$, except that one may have $u$ as an extra leaf. However, we know from $T$ that instead $\hat{T}$ has one more component than $T^{\prime}-v$, an isolated vertex. This forces $u$ to be adjacent to $v$ in $G$, yielding $G \cong T$.

We have noted that having a dacard $(G-v, 1)$ in which $G-v$ is a tree forces $G$ to be a tree. Our next lemma gives another sufficient condition on dacards for $G$ to be a tree.

Lemma 2.24. Let $G$ be a graph with dacards $(A, 2)$ and $(B, 2)$. If $A$ and $B$ are forests with two components, and the sizes of the components of $A$ do not equal those of $B$, then $G$ is a tree.

Proof. Let the sizes of the components in $A$ and $B$ be $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$, respectively. Let $u$ and $v$ be the vertices such that $G-u=A$ and $G-v=B$.

If $G$ is disconnected, then the neighbors of $u$ in $G$ belong to the same component of $A$, which we may call $A_{1}$. Now $G$ has two components with orders $a_{1}+1$ and $a_{2}$, and the component of $G$ containing $A_{1}$ is not a tree. To make $B$ a forest, $v$ must lie on all cycles in $G$ and hence must lie in $A_{1}$. Since $G$ and $B$ both have two components, $v$ is not a cut-vertex of $A_{1}$. Now $\left\{a_{1}, a_{2}\right\}=\left\{b_{1}, b_{2}\right\}$, a contradiction.

Hence $G$ is connected. Since $d_{G}(u)=2$, it follows that $G$ is a tree.

By the characterization in Corollary 2.5, the only trees $T$ for which $\operatorname{drn}(T)=1$ are stars. We have also observed that $\operatorname{drn}\left(H_{1}\right)=3$. To complete our analysis of caterpillars, in the remainder of this chapter we only need to prove results showing that caterpillars other than $H_{1}$ have degree-associated reconstruction number at most 2. General arguments for reconstruction of trees often must exclude the special case of paths; we treat them separately here.

Proposition 2.25. If $n \geq 4$, then $\operatorname{drn}\left(P_{n}\right)=2$.

Proof. For $n=4$, use the two dacards $\left(P_{3}, 1\right)$ and $\left(P_{1}+P_{2}, 2\right)$. The first forces every reconstruction to be a tree, and hence in the second the missing vertex has a neighbor in each component, yielding $P_{4}$.

For $n \geq 5$, let $a=\left\lfloor\frac{n-1}{2}\right\rfloor$ and $b=\left\lceil\frac{n-1}{2}\right\rceil$. Let $G$ be a graph having the two dacards $\left(P_{a}+P_{b}, 2\right)$ and $\left(P_{a-1}+P_{b+1}, 2\right)$, associated with $u$ and $v$, respectively. By Lemma 2.24, $G$ is a tree. (Here $a-1 \geq 1$ requires $n \geq 5$.)

Let $w$ be a neighbor of $u$ in $G$. If $w$ is not a leaf in $G-u$, then $d_{G}(w)=3$. Since $\Delta(G-v)=2$, we have $v \in N_{G}(w)$. Now the component of $G-v$ containing
$u$ has at least $a+3$ vertices, since it contains all of one component of $P_{a}+P_{b}$ plus $u, w$, and another neighbor of $w$. Since the components of $G-v$ have at most $a+2$ vertices, we conclude that $u$ has no neighbor with degree 3 in $G$, and hence $G=P_{n}$.

Our general arguments fail also for several other classes of caterpillars where we will need alternative choices of dacards. It is worth noting that $P_{n}$ is forced by two dacards only when they correspond to a centroidal vertex and a noncentroidal neighbor of the centroid.

### 2.5 Caterpillars of the form $C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$

We begin with a technical lemma that will restrict the form of caterpillars with special symmetry properties. A palindrome is a list unchanged under reversal.

Lemma 2.26. Let $B=\left(b_{1}, \ldots, b_{s}\right)$. If $\left(b_{1}, \ldots, b_{s}\right)$ and $\left(b_{3}, \ldots, b_{s}\right)$ are palindromes, then either $B$ is constant, or $s$ is odd and $B$ alternates two values. If $\left(b_{1}, \ldots, b_{s-1}\right)$ and $\left(b_{2}, \ldots, b_{s}\right)$ are palindromes, then either $B$ is constant, or $s$ is even and $B$ alternates two values.

Proof. Define a graph $R$ with vertex set $\left\{v_{1}, \ldots, v_{s}\right\}$ such that $v_{i} v_{j} \in E(R)$ if and only if the palindrome requirements force $b_{i}=b_{j}$. If $R$ consists of one component, then $B$ is constant. If $R$ consists of two components, one containing the oddindexed and the other the even-indexed vertices, then $B$ is constant or alternates between two values.

If $\left(b_{1}, \ldots, b_{s}\right)$ and $\left(b_{3}, \ldots, b_{s}\right)$ are palindromes, then $v_{i} v_{j} \in E(R)$ if and only if $i+j \in\{s+1, s+3\}$. If $s$ is even, then $R$ is the path $\left\langle v_{1}, v_{s}, v_{3}, v_{s-2}, \ldots, v_{s-1}, v_{2}\right\rangle$. If $s$ is odd, then $R$ consists of two paths $\left\langle v_{1}, v_{s}, v_{3}, v_{s-2}, \ldots\right\rangle$, containing the oddindexed vertices, and $\left\langle v_{2}, v_{s-1}, v_{4}, v_{s-3}, \ldots\right\rangle$, containing the even-indexed vertices.

If $\left(b_{1}, \ldots, b_{s-1}\right)$ and $\left(b_{2}, \ldots, b_{s}\right)$ are palindromes, then $v_{i} v_{j} \in E(R)$ if and only if $i+j \in\{s, s+2\}$. If $s$ is odd, then $R$ is the path $\left\langle v_{1}, v_{s-1}, v_{3}, v_{s-3}, \ldots, v_{s-2}, v_{2}, v_{s}\right\rangle$. If $s$ is even, then $R$ consists of two paths $\left\langle v_{1}, v_{s-1}, v_{3}, v_{s-3}, \ldots\right\rangle$, containing the oddindexed vertices, and $\left\langle v_{s}, v_{2}, v_{s-2}, v_{4} \ldots\right\rangle$, containing the even-indexed vertices.

In the remainder of this chapter, $T=C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$, with spine $\left\langle v_{1}, \ldots, v_{s}\right\rangle$ such that $v_{i}$ has $a_{i}$ leaf neighbors for $1 \leq i \leq s$. By Proposition 2.25, $\operatorname{drn}\left(P_{s+2}\right)=2$. Since $P_{s+2}$ is the case $a_{3}=\cdots=a_{s-2}=0$, we may let $r=$ $\min \left\{i: a_{i}>0\right.$ and $\left.3 \leq i \leq s-2\right\}$. To show $\operatorname{drn}(T) \leq 2$, we present two dacards that determine $T$. Consider the dacards for leaves adjacent to $v_{1}$ and $v_{r}$, writing

$$
\begin{array}{ll}
C_{1}=C\left(1,0^{(r-3)}, a_{r}, \ldots, a_{s-2}, 0,1\right), & D_{1}=\left(C_{1}, 1\right), \\
C_{2}=C\left(1,0^{(r-2)}, a_{r}-1, a_{r+1}, \ldots, a_{s-2}, 0,1\right), & D_{2}=\left(C_{2}, 1\right) .
\end{array}
$$

Let $G$ be a graph reconstructed from dacards $D_{1}$ and $D_{2}$, with vertices $u$ and $v$ being the deleted vertices, respectively. Since $d_{G}(u)=d_{G}(v)=1$, either card forces $G$ to be a tree. We show that $G \cong T$, with some exceptions where we will later use other dacards.

Lemma 2.27. If $T=C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$ and $T$ is not a path, then the dacards $D_{1}$ and $D_{2}$ determine $T$ in all cases except when $T$ satisfies one of the following conditions:
(1) $T=C\left(1,0^{(p)}, 1,0^{(q)}, 1\right)$, where $p, q \geq 1$;
(2) $T=C\left(1,0^{(p+1)}, k,(\alpha), k-1,0^{(p)}, 1\right)$, where $k \geq 1, p \geq 0$, and $(\alpha)$ is a palindrome.

Proof. From $D_{2}$ it follows that $G$ is a tree with diameter at least $s+1$. Since $\operatorname{diam}(G-u)=s$ and $s \geq 5$, it follows that $u$ is adjacent in $G$ to an endpoint of a longest path in $G-u$. Hence $G$ is $T$ or is $C\left(1,0^{(r-3)}, a_{r}, \ldots, a_{s-2}, 0,0,1\right)$. Suppose
the latter.
Since $G-v \cong C_{2}$, and both $G$ and $C_{2}$ have spines with $s$ vertices, decreasing one term of the spine list $L$ for $G$ yields the spine list $L^{\prime}$ for $C_{2}$ or its reverse, $L^{\prime \prime}$. Let $L_{i}, L_{i}^{\prime}, L_{i}^{\prime \prime}$ denote the $i$ th entry in $L, L^{\prime}, L^{\prime \prime}$, respectively. Since $L_{r-1}=a_{r}>$ $0=L_{r-1}^{\prime}$, changing $L$ into $L^{\prime}$ by decreasing one $L_{i}$ requires $i=r-1$ and $a_{r}=1$. Since no other change is allowed, we have

$$
\begin{aligned}
& a_{r}-1=L_{r-1}-1=L_{r-1}^{\prime}=0, \\
& a_{r+1}=L_{r}=L_{r}^{\prime}=a_{r}-1, \\
& a_{i+1}=L_{i}=L_{i}^{\prime}=a_{i} \quad \text { for } r+1 \leq i \leq s-3, \\
& 0=L_{s-2}=L_{s-2}^{\prime}=a_{s-2},
\end{aligned}
$$

and thus $a_{r}=1$ and $a_{r+1}=\cdots=a_{s-2}=0$. Hence $T=C\left(1,0^{(r-2)}, 1,0^{(s-r-1)}, 1\right)$, as in (1).

Suppose instead that decreasing some $L_{j}$ by 1 changes $L$ into $L^{\prime \prime}$; we first restrict the choices for $j$. By construction, $3 \leq r \leq s-2$ and $s \geq 5$. We compare the expressions below.

$$
\left.\begin{array}{rlrlrl}
T & =C\left(1,0^{(r-2)}, \quad a_{r},\right. & \ldots, & a_{s-2}, & 0, & 1
\end{array}\right)
$$

Since $L_{i}=a_{i+1}$ for $2 \leq i \leq s-2$, we have $L_{r-1}+L_{s-r+1}=a_{r}+a_{s-r+2}$. Since $L_{i}^{\prime \prime}=a_{s+1-i}$ for $i \neq s-r+1$ (and $L_{s-r+1}^{\prime \prime}=a_{r}-1$ ), setting $i=r-1$ yields $L_{r-1}^{\prime \prime}+L_{s-r+1}^{\prime \prime}=a_{s-r+2}+a_{r}-1$, except that $L_{r-1}^{\prime \prime}+L_{s-r+1}^{\prime \prime}=a_{s-r+2}+a_{r}-2$ when $r-1=s-r+1$. In either case, $L_{r-1}^{\prime \prime}+L_{s-r+1}^{\prime \prime}<L_{r-1}+L_{s-r+1}$, and hence $j \in\{r-1, s-r+1\}$.

Since $L_{i}=0$ for $2 \leq i \leq r-2$, we have $j \geq r-1$. Since only position $j$ changes, the first $r-2$ positions agree in $L$ and $L^{\prime \prime}$. Hence $a_{i}=0$ for $s-r+$ $3 \leq i \leq s-1$ (when $r=3$ this conclusion is empty). If $r-1 \geq s-r+2$, then this statement includes $a_{r}-1=0$, since $L_{s-r+1}^{\prime \prime}=a_{r}-1$. In this case $T=C\left(1,0^{(r-2)}, 1,0^{(s-1-r)}, 1\right)$, which satisfies description (1). If $r-1=s-$ $r+1$, then $s-r+3=r+1$; we obtain $T=C\left(1,0^{(r-2)}, a_{r}, 0^{(r-3)}, 1\right)$ and $G=$ $C\left(1,0^{(r-3)}, a_{r}, 0^{(r-2)}, 1\right)$, and hence $G \cong T$.

Hence we may assume that $r-1<s-r+1$. Now $a_{i+1}=L_{i}=L_{i}^{\prime \prime}=a_{s+1-i}$ for $r \leq i \leq s-r$. Hence $\left(a_{r+1}, \ldots, a_{s-r+1}\right)$ is a palindrome, and $a_{s-r+2}$ equals $a_{r}-1$ (if $j=r-1$ ) or $a_{r}$ (if $j=s-r+1$ ). Letting $\alpha=\left(a_{r+1}, \ldots, a_{s-r+1}\right)$, we have $T=C\left(1,0^{(r-2)}, k,(\alpha), k^{\prime}, 0^{(r-3)}, 1\right)$ and $G=C\left(1,0^{(r-3)}, k,(\alpha), k^{\prime}, 0^{(r-2)}, 1\right)$, where $k=a_{r} \geq 1$ and $k^{\prime} \in\{k, k-1\}$. If $k^{\prime}=k$, then $G \cong T$; otherwise, $T$ satisfies description (2).

Since $C\left(a_{1}, \ldots, a_{s}\right) \cong C\left(a_{s}, \ldots, a_{1}\right)$ for every caterpillar by reversing the spine, we have shown that a caterpillar of the form $C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$ is determined by the stated choice of dacards taken from one end or the other unless under both directions the caterpillar has one of the exceptional forms in described in Lemma 2.27.

Our argument to handle these exceptional forms has exceptions itself. The difficulty is that in the exceptional cases the two dacards $D_{1}$ and $D_{2}$ chosen for Lemma 2.27 do not determine $T$. Nevertheless, in all exceptional cases, we find two dacards that work. We show first that the type (1) exceptional form in Lemma 2.27 causes no difficulty.

Proposition 2.28. If $T=C\left(1,0^{(p)}, 1,0^{(q)}, 1\right)$, where $p, q \geq 0$, then $\operatorname{drn}(T) \leq 2$.

Proof. The caterpillar $T$ contains one vertex of degree 3, which has exactly one
leaf neighbor. Use the dacards for these two vertices: $D_{1}=\left(P_{p+q+5}, 1\right)$ and $D_{2}=\left(P_{p+2}+K_{1}+P_{q+2}, 3\right)$. Let $G$ be a reconstruction from these dacards, with $u$ and $v$ being the respective deleted vertices. As a leaf deletion, $D_{1}$ forces $G$ to be a tree. Since $G-u$ is a path, $v$ is the only vertex of degree 3 in $G$. Hence $v$ must have a neighbor in each component of $P_{p+2}+K_{1}+P_{q+2}$, and that neighbor cannot have degree 2 in its component. We obtain $G \cong T$.

Among the type (2) exceptions in Lemma 2.27, we consider several special forms.

Proposition 2.29. If $T=C\left(1,0^{(p+1)},(2,0)^{(q)}, 1,0^{(p)}, 1\right)$, where $p, q \geq 1$, then $\operatorname{drn}(T) \leq 2$.

Proof. Let $j=p+3+2\lfloor q / 2\rfloor$. The spine vertex $v_{j}$ has degree 4 . Consider the dacards obtained by deleting $v_{j}$ or a leaf $\ell$ adjacent to $v_{j}$. Deleting $\ell$ leaves a tree with $2 p+4 q+6$ vertices, and hence any reconstruction $G$ is a tree with $2 p+4 q+7$ vertices. The card when we delete $v_{j}$ consists of two isolated vertices and two caterpillars, which have $p+3+4\lfloor q / 2\rfloor$ and $p+1+4\lceil q / 2\rceil$ vertices. For either parity of $q$, the maximum of these is $p+3+2 q$.

Let $u$ and $v$ be the leaf and the non-leaf vertices deleted from $G$ to obtain these dacards. Since $p+3+2 q<(2 p+4 q+7) / 2$, Lemma 2.21 implies that $v$ is the centroid of $G$. The tree $G-u$ has $2 p+4 q+6$ vertices and is bicentroidal, with centroid vertices $v_{j}$ and $v_{j \pm 1}(+1$ when $q$ is odd, -1 when $q$ is even); each of these vertices has weight $p+2 q+3$. By Lemma 2.22, $v$ is one of these two vertices. Since $d_{G}(v)=4$ and the spine neighbors of $v_{j}$ have no leaf neighbors, $v=v_{j}$. Since $d_{G-u}\left(v_{j}\right)=3$, we obtain $G$ from the leaf card $G-u$ by adding $u$ adjacent to $v_{j}$. Thus $G \cong T$.

Proposition 2.30. If $T=C\left(1,0^{(p)}, 1^{(q)}, 0^{(p)}, 1\right)$, where $p \geq 1$ and $q \geq 0$, then $\operatorname{drn}(T) \leq 2$.

Proof. If $q=0$, then $T$ is a path, and Proposition 2.25 applies. If $q=1$, then Proposition 2.28 applies. Now consider $q \geq 2$. Note that $s=2 p+q+2$, so $\operatorname{diam}(T)=2 p+q+3$.

Let $x$ be the leaf adjacent to $v_{p+2}$. Consider the dacards obtained by deleting $v_{p}$ (with degree 2) and $x$. Note that $T-x=C\left(1,0^{(p+1)}, 1^{(q-1)}, 0^{(p)}, 1\right)$ and $T-v_{p}=$ $P_{p}+C\left(2,1^{(q-1)}, 0^{(p)}, 1\right)$. Let $G$ be a reconstruction from these two dacards, with $G-u \cong T-x$ and $G-v \cong T-v_{p}$. As usual, the leaf dacard forces $G$ to be a tree. Since $\operatorname{diam}(G-u)=2 p+q+3=\operatorname{diam} T$, the neighbors of $v$ in $G$ must be endpoints of longest paths in the two components of $G-v$. Hence $G \cong T$ or $G=C\left(2,1^{(q-1)}, 0^{(2 p+1)}, 1\right)$, depending on which end of the longest path in the non-path component in $G-v$ is adjacent to $v$.

In the latter case, since the spine endpoints in $G-u$ each have only one leaf neighbor, $u$ must be adjacent in $G$ to the spine vertex having two leaf neighbors. Now $G-u \cong C\left(1^{(q)}, 0^{(2 p+1)}, 1\right)$. Since $p \geq 1$ and $q \geq 2$, this graph is not isomorphic to $T-x$, a contradiction. Hence this case does not arise, and $G \cong T$.

We now have the tools to prove the main result of this section.

Theorem 2.31. If $T=C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$, then $\operatorname{drn}(T)=2$.

Proof. By Proposition 2.25, we may assume that $T$ is not a path. In Lemma 2.27, we proved that the dacards for the leaves adjacent to $v_{1}$ and the next spine vertex having a leaf neighbor determine $T$ unless both $T$ and its reverse description $C\left(a_{s}, \ldots, a_{1}\right)$ have the forms specified in Lemma 2.27. If the description is as in (1) of Lemma 2.27, then $T$ is a path plus one pendant edge, and Proposition 2.28 yields $\operatorname{drn}(T) \leq 2$.

Hence we may assume that both $T$ and the reverse description $T^{\prime}$ are as in (2)
of Lemma 2.27. If $L=\left(a_{1}, \ldots, a_{s}\right)$, then

$$
L=\left(1,0^{(p+1)}, k,(\alpha), k-1,0^{(p)}, 1\right)=\left(1,0^{(q)}, \ell-1,(\beta), \ell, 0^{(q+1)}, 1\right)
$$

for some palindromes $(\alpha)$ and $(\beta)$ and integers $p, q, k, \ell$ such that $p, q \geq 0$ and $k, \ell \geq 1$.

Suppose that $k \geq 2$. The last nonzero entry of $L$ before $a_{s}$ is both $a_{s-p-1}$ and $a_{s-q-2}$, so $q=p-1$ and $\ell=k-1$. Hence

$$
L=\left(1,0^{(p+1)}, k,(\alpha), k-1,0^{(p)}, 1\right)=\left(1,0^{(p-1)}, k-2,(\beta), k-1,0^{(p)}, 1\right)
$$

which implies that $k=2$ and that both $\left(a_{p+4}, \ldots, a_{s-p-2}\right)$ and $\left(a_{p+2}, \ldots, a_{s-p-2}\right)$ are palindromes. Since $a_{p+2}=0 \neq k=a_{p+3}$, Lemma 2.26 yields

$$
T=C\left(1,0^{(p+1)},(2,0)^{(s / 2-p-2)}, 1,0^{(p)}, 1\right)
$$

where $s$ is even and $p \geq 1$. Since $L$ contains at least one 2, Proposition 2.29 yields $\operatorname{drn}(T) \leq 2$.

By reversing $L$, the same argument holds when $\ell \geq 2$. Finally, when $k=\ell=1$,

$$
L=\left(1,0^{(p+1)}, 1,(\alpha), 0^{(p+1)}, 1\right)=\left(1,0^{(q+1)},(\beta), 1,0^{(q+1)}, 1\right) .
$$

Since $a_{p+3}=1$ and $a_{2}=\cdots=a_{q+2}=0$, we have $p \geq q$. Since $a_{s-q-2}=1$ and $a_{s-p-1}=\cdots=a_{s-1}=0$, we have $q \geq p$. Thus $p=q$, and $\left(a_{p+4}, \ldots, a_{s-p-2}\right)$ and $\left(a_{p+3}, \ldots, a_{s-p-3}\right)$ are palindromes. Since $a_{p+3}=a_{s-p-2}=1$, Lemma 2.26 implies that $a_{p+3}=\cdots=a_{s-p-2}=1$, so $T=C\left(1,0^{(p+1)}, 1^{(s-2 p-4)}, 0^{(p+1)}, 1\right)$. By Proposition 2.30, again $\operatorname{drn}(T) \leq 2$.

### 2.6 General caterpillars

Having shown that $\operatorname{drn}(T) \leq 2$ whenever $T$ has the form $C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$, we may exclude such caterpillars (and stars) from our study of general caterpillars. In the general case, we will use the dacards obtained by deleting the first spine vertex $v_{1}$ and one of its leaf neighbors. This choice will determine $T$ except in some cases. Again we must handle the exceptional cases separately, choosing a different pair of dacards. The next several propositions handle these cases. Note that setting $k=0$ in the first would yield a path.

Proposition 2.32. If $T=C\left(k+1, k^{(m)}, k+1\right)$, where $k, m \geq 1$, then $\operatorname{drn}(T)=2$.

Proof. The cards obtained by deleting leaf neighbors of $v_{1}$ and $v_{2}$ are $C\left(k^{(m+1)}, k+\right.$ 1) and $C\left(k+1, k-1, k^{(m-1)}, k+1\right)$. Let $G$ be a reconstruction from these dacards, with $u$ and $v$ respectively being the added vertices of degree $1 ; G$ must be a tree. Since the endpoints of the spine in $G-v$ both have $k+1$ leaf neighbors, $G$ has two vertices at distance $m+1$ that each have at least $k+1$ leaf neighbors. Since $G-u$ has only one vertex with $k+1$ leaf neighbors, the neighbor of $u$ in $G-u$ must have distance $m+1$ from the spine endpoint having $k+1$ leaf neighbors. There is only one such vertex, so $G \cong C\left(k+1, k^{(m)}, k+1\right)$.

A branch vertex is a vertex with degree at least 3 . Let $B_{k}$ denote the caterpillar formed by giving two leaf neighbors to one end of $P_{k}$. Let $z_{k}$ denote the third leaf in $B_{k}$.

Proposition 2.33. If $T=C\left(2,0^{(s-2)}, 2\right)$, where $s \geq 3$, then $\operatorname{drn}(T)=2$.

Proof. Let $p=\lceil s / 2\rceil$. Note that $v_{p}$ is centroidal in $T$ and $v_{p-1}$ is not. The cards $C_{1}$ and $C_{2}$ obtained by deleting $v_{p}$ and $v_{p-1}$ are $B_{p-1}+B_{s-p}$ and $B_{p-2}+B_{s-p+1}$, respectively. Let $D_{1}=\left(C_{1}, 2\right)$ and $D_{2}=\left(C_{2}, 2\right)$; these are the dacards for $v_{p}$ and
$v_{p-1}$ when $s \geq 5$. We postpone the special cases $s=4$ and $s=3$ (when $s=2$, the caterpillar reduces to $H_{1}$ ).

Let $G$ be a reconstruction from $\left\{D_{1}, D_{2}\right\}$, where $C_{1}=G-u$ and $C_{2}=G-v$. By Lemma $2.24, G$ is a tree, and each of $u$ and $v$ has one neighbor in each component of its dacard.

Case 1: $u v \in E(G)$. Since $d_{G}(u)=d_{G}(v)=2$, vertex $v$ is a leaf in $G-u$, and $u$ is a leaf in $G-v$. Thus $G-v$ can be obtained from $G-u$ by deleting the leaf $v$ in $G-u$ and attaching $u$ to one vertex in the other component of $G-u$. Since $p-2<p-1 \leq s-p<s-p+1$, with the components of $G-u$ being isomorphic when $p-1=s-p$, obtaining a component of $G-v$ by deleting a leaf of a component of $G-u$ happens only by deleting $z_{p-1}$ from $B_{p-1}$ to obtain $B_{p-2}$. Hence $B_{s-p+1}$ is the component of $G-v$ containing $u$, and it arises from $B_{s-p}$ only by attaching $u$ to $z_{s-p}$. Now $G \cong T$.

Case 2: $u v \notin E(G)$. Let $Q$ and $Q^{\prime}$ be the components of $G-u$, with $v \in V(Q)$. Since $u v \notin E(G)$, we have $d_{G-u}(v)=2$. Now $v$ is a cut-vertex of $Q$. Let $q$ be the order of the component of $Q-v$ not containing the neighbor of $u$ in $V(Q)$. It follows that $G-v$ has components of orders $q$ and $s+3-q$; we also know that these values are $p$ and $s-p+3$. Since the orders of $Q$ and $Q^{\prime}$ differ by at most one, we have $q<s+3-q$. We conclude that $q=p$. To accommodate the inclusion of vertex $v$ and another vertex, $Q$ needs at least $p+2$ vertices, so $Q=B_{s-p} \cong B_{p}$ (with $s$ even), $v$ is the vertex of $B_{s-p}$ adjacent to $z_{s-p}$, and $u$ is adjacent to $z_{s-p}$. Now examination of $G-v$ shows that the neighbor of $u$ in $B_{p-1}$ is $z_{p-1}$, and again $G \cong T$.

In either case, when $s \geq 5$, we conclude that $G \cong T$. For $s \in\{3,4\}$, we again use dacards for $v_{p}$ and $v_{p-1}$, but now $p=2$, and we obtain $C_{1}=P_{3}+B_{s-p}$ and $C_{2}=2 K_{1}+B_{s-p+1}$, with $D_{1}=\left(C_{1}, 2\right)$ and $D_{2}=\left(C_{2}, 3\right)$. Although Lemma 2.24 does not apply, still every reconstruction $G$ (with $C_{1}=G-u$ and $C_{2}=G-v$ ) is a tree. This holds because $D_{1}$ implies that $G$ has no isolated vertex, and then
$D_{2}$ gives $v$ a neighbor in each component of $G-v$.
If $s=3$, then $C_{1}=2 P_{3}$, which yields $\Delta(G) \leq 3$. Hence we cannot make $v$ adjacent to the center of $B_{s-p+1}$ (which equals $K_{1,3}$ ), and making it adjacent to a leaf of $B_{s-p+1}$ yields $G \cong T$.

If $s=4$, then $T=C(2,0,0,2)$, with $C_{1}=P_{3}+K_{1,3}$ and $C_{2}=2 K_{1}+B_{3}$. If $v$ is adjacent to $z_{3}$ in the component $B_{3}$ of $G-v$, then $G \cong T$, so we exclude the other three possibilities. If $G$ has a vertex $x$ of degree 4 , then $\Delta(G-u)=\Delta(G-v)=3$ requires $u, v \in N_{G}(x)$. Now $x$ has a neighbor $v$ of degree 3 , but restoring $u$ to $G-u$ gives $x$ no neighbor with degree more than 3 . Hence $\Delta(G)=3$. This requires $u$ to be adjacent to the central vertex of $P_{3}$ and a leaf of $K_{1,3}$ in the two components of $C_{1}$, yielding $G \cong T$.

Proposition 2.34. If $T=C\left(k+2,(0, k)^{(m)}, 0, k+2\right)$, with $k \geq 0$ and $m \geq 1$, then $\operatorname{drn}(T) \leq 2$.

Proof. The case where $k=0$ is a special case of Proposition 2.33 , so we may assume that $k \geq 1$. In that case $T$ is unicentroidal and has a leaf adjacent to the centroid whose deletion leaves a unicentroidal subtree. By Proposition 2.23, $\operatorname{drn}(T)=2$.

For a general caterpillar $T$, with $T=C\left(a_{1}, \ldots, a_{s}\right)$, we want to make a uniform choice of two dacards. The main lemma shows that this choice determines $T$ unless $T$ belongs to one of several exceptional classes of caterpillars. The proof of the theorem then uses the classes we have already discussed to handle the exceptional classes.

Lemma 2.35. If $T=C\left(a_{1}, \ldots, a_{s}\right)$, then the dacards for an endpoint of the spine and one of its leaf neighbors determine $T$ unless $T$ is Type t for $\mathrm{t} \in\{1,2,3,4\}$, defined as follows:
(1) $T=C\left(1,0, a_{3}, \ldots, a_{s}\right)$ with $s \geq 3$;
(2) $T=C\left(2,(0,0)^{(m)},(1,0)^{(n)}, 2\right)$ with $m, n \geq 0$;
(3) $T=C\left(k+1, k^{(m)},(k+1)^{(n)}\right)$ with $k, m, n \geq 1$;
(4) $T=C\left(k+2,(0, k)^{(m)},(0, k+1)^{(n)}, 0, k+2\right)$ with $k, n \geq 0$ and $m \geq 1$.

Proof. Since $\operatorname{drn}\left(K_{1, t}\right)=1$, we may assume that $s \geq 2$. Let $\left\langle v_{1}, \ldots, v_{s}\right\rangle$ be the spine of $T$. Recall that $a_{1}, a_{s} \geq 1$. Specify the dacards by deleting $v_{1}$ and by deleting a leaf neighbor $\ell$ of $v_{1}$. Let $T_{1}=T-\ell$, and let $T_{2}$ be the nontrivial component of $T-v_{1}$. Thus the dacards are $\left(a_{1} K_{1}+T_{2}, a_{1}+1\right)$ and $\left(T_{1}, 1\right)$. From the dacard $\left(T_{1}, 1\right)$, any reconstruction $G$ is a tree. Define $u$ and $v$ by $G-u=T_{1}$ and $G-v=a_{1} K_{1}+T_{2}$. Let $x$ the neighbor of $u$ in $G$, and let $y$ be the non-leaf neighbor of $v$ in $G$ (since $G$ is a tree, $d_{G}(v)=a_{1}+1$ forces $v$ to have one neighbor in $T_{2}$ ).

Define $r$ and $s$ by letting the spine of $T_{2}$ be $\left\langle v_{r}, \ldots, v_{s}\right\rangle$ and the spine of $T_{1}$ be $\left\langle v_{q}, \ldots, v_{s}\right\rangle$. We list four events; always (U1 or U2) and (V1 or V2) occurs. Note that if U1 and V1 occur, then $T$ has Type 1, so we may assume that this case does not occur (and also that $G \not \approx T$ ).

$$
\begin{array}{llll}
\mathrm{U} 1: & a_{1}=1, & q=2, & \operatorname{diam} T_{1}=s \\
\mathrm{U} 2: & a_{1}>1, & q=1, & \operatorname{diam} T_{1}=s+1 \\
\mathrm{~V} 1: & a_{2}=0, & r=3, & \operatorname{diam} T_{2}=s-1 \\
\mathrm{~V} 2: & a_{2}>0, & r=2, & \operatorname{diam} T_{2}=s
\end{array}
$$

We call the descriptions of $G$ obtained from $G-u$ and $G-v$ the $u$-description and the $v$-description of $G$. The cases depend on the location of $y$ in $T_{2}$. Most importantly, this determines whether $G$ is a caterpillar.

Case 1: $y$ is in $\left\{v_{r+1}, \ldots, v_{s-1}\right\}$ or is a leaf neighbor of such a vertex. Since we make $v$ (with its $a_{1}$ leaf neighbors) adjacent to $y$, in this case $G$ is not a caterpillar.

The $u$-description also produces $G$ and hence is not a caterpillar. Thus $x$ is a leaf neighbor of a vertex in $\left\{v_{q+1}, \ldots, v_{s-1}\right\}$. The skeleton $G^{\prime}$ has three leaves. In the $v$-description, the leaves are $v_{r}, v_{s}$, and $v$; also, $G^{\prime}$ has $s-r+1$ edges if $y$ is in the spine of $T_{2}$, otherwise $s-r+2$. In the $u$-description, the leaves of $G^{\prime}$ are $v_{q}$, $v_{s}$ and $x$, and $G^{\prime}$ has $s-q+1$ edges.

Let $S_{u}$ and $S_{v}$ denote the multiset of degrees in $G$ of the leaves of $G^{\prime}$ under the $u$-description and $v$-description of $G$, respectively. Equating the numbers of edges of $G^{\prime}$ in the two descriptions yields several possibilities.
(i) If $q=1$, then $r=2$ and $y$ is not in the spine of $T_{2}$. Now $S_{u}=\left\{a_{1}, a_{s}+1,2\right\}$ and $S_{v}=\left\{a_{2}+1, a_{s}+1, a_{1}+1\right\}$. Equality requires $a_{1}=1$, which contradicts $q=1$.
(ii) If $q=2$, then $r=2$, since otherwise $T$ has Type 1 . Now $S_{u}=\left\{a_{2}+2, a_{s}+\right.$ $1,2\}$ and $S_{v}=\left\{a_{2}+1, a_{s}+1,2\right\}$, and equality cannot hold.

Case 2: $y$ is a leaf neighbor of $v_{r}$ or $v_{s}$. For such $y$, if $a_{2}=0$ and hence $r=3$, then $G \cong T$ or $G=C\left(a_{3}+1, a_{4}, \ldots, a_{s-1}, a_{s}-1,0, a_{1}\right)$. If $a_{2}>0$ and hence $r=2$, then $G=C\left(a_{1}, 0, a_{2}-1, a_{3}, \ldots, a_{s}\right)$ or $G=C\left(a_{2}, \ldots, a_{s-1}, a_{s}-1,0, a_{1}\right)$.

Subcase 2a: $a_{2}=0$. Here $G=C\left(a_{3}+1, a_{4}, \ldots, a_{s-1}, a_{s}-1,0, a_{1}\right)$. Avoiding Type 1 requires $a_{1}>1$ and $q=1$, so $\operatorname{diam} T_{1}=s+1=\operatorname{diam} G$. Since $G$ is a caterpillar with diameter $\operatorname{diam} T_{1}$, vertex $x$ is on the spine of $T_{1}$, say $x=v_{j}$. With $G \not \approx T$, we have $j>1$, and the $u$-description is $G=C\left(a_{1}-1, a_{2}, \ldots, a_{j-1}, a_{j}+\right.$ $\left.1, a_{j+1}, \ldots, a_{s}\right)$, with $a_{2}=0$.

In obtaining the multiset of leaf degrees for $G$ from that of $T$, in both the $v$-description and the $u$-description one term increases and one term decreases. The values that change must be the same in each instance; hence $a_{1}=a_{s}$ and $a_{3}=a_{j}$. Since $a_{1} \neq a_{1}-1$, the descriptions match without reversal. Since $a_{s}=a_{1}=a_{3}+2=a_{j}+2>a_{j}+1>0$, we conclude that $j \leq s-2$. Since $0=a_{s-1}=a_{s-3}=\cdots$, we conclude that $s-j$ is even (otherwise $a_{j}+1=0$ ).

If $j$ and $s$ are even, then $0=a_{2}=a_{4}=\cdots=a_{j}=a_{3}$, so $a_{1}=a_{s}=2$. Also $0=a_{3}=\cdots=a_{s-1}$. Since $a_{j}+1=a_{j+2}=\cdots=a_{s-2}=a_{s}-1=1$, we find that $T$ is Type 2.

If $j$ and $s$ are odd, then $0=a_{2}=\cdots a_{s-1}$ and $a_{1}-2=a_{3}=\cdots=a_{j}$ and $a_{j}+1=a_{j+2}=\cdots=a_{s-2}=a_{s}-1$, with $j \geq 3$. Letting $k=a_{3}$, we find that $T$ is Type 4.

Subcase 2b: $a_{2}>0$. Here $\operatorname{diam} T_{2}=s$, and hence $\operatorname{diam} G=s+2$. Since adding $u$ to $T_{1}$ can only add 1 to the diameter, $\operatorname{diam} T_{1}=s+1$, and hence $q=1, a_{1}>1$, and $x$ is a leaf neighbor of $v_{1}$ or $v_{s}$. Now the $u$-description is $G=C\left(1, a_{1}-2, a_{2}, \ldots, a_{s}\right)$ or $G=C\left(a_{1}-1, a_{2}, \ldots, a_{s-1}, a_{s}-1,1\right)$.

In both possibilities for the $v$-description with $a_{2}>0$, one end of the spine of $G$ has $a_{1}$ leaf neighbors. Since $a_{1} \notin\left\{1, a_{1}-1\right\}$, the second possibility for the $u$-description is forbidden. Furthermore, since $a_{1}>1$, the first possibility must be oriented so that $a_{s}$ in the $u$-description matches up with $a_{1}$ in the $v$-description. We have two choices.
(i) $\left(a_{s}, \ldots, a_{3}, a_{2}-1,0, a_{1}\right)=\left(1, a_{1}-2, a_{2}, \ldots, a_{s}\right)$. This is forbidden, since it requires $1=a_{s}=a_{1}$, but $a_{1}>1$.
(ii) $\left(a_{2}, \ldots, a_{s-1}, a_{s}-1,0, a_{1}\right)=\left(1, a_{1}-2, a_{2}, \ldots, a_{s}\right)$. Since $0=a_{s-1}=a_{s-3}=$ $\cdots$ and $1=a_{2}=a_{4}=\cdots$, we conclude that $s$ is even. Now $a_{1}-2=0$ and $a_{s}-1=1$, and $T$ is Type 2 with $m=0$.

Case 3: $y \in\left\{v_{r}, v_{s}\right\}$. If $y=v_{r}$, then $G \cong T$, so we may assume $y=v_{s}$ and $G$ is a caterpillar with diameter $s-r+3$. Since $G$ is a caterpillar, $x$ is a spine vertex of $T_{1}$ or a leaf neighbor of $v_{q}$ or $v_{s}$.

If $x$ is a leaf neighbor of $v_{q}$ or $v_{s}$, then adding $u$ to $T_{1}$ enlarges the diameter, so $\operatorname{diam} G=s-q+3$. Hence $q=r$, which requires $a_{1}=1$ and $a_{2}>0$, and $q=r=2$. Since $a_{1}=1$, setting $x$ to a leaf neighbor of $v_{2}$ yields $G \cong T$. Hence the $v$-description is $G=C\left(a_{2}, \ldots, a_{s}, a_{1}\right)$ and the $u$-description is $G=$
$C\left(a_{2}+1, a_{3}, \ldots, a_{s-1}, a_{s}-1,1\right)$. Since $a_{2}>0$, the descriptions must match up without reversal, which fails because $a_{2} \neq a_{2}+1$.

Finally, we may assume that $x$ is a spine vertex $v_{j}$ in $T_{1}$. Now $\operatorname{diam} G=s-q+$ 2 , so $q=r-1$. Avoiding Type 1 leaves only $q=r-1=1$, so $a_{1}>1$ and $a_{2}>0$. If $j=1$, then $G \cong T$, so $j>1$. Now the $v$-description is $G=C\left(a_{2}, \ldots, a_{s}, a_{1}\right)$ and the $u$-description is $G=C\left(a_{1}-1, a_{2}, \ldots, a_{j-1}, a_{j}+1, a_{j+1}, \ldots, a_{s}\right)$. Since $a_{1}-1 \neq a_{1}$, the descriptions must match up without reversal. Two posibilities remain.
(i) If $j=s$, then matching positions yields $a_{1}-1=a_{2}=\cdots=a_{s}$. Now the $v$-description of $G$ is the reverse of the original description of $T$, and hence $G \cong T$.
(ii) If $1<j<s$, then matching positions yields $a_{1}-1=a_{2}=\cdots=a_{j}=$ $a_{j+1}-1=\cdots=a_{s}-1$. Letting $a_{2}=k$, we have $T=C\left(k+1, k^{(j-1)},(k+1)^{(s-j)}\right)$. We may assume that $k \geq 1$, since otherwise $T$ is Type 1 . Now $T$ is Type 3 .

Theorem 2.36. If $T$ is a caterpillar that is neither $H_{1}$ nor a star, then $\operatorname{drn}(T)=$ 2.

Proof. Let $T=C\left(a_{1}, \ldots, a_{s}\right)$. As in Section 2.5, reversing the order of the spine vertices does not change the isomorphism class of a caterpillar; $T \cong T^{\prime}$, where $T^{\prime}=C\left(a_{s}, \ldots, a_{1}\right)$. In Lemma 2.35 we used dacards corresponding to the first spine endpoint and a leaf adjacent to it, but similar results hold by taking dacards corresponding to the last spine vertex and a leaf adjacent to it. Thus our choice of two dacards, from one end of $T$ or the other, uniquely determines $T$ unless both $T$ and $T^{\prime}$ have a Type listed in Lemma 2.35.

Suppose first that $T$ is Type 1. Suppose that $T^{\prime}$ is Type 1 as well. We have $T=C\left(1,0, a_{3}, \ldots, a_{s-2}, 0,1\right)$, and $\operatorname{drn}(T) \leq 2$ by Proposition 2.31. Since all other Types end with $a_{s}>1$, but $a_{1}=1$, the reversal of a Type 1 caterpillar cannot be Type 2, 3, or 4 . This completes the proof when $T$ (or $T^{\prime}$ ) is Type 1 .

Suppose next that $T$ is Type 2. Since the length of the spine has different parity in Type 2 and Type 4, $T^{\prime}$ is not of Type 4. If $T^{\prime}$ is Type 2 or Type 3, then either $T=C(2,2)$ and $T \cong H_{1}$, or $T=C\left(2,(0,0)^{(m)}, 2\right)$ with $m \geq 1$, in which case $\operatorname{drn}(T) \leq 2$ by Proposition 2.33.

If $T$ and $T^{\prime}$ are both Type 3 , then $T=C\left(k+1, k^{(m)}, k+1\right)$ with $k, m \geq 1$, and $\operatorname{drn}(T) \leq 2$ by Proposition 2.32. Since the entries in specifying a Type 3 caterpillar are all positive, and for Type 4 they are not, $T$ and $T^{\prime}$ cannot be Type 3 and Type 4.

Finally, if $T$ and $T^{\prime}$ are both Type 4, then $n=0$. Now $\operatorname{drn}(T) \leq 2$ by Proposition 2.34.

Having exhausted all cases, the proof is complete.

There is hope to complete a proof that $\operatorname{drn}(T) \leq 2$ for all but finitely many trees. Building upon our result, one can try to make a choice of two dacards that determines $T$ when $T$ is not a caterpillar, with finitely many exceptions. As happened in the proofs of our results on caterpillars, there may be several special classes in addition to caterpillars where the dacards needs to be chosen in other ways.

## CHAPTER 3

## Degree-sequence-forcing sets

### 3.1 Introduction

A graph class $\mathcal{C}$ is hereditary if whenever $G$ is an element of $\mathcal{C}$, every induced subgraph of $G$ also belongs to $\mathcal{C}$. Recall that, given a set $\mathcal{F}$ of graphs, $G$ is $\mathcal{F}$-free if no induced subgraph of $G$ is isomorphic to an element of $\mathcal{F}$.

Hereditary classes are exactly those consisting of the $\mathcal{F}$-free graphs for some set $\mathcal{F}$ of graphs. Many important classes of graphs are hereditary, and several celebrated theorems have specified the minimal forbidden subgraphs for these classes. For example, Kuratowski's Theorem [31] can be reformulated as a statement of which induced subgraphs are forbidden for planar graphs, and the Strong Perfect Graph Theorem [12] characterizes perfect graphs in terms of their forbidden subgraphs.

We say that a graph class $\mathcal{C}$ is degree-determined, or that it has a degree sequence characterization, if it is possible to determine whether a graph $G$ belongs to $\mathcal{C}$ from just the degree sequence of $G$. Most graph classes of interest do not have degree sequence characterizations, but they are useful when they do exist, as they often lead to very efficient algorithms for recognizing membership in a degree-determined class of graphs.

In this chapter, we address the question of which classes of graphs can be characterized both in terms of their degree sequences and in terms of a set of forbidden subgraphs. More precisely, we make the following definition.

Definition 3.1. A set $\mathcal{F}$ of graphs is degree-sequence-forcing if whenever some realization of a graphic sequence $\pi$ is $\mathcal{F}$-free, every other realization of $\pi$ is $\mathcal{F}$-free as well.

We seek to characterize degree-sequence-forcing sets of graphs. Our interest in degree-sequence-forcing sets is motivated in part by the class of split graphs, those whose vertex sets can be partitioned into a clique and an independent set. Split graphs have the following two characterizations:

Theorem 3.2 (Földes-Hammer [16]). A graph is split if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}\right\}$-free.

Theorem 3.3 (Hammer-Simeone [20]). If $G$ is a graph having degree sequence $d(G)=\left(d_{1}, \ldots, d_{n}\right)$ in nonincreasing order, then $G$ is split if and only if

$$
\sum_{i=1}^{m} d_{i}=m(m-1)+\sum_{i=m+1}^{n} d_{i}
$$

where $m=\max \left\{k: d_{k} \geq k-1\right\}$.

From these two theorems, $\left\{2 K_{2}, C_{4}, C_{5}\right\}$ is a degree-sequence-forcing set. Other examples of degree-determined hereditary families have appeared in the literature; Table 3.1 lists several. The sets of graphs in the rightmost column of the table are all degree-sequence-forcing sets.

We begin our analysis in Section 3.2 by proving several necessary and sufficient conditions for a set of graphs to be degree-sequence-forcing. We then use these results in Section 3.3 to characterize all degree-sequence-forcing sets with size at most 2. A degree-sequence-forcing set is minimal if it contains no proper degree-sequence-forcing subset. In Section 3.4 to determine all nonminimal degree-sequence-forcing sets with size 3. In Section 3.5 we study minimal degree-sequence-forcing sets and give a brief discussion of their properties. We

| Class | Characterizations |  | List of forbidden subgraphs |
| :---: | :---: | :---: | :---: |
|  | Degree sequence | Forbidden subgraph |  |
| Split graphs | [20] | [16] | $\left\{2 K_{2}, C_{4}, C_{5}\right\}$ |
| Threshold graphs | [19] | [14] | $\left\{2 K_{2}, C_{4}, P_{4}\right\}$ |
| Pseudo-split graphs | [36] | [36] | $\left\{2 K_{2}, C_{4}\right\}$ |
| Matroidal graphs | [37, 50] | [42] | $\begin{aligned} & \left\{C_{5}, K_{2}+P_{3}, 2 K_{1} \vee\left(K_{2}+K_{1}\right),\right. \\ & P_{5}, \text { house, chair, kite, } K_{2}+K_{3}, \\ & \left.K_{2,3}, 4 \text {-pan, co-4-pan }\right\} \end{aligned}$ |
| Matrogenic graphs | $[37,50]$ | [15] | $\left\{K_{2}+P_{3}, 2 K_{1} \vee\left(K_{2}+K_{1}\right)\right.$ <br> $P_{5}$, house, chair, kite, $K_{2}+K_{3}$, <br> $K_{2,3}, 4$-pan, co-4-pan $\}$ |

Table 3.1: Graph classes characterized by both degree sequences and forbidden subgraphs.
conclude the chapter in Section 3.6 by discussing edit-leveling sets of graphs, which are degree-sequence-forcing sets satisfying a much stronger condition in terms of degree sequences.

### 3.2 Conditions on degree-sequence-forcing sets

In this section we provide some necessary and some sufficient conditions for a set of graphs to be degree-sequence-forcing. We first show how degree-sequence-forcing sets may be used to give rise to other degree-sequence-forcing sets.

Proposition 3.4. Given a set $\mathcal{G}$ of graphs, let $\mathcal{F}$ be the set of minimal elements of $\mathcal{G}$ under the induced subgraph relation. The set $\mathcal{G}$ is degree-sequence-forcing if and only if $\mathcal{F}$ is degree-sequence-forcing.

Proof. It is easy to see that a graph is $\mathcal{G}$-free if and only if it is $\mathcal{F}$-free. If either the $\mathcal{G}$-free or the $\mathcal{F}$-free graphs may be recognized by their degree sequences, then membership in the other set of graphs is recognizable from the degree sequence as well.

Proposition 3.5. The union of degree-sequence-forcing sets is degree-sequenceforcing.

Proof. Let $\mathcal{I}$ be an index set, and let $\mathcal{F}_{i}$ be a degree-sequence-forcing set for each $i \in \mathcal{I}$. Define $\mathcal{F}=\bigcup_{i \in \mathcal{I}} \mathcal{F}_{i}$. Suppose that $\pi$ is a graphic list having a realization that induces an element $F$ of $\mathcal{F}$. The graph $F$ belongs to $\mathcal{F}_{j}$ for some $j \in \mathcal{I}$, and since $\mathcal{F}_{j}$ is degree-sequence-forcing, every realization of $\pi$ induces an element of $\mathcal{F}_{j}$ and hence an element of $\mathcal{F}$. Thus $\mathcal{F}$ is degree-sequence-forcing.

Proposition 3.6. If $\mathcal{F}$ is a degree-sequence-forcing set of graphs, then $\mathcal{F}^{c}$ is also degree-sequence-forcing, where $\mathcal{F}^{c}=\{\bar{G}: G \in \mathcal{F}\}$.

Proof. Let $\mathcal{F}$ be degree-sequence-forcing, and suppose that $\pi$ is a graphic list having a realization $G$ that induces an element $F$ of $\mathcal{F}^{c}$. The graph $\bar{G}$ induces $\bar{F}$, an element of the degree-sequence-forcing set $\mathcal{F}$, so every realization of the degree sequence of $\bar{G}$ induces an element of $\mathcal{F}$. It follows that every realization of $\pi$ induces an element of $\mathcal{F}^{c}$, so $\mathcal{F}^{c}$ is degree-sequence-forcing.

A unigraph is a graph that is the unique (unlabeled) realization of its degree sequence. The following remark is an easy consequence of the definition of a degree-sequence-forcing set and establishes a sufficient condition for a set of graphs to be degree-sequence-forcing.

Remark 3.7. Let $\mathcal{F}$ be a set of graphs. If every $\mathcal{F}$-free graph is a unigraph, then $\mathcal{F}$ is degree-sequence-forcing.

A 2-switch is an operation on a graph $G$ that deletes two disjoint edges $u v$ and $x y$ such that $u x, v y \notin E(G)$ and adds $u x$ and $v y$ to the graph. We denote such a 2-switch by $\{u v, x y\} \rightrightarrows\{u x, v y\}$. This operation is important in the study of degree sequences because of the following result.

Theorem 3.8 (Fulkerson et al. [17]). Graphs $H$ and $H^{\prime}$ on the same vertex set have $d_{H}(v)=d_{H^{\prime}}(v)$ for every vertex $v$ if and only if $H^{\prime}$ can be obtained by performing a finite sequence of 2-switches on $H$.

Definition 3.9. Given a set $\mathcal{F}$ of graphs and an element $F$ of $\mathcal{F}$, the graph $F$ switches to $\mathcal{F}-F$ if whenever $H$ and $H^{\prime}$ are two graphs such that $H$ induces $F$ while $H^{\prime}$ is $F$-free, and $H^{\prime}$ can be obtained by performing a single 2 -switch on $H$, the graph $H^{\prime}$ induces an element of $\mathcal{F}-F$.

If $\mathcal{F}$ consists of two graphs $F$ and $G$, instead of saying that $F$ switches to $\{G\}$, we say simply that $F$ switches to $G$.

Proposition 3.10. Let $\mathcal{F}$ be a set of graphs. The following statements are equivalent.
(i) If $F \in \mathcal{F}$, then $F$ switches to $\mathcal{F}-F$.
(ii) For every $F \in \mathcal{F}$, if $H$ and $H^{\prime}$ are any two graphs having the same degree sequence such that $H$ induces $F$ and $H^{\prime}$ is $F$-free, then $H^{\prime}$ induces an element of $\mathcal{F}-F$.
(iii) $\mathcal{F}$ is a degree-sequence-forcing set.

Proof. (i) $\Longrightarrow$ (ii): Let $F$ be an element of $\mathcal{F}$. Suppose that $H$ and $H^{\prime}$ are two graphs with the same degree sequence such that $H$ induces $F$ and $H^{\prime}$ is $F$-free. By Theorem 3.8, there exists a finite sequence of 2-switches that, when applied to $H$, produces $H^{\prime}$. Let $H_{i}$ denote the graph obtained after the $i$ th 2-switch in this sequence, so that $H_{0}=H$ and $H_{k}=H^{\prime}$. If $j$ is the first index such that $H_{j+1}$ does not induce $F$, then $H_{j}$ induces $F$. Since $F$ switches to $\mathcal{F}-F$, the graph $H_{j+1}$ must induce an element $F^{\prime}$ of $\mathcal{F}-F$. If $H^{\prime}$ does not induce $F^{\prime}$, then there exists a least index $j^{\prime}$ exceeding $j$ such that $H_{j^{\prime}+1}$ does not induce $F^{\prime}$; since $F^{\prime}$ switches
to $\mathcal{F}-F^{\prime}$, we conclude that $H_{j^{\prime}}$ induces an element of $\mathcal{F}-F^{\prime}$. By induction on $i$, we see that each $H_{i}$ induces an element of $\mathcal{F}$; if $H_{k}$ does not induce $F$, then it induces an element of $\mathcal{F}-F$.
(ii) $\Longrightarrow$ (iii): Suppose that $\pi$ is a graphic sequence having a realization $H$ that induces an element $F$ of $\mathcal{F}$. If $H^{\prime}$ is any other realization of $\pi$, then by (ii) $H^{\prime}$ induces either $F$ or an element of $\mathcal{F}-F$; in either case $H^{\prime}$ induces an element of $\mathcal{F}$.
(iii) $\Longrightarrow$ (i): Let $\mathcal{F}$ be a degree-sequence-forcing set of graphs, and let $F$ be an element of $\mathcal{F}$. Suppose that $H$ and $H^{\prime}$ are two graphs such that $H$ induces $F$ while $H^{\prime}$ is $F$-free, and $H^{\prime}$ can be obtained by performing a single 2 -switch on $H$. Since $\mathcal{F}$ is degree-sequence-forcing and the degree sequence of $H$ has a realization that induces an element of $\mathcal{F}$, we conclude that $H^{\prime}$ induces an element of $\mathcal{F}$ and hence of $\mathcal{F}-F$.

For sets $\mathcal{F}$ with more than a few graphs, using Proposition 3.10 to show that $\mathcal{F}$ is degree-sequence-forcing can be quite cumbersome in practice. However, this proposition will be important in characterizing degree-sequence-forcing pairs in Section 3.3. We define an ordered pair $\left(H, H^{\prime}\right)$ of graphs to be $\mathcal{F}$-breaking if their degree sequences are the same, $H$ induces an element of $\mathcal{F}$, and $H^{\prime}$ is $\mathcal{F}$-free. By Proposition 3.10 , a set $\mathcal{F}$ is degree-sequence-forcing if and only if no $\mathcal{F}$-breaking pair exists. In fact, a stronger result holds, as we show in the following result.

Proposition 3.11. If $\mathcal{G}$ is a set of graphs that is not degree-sequence-forcing, then there exists a $\mathcal{G}$-breaking pair $\left(H, H^{\prime}\right)$ such that $H$ and $H^{\prime}$ each have at most $|V(G)|+2$ vertices, where $G$ is a graph in $\mathcal{G}$ with the most vertices.

Proof. Since $\mathcal{G}$ is not degree-sequence-forcing, by Proposition 3.10 there exists a $\mathcal{G}$-breaking pair $\left(J, J^{\prime}\right)$ of graphs. By Theorem 3.8, there exists a sequence $J=J_{0}, J_{1}, J_{2}, \ldots, J_{k}=J^{\prime}$ of graphs in which $J_{i}$ is obtained via a 2-switch on
$J_{i-1}$ for $i \in\{1, \ldots, k\}$. Define $\ell$ to be the largest index such that $J_{\ell}$ induces an element $G$ of $\mathcal{G}$, so that $\left(J_{\ell}, J_{\ell+1}\right)$ is a $\mathcal{G}$-breaking pair. Let $V$ denote the vertex set of an induced copy of $G$ in $J_{\ell}$, and let $W$ denote the set of 4 vertices involved in the 2-switch transforming $J_{\ell}$ into $J_{\ell+1}$. Since $G$ is not induced on $V$ in $J_{\ell+1}$, the 2 -switch performed must add an edge to or delete an edge from $J_{\ell}[V]$; hence $|W \cap V| \geq 2$ and $|V \cup W| \leq|V|+2$. Thus $\left(J_{\ell}[V \cup W], J_{\ell+1}[V \cup W]\right)$ is a $\mathcal{G}$-breaking pair on at most $|V(G)|+2$ vertices. Taking $G$ to be a graph in $\mathcal{G}$ with the most vertices yields the result.

We now provide a number of necessary conditions on a degree-sequence-forcing set by considering the effect that 2-switches can have on certain graph parameters.

Proposition 3.12. Every degree-sequence-forcing set contains a forest in which each component is a star.

Proof. Let $\mathcal{F}$ be a set containing no forest, and let $F \in \mathcal{F}$ be a graph having the minimum number of cycles among graphs in $\mathcal{F}$. Let $x y$ be an edge of a cycle in $F$. Form $H$ by adding to $F$ two new vertices $u$ and $v$ and the edge $u v$. Form $H^{\prime}$ from $H$ via the 2-switch $\{u v, x y\} \rightrightarrows\{u x, v y\}$. The graph $H^{\prime}$ has fewer cycles than $F$ and hence is $\mathcal{F}$-free; thus $\mathcal{F}$ is not degree-sequence-forcing.

Having shown that every degree-sequence-forcing set contains a forest, let $\mathcal{F}$ be a degree-sequence-forcing set. Suppose that every forest in $\mathcal{F}$ has a component of diameter at least 3 (and hence is not a forest of stars). Among the forests in $\mathcal{F}$, consider those which minimize the length of a longest path, and among these latter forests choose $F$ having a minimum number of paths of this length. Let $\ell$ denote the maximum length of a path in $F$, and let $x y$ be an internal edge of a path in $F$ of length $\ell$. Form a graph $H$ by adding to $F$ two new vertices $u$ and $v$ and the edge $u v$. Form $H^{\prime}$ from $H$ via the 2-switch $\{u v, x y\} \rightrightarrows\{u x, v y\}$. Now $H^{\prime}$ is a forest having fewer paths of length $\ell$ than $F$ does, and the longest path in
$H^{\prime}$ has length at most $\ell$. It follows that $\left(H, H^{\prime}\right)$ is an $\mathcal{F}$-breaking pair of graphs. This is a contradiction, since $\mathcal{F}$ is degree-sequence-forcing. Thus, $\mathcal{F}$ contains a forest in which every component is a star.

We may generalize the approach of proposition. Define a graph parameter to be order-preserving if $p(G) \leq p(H)$ whenever $G$ is an induced subgraph of $H$.

Remark 3.13. Let $p(G)$ be an order-preserving parameter and c a constant. Suppose that for every graph $G$ such that $p(G)>c$, there exist graphs $H$ and $H^{\prime}$ such that the graph $H$ contains $G$ as an induced subgraph, $H^{\prime}$ is obtained by performing a 2-switch on $H$, and $p\left(H^{\prime}\right)<p(G)$. Every degree-sequence-forcing set contains an element $F$ such that $p(F) \leq c$.

The first paragraph of the proof of Proposition 3.12 illustrates this idea; there the parameter $p(G)$ is the number of cycles in $G$, and $c=0$. The conclusion of Remark 3.13 also holds when $p(G)$ takes values in any linearly ordered set, and such a formulation could be used to provide an alternate version of the second paragraph of the proof of Proposition 3.12.

Corollary 3.14. Every degree-sequence-forcing set contains a graph that is the complement of a forest of stars.

Proof. Let $\mathcal{F}$ be a degree-sequence-forcing set. By Proposition 3.6, the set $\mathcal{F}^{c}$ is degree-sequence-forcing and hence contains a forest of stars by Proposition 3.12. Thus $\mathcal{F}$ contains the complement of a forest of stars.

Proposition 3.15. Every degree-sequence-forcing set contains a graph that is a disjoint union of complete graphs.

Proof. Let $p(G)$ denote the minimum number of edges that need to be added to $G$ to make every component a complete subgraph. Note that $p(G)$ is an orderpreserving parameter, as deleting any vertex of $G$ cannot increase the number
of non-adjacent pairs of vertices in the same component. Let $G$ be an arbitrary graph such that $p(G) \geq 1$, and let $x$ and $y$ be two non-adjacent vertices in a component of $G$. Form a graph $H$ by adding to $G$ two new vertices $u$ and $v$ and edges $u x$ and $v y$. Form $H^{\prime}$ from $H$ via the 2-switch $\{u x, v y\} \rightrightarrows\{u v, x y\}$. Note that $p\left(H^{\prime}\right)<p(G)$. By Remark 3.13, if $\mathcal{F}$ is a degree-sequence-forcing set, then $\mathcal{F}$ contains an element $F$ such that $p(F)=0$, that is, $F$ is a disjoint union of complete graphs.

Corollary 3.16. Every degree-sequence-forcing set contains a complete multipartite graph.

We have shown that every degree-sequence-forcing set contains at least one element from each of several classes, which we denote as follows:

$$
\begin{aligned}
\mathbb{K} & =\{\text { disjoint unions of complete graphs }\} \\
\mathbb{K}^{c} & =\{\text { complete multipartite graphs }\} \\
\mathbb{S} & =\{\text { forests of stars }\} \\
\mathbb{S}^{c} & =\{\text { complements of forests of stars }\}
\end{aligned}
$$

### 3.3 Singletons and pairs

In this section we use the results of the previous section to completely determine all degree-sequence-forcing sets of size at most 2 . We immediately determine the degree-sequence-forcing singleton sets.

Theorem 3.17. A singleton set $\{F\}$ is degree-sequence-forcing if and only if $F \in\left\{K_{1}, K_{2}, 2 K_{1}\right\}$.

Proof. We have assumed that all graphs have at least one vertex, so the statement that $\left\{K_{1}\right\}$ is degree-sequence-forcing is vacuously true. A graph is $\left\{K_{2}\right\}$-free if
and only if it is edgeless, which happens if and only if its degree sequence contains only zeros. Thus $\left\{K_{2}\right\}$ is degree-sequence-forcing, and by Proposition 3.6 the set $\left\{2 K_{1}\right\}$ is degree-sequence-forcing as well.

Note now that if $\{F\}$ is a degree-sequence-forcing set, then $F$ belongs to each of $\mathbb{K}, \mathbb{K}^{c}, \mathbb{S}$, and $\mathbb{S}^{c}$. Since every component of $F$ is complete, $F$ cannot induce $P_{3}$. As $F$ is a complete multipartite graph, this means that either $F$ has only one partite set, or every partite set contains only one vertex. Thus $F$ is either $K_{n}$ or $n K_{1}$ for some $n$. Since $F$ is both a forest and the complement of a forest, we have $n \leq 2$, so $F \in\left\{K_{1}, K_{2}, 2 K_{1}\right\}$.

We devote the rest of the section to proving the following result.

Theorem 3.18. A pair of graphs comprises a degree-sequence-forcing set if and only if it is one of the following:
(i) $\{A, B\}$, where $A \in\left\{K_{1}, K_{2}, 2 K_{1}\right\}$ and $B$ is any graph;
(ii) $\left\{P_{3}, K_{3}\right\},\left\{P_{3}, K_{3}+K_{1}\right\},\left\{P_{3}, K_{3}+K_{2}\right\},\left\{P_{3}, 2 K_{2}\right\},\left\{P_{3}, K_{2}+K_{1}\right\}$;
(iii) $\left\{K_{2}+K_{1}, 3 K_{1}\right\},\left\{K_{2}+K_{1}, K_{1,3}\right\},\left\{K_{2}+K_{1}, K_{2,3}\right\},\left\{K_{2}+K_{1}, C_{4}\right\}$;
(iv) $\left\{K_{3}, 3 K_{1}\right\}$;
(v) $\left\{2 K_{2}, C_{4}\right\}$.

We first show that these pairs are degree-sequence-forcing, after which we will show that no other pairs are degree-sequence-forcing. We recall from Chapter 1 that an alternating 4-cycle in a graph $G$ is a configuration on four vertices of $G$ in which two edges and two non-edges alternate in a cyclic fashion. An alternating 4-cycle and the minimal unlabeled subgraphs having an alternating 4-cycle are shown in Figure 3.1; these subgraphs are $2 K_{2}, C_{4}$, and $P_{4}$. (Here and throughout this thesis, dotted segments will denote non-adjacencies.)


Figure 3.1: An alternating 4-cycle and the 4-vertex subgraphs in which it appears.

The $\left\{2 K_{2}, C_{4}\right\}$-free graphs appear in Table 3.1; these graphs are called the pseudo-split graphs, and they were shown in [36] to form a degree-determined family. Thus $\left\{2 K_{2}, C_{4}\right\}$ is degree-sequence-forcing. Each of the other pairs is degree-sequence-forcing by Remark 3.7 and the following.

Proposition 3.19. If $\mathcal{F}$ is any of the following sets, then the $\mathcal{F}$-free graphs are all unigraphs:
(i) $\{A, B\}$, where $A \in\left\{K_{1}, K_{2}, 2 K_{1}\right\}$ and $B$ is any graph;
(ii) $\left\{P_{3}, K_{3}\right\},\left\{P_{3}, K_{3}+K_{1}\right\},\left\{P_{3}, K_{3}+K_{2}\right\},\left\{P_{3}, 2 K_{2}\right\},\left\{P_{3}, K_{2}+K_{1}\right\}$;
(iii) $\left\{K_{2}+K_{1}, 3 K_{1}\right\},\left\{K_{2}+K_{1}, K_{1,3}\right\},\left\{K_{2}+K_{1}, K_{2,3}\right\},\left\{K_{2}+K_{1}, C_{4}\right\}$;
(iv) $\left\{K_{3}, 3 K_{1}\right\}$.

Proof. (i) The $\{A, B\}$-free graphs form a subset of the $\{A\}$-free graphs, so it suffices to show that the $\{A\}$-free graphs are unigraphs. Since an alternating 4cycle is required to perform a 2-switch, and alternating 4-cycles induce $K_{1}, K_{2}$, and $2 K_{1}$, Theorem 3.8 implies that the $\{A\}$-free graphs are unigraphs.
(ii) Let $G$ be a $\left\{P_{3}, K_{3}+K_{2}\right\}$-free graph. A graph is $\left\{P_{3}\right\}$-free if and only if it is a disjoint union of complete graphs. Since $G$ is additionally $\left\{K_{3}+K_{2}\right\}$-free, either $G$ induces $K_{3}$, in which case $G$ has the form $K_{n}+m K_{1}$, or $G$ is triangle free, in which case $G$ has the form $m K_{2}+n K_{1}$. In the first case no 2-switches are possible on $G$, and in the second case every 2 -switch on $G$ yields a graph isomorphic to $G$; hence $G$ is a unigraph. If $\mathcal{F}$ is any of the sets listed in (ii) then
the $\mathcal{F}$-free graphs form a subset of the $\left\{P_{3}, K_{3}+K_{2}\right\}$-free graphs and hence are unigraphs.
(iii) Let $\mathcal{F}$ be a set listed in (iii). Suppose that $G$ and $G^{\prime}$ are $\mathcal{F}$-free realizations of the same degree sequence. The graphs $\bar{G}$ and $\overline{G^{\prime}}$ are both $\mathcal{F}^{c}$-free and have the same degree sequence. Since $\mathcal{F}^{c}$ appears in (ii), $\bar{G} \cong \overline{G^{\prime}}$. It follows that $G \cong G^{\prime}$, so the $\mathcal{F}$-free graphs are unigraphs.
(iv) A well-known elementary result of Ramsey Theory states that each of the $\left\{K_{3}, 3 K_{1}\right\}$-free graphs contains at most five vertices, and direct verification shows that each $\left\{K_{3}, 3 K_{1}\right\}$-free graph is a unigraph.

To show that no pairs other than those listed in Theorem 3.18 are degree-sequence-forcing, we begin by employing "sieve" arguments: Given a graph $A$, we determine possible candidates for the graph $B$ in a degree-sequence-forcing set $\{A, B\}$ by finding $\{A\}$-breaking pairs $\left(H, H^{\prime}\right)$ of graphs. Proposition 3.10 implies that $B$ is an induced subgraph of every graph $H^{\prime}$ such that $\left(H, H^{\prime}\right)$ is an $\{A\}$ breaking pair for some $H$. Therefore, the graphs that appear in every such $H^{\prime}$ are the only possible choices for $B$.

Proposition 3.20. Other than the pairs listed in Theorem 3.18, there are no degree-sequence-forcing pairs in which one graph has 3 or fewer vertices.

Proof. Let $\mathcal{F}=\{A, B\}$, and suppose that $\mathcal{F}$ is degree-sequence-forcing. We must show that $\mathcal{F}$ is one of the sets listed in Theorem 3.18. This is clearly the case if $A$ or $B$ has fewer than 3 vertices.

Suppose that $\mathcal{F}=\left\{K_{3}, B\right\}$. Let $H_{1}=K_{3}+K_{2}$ and $H_{1}^{\prime}=P_{5}$; further let $H_{2}$ be the house graph (that is, the complement of $P_{5}$ ), and let $H_{2}^{\prime}=K_{2,3}$. Both $\left(H_{1}, H_{1}^{\prime}\right)$ and $\left(H_{2}, H_{2}^{\prime}\right)$ are $\left\{K_{3}\right\}$-breaking pairs. Since $\mathcal{F}$ is degree-sequence-forcing, $B$ is a common induced subgraph of $P_{5}$ and $K_{2,3}$. The only such subgraphs on 3 or more vertices are $P_{3}$ and $3 K_{1}$; hence $B \in\left\{K_{1}, K_{2}, 2 K_{1}, P_{3}, 3 K_{1}\right\}$, and $\mathcal{F}$ is listed


Figure 3.2: The graphs $H_{2}$ and $H_{2}^{\prime}$ from Proposition 3.21.


Figure 3.3: The graphs $H_{3}$ and $H_{3}^{\prime}$ from Proposition 3.21.
in Theorem 3.18.
If $\mathcal{F}=\left\{3 K_{1}, B\right\}$, then Proposition 3.6 and the previous paragraph show that $B \in\left\{K_{1}, 2 K_{1}, K_{2}, K_{2}+K_{1}, K_{3}\right\}$. Hence $\mathcal{F}$ is listed in Theorem 3.18.

Suppose now that $\mathcal{F}=\left\{P_{3}, B\right\}$. Since $\left(P_{5}, K_{3}+K_{2}\right)$ is a $\left\{P_{3}\right\}$-breaking pair, $B$ is induced in $K_{3}+K_{2}$, and hence $\mathcal{F}$ is one of the sets listed in Theorem 3.18.

Finally, suppose that $\mathcal{F}=\left\{K_{2}+K_{1}, B\right\}$. Proposition 3.6 and the previous paragraph imply that $B$ is induced in $K_{2,3}$, and hence $\mathcal{F}$ appears in the list in Theorem 3.18.

We now consider pairs $\{A, B\}$ such that both graphs have at least four vertices. The $k$-pan is the graph consisting of a $k$-cycle plus a pendant edge. The co- $k$-pan is its complement.

Proposition 3.21. The set $\left\{2 K_{2}, C_{4}\right\}$ is the only degree-sequence-forcing pair of the form $\left\{2 K_{2}, B\right\}$ or $\left\{C_{4}, B\right\}$ such that $B$ contains at least 4 vertices.

Proof. Let $H_{1}$ be the co-4-pan, and let $H_{1}^{\prime}$ be the 4 -pan. Let $H_{2}$ and $H_{2}^{\prime}$ be the graphs shown in Figure 3.2, and let $H_{3}$ and $H_{3}^{\prime}$ be the graphs shown in Figure 3.3. The ordered pairs $\left(H_{1}, H_{1}^{\prime}\right),\left(H_{2}, H_{2}^{\prime}\right)$, and $\left(H_{3}, H_{3}^{\prime}\right)$ are all $\left\{2 K_{2}\right\}$-breaking, so if $\left\{2 K_{2}, B\right\}$ is degree-sequence-forcing, then $B$ must be induced in each of $H_{1}^{\prime}$,


Figure 3.4: The graphs $K_{2, n}$ and $K^{\prime}$ from Lemmas 3.22 and 3.24.
$H_{2}^{\prime}$, and $H_{3}^{\prime}$. The only induced subgraph with at least 4 vertices common to $H_{1}^{\prime}$, $H_{2}^{\prime}$, and $H_{3}^{\prime}$ is $C_{4}$, so $B=C_{4}$. From Proposition 3.6 it follows that if $\left\{C_{4}, B\right\}$ is degree-sequence-forcing and $B$ has at least four vertices, then $B=2 K_{2}$.

Lemma 3.22. For $n \geq 4$, the graph $n K_{1}$ switches to $B$ if and only if $B$ is an induced subgraph of $K_{2}+(n-2) K_{1}$.

Proof. Let $H$ be a graph inducing $n K_{1}$, and let $U$ be a collection of $n$ pairwise nonadjacent vertices in $H$. Let $H^{\prime}$ be an $\left\{n K_{1}\right\}$-free graph obtained by performing a single 2-switch on $H$. Such a 2-switch must place an edge between two vertices of $U$, and such a 2 -switch can involve at most two vertices of $U$. In $H^{\prime}$, the subgraph induced on $U$ is isomorphic to $K_{2}+(n-2) K_{1}$, so $n K_{1}$ switches to every induced subgraph of this graph.

We now show that every graph $B$ to which $n K_{1}$ switches is an induced subgraph of $K_{2}+(n-2) K_{1}$. Define $H_{1}=K_{2, n}$, and let the cycle $[u, y, x, v]$ be any 4 -cycle in the graph, as shown in Figure 3.4. Form $K^{\prime}$ via the 2 -switch $\{u v, x y\} \rightrightarrows$ $\{u x, v y\}$, and let $H_{1}^{\prime}=K$. Let $H_{2}=P_{5}+(n-3) K_{1}$ and $H_{2}^{\prime}=K_{2}+K_{3}+(n-3) K_{1}$; also let $H_{3}=2 P_{3}+(n-4) K_{1}$ and $H_{3}^{\prime}=P_{4}+K_{2}+(n-4) K_{1}$.

Observe that graphs $H_{1}, H_{2}$, and $H_{3}$ all induce $n K_{1}$. If $n K_{1}$ switches to $B$, then $B$ is induced in each of $H_{1}^{\prime}, H_{2}^{\prime}$, and $H_{3}^{\prime}$, because none of these graphs induce $n K_{1}$. Since $B$ is induced in $H_{2}^{\prime}$, it is a disjoint union of at most $n-1$ complete graphs. Each component of $B$ has either one or two vertices, since $H_{3}^{\prime}$ induces no triangle. Furthermore, since $B$ is induced in $H_{1}^{\prime}$, it does not induce $2 K_{2}$ and


Figure 3.5: The graphs $H_{2}$ and $H_{2}^{\prime}$ from Lemma 3.24.
hence has at most one component with more than one vertex. It follows that $B$ is an induced subgraph of $K_{2}+(n-2) K_{1}$, as claimed.

By Definition 3.9 a graph $S$ switches to a graph $T$ if and only if $\bar{S}$ switches to $\bar{T}$, which leads to the following corollary.

Corollary 3.23. For $n \geq 4$, the graph $K_{n}$ switches to $B$ if and only if $B$ is an induced subgraph of $K_{n}-e$.

Lemma 3.24. For $n \geq 4$, the graph $K_{2}+(n-2) K_{1}$ switches to $B$ if and only if $B$ is $K_{2}$ or $c K_{1}$, where $c \leq n-2$.

Proof. Let $H$ be a graph inducing $K_{2}+(n-2) K_{1}$, and let $H^{\prime}$ be a $\left\{K_{2}+(n-2) K_{1}\right\}$ free graph obtained from $H$ after a single 2-switch. Since $H^{\prime}$ must contain at least one edge, $K_{2}+(n-2) K_{1}$ switches to $K_{2}$. Furthermore, if $U$ is the vertex set of some induced $K_{2}+(n-2) K_{1}$ in $H$, then every 2-switch on $H$ resulting in a $\left\{K_{2}+(n-2) K_{1}\right\}$-free graph involves exactly two vertices of $U$; it follows that $H^{\prime}[U]$ contains an independent set of size at least $n-2$, so $K_{2}+(n-2) K_{1}$ switches to $c K_{1}$ for each $c$ at most $n-2$.

We now show that $K_{2}+(n-2) K_{1}$ switches to no other graphs than the ones described above. Let $H_{1}$ be the graph $K^{\prime}$ shown in Figure 3.4, and let $H_{1}^{\prime}=K_{2, n}$. Let $H_{2}$ be the graph shown on the left in Figure 3.5, consisting of $n-4$ isolated vertices and one nontrivial component on six vertices, and let $H_{2}^{\prime}=K_{4}+K_{2}+(n-4) K_{1}$.

Suppose that $K_{2}+(n-2) K_{1}$ switches to $B$. The graphs $H_{1}$ and $H_{2}$ induce $K_{2}+(n-2) K_{1}$ while the graphs $H_{1}^{\prime}$ and $H_{2}^{\prime}$ do not, so $B$ is induced in both $H_{1}^{\prime}$ and $H_{2}^{\prime}$. Since $H_{1}^{\prime}$ is a complete bipartite graph (and hence triangle-free and $\left\{K_{2}+K_{1}\right\}$-free), $B$ must be these things as well. Since $B$ is induced in $H_{2}^{\prime}$, it must also be a disjoint union of at most $n-2$ complete graphs. It follows that $B$ is isomorphic to either $K_{2}$ or to $c K_{1}$ for some $c \leq n-2$.

Corollary 3.25. For $n \geq 4$, the graph $K_{n}-e$ switches to $B$ if and only if $B$ is $2 K_{1}$ or $K_{c}$, where $c \leq n-2$.

We now our results on switching to show that a large family of pairs are not degree-sequence-forcing.

Proposition 3.26. For $n \geq 4$, the following are not degree-sequence-forcing pairs for any $B$ on 3 or more vertices: $\left\{n K_{1}, B\right\},\left\{K_{n}, B\right\},\left\{K_{2}+(n-2) K_{1}, B\right\}$, and $\left\{K_{n}-e, B\right\}$.

Proof. Suppose that $\left\{n K_{1}, B\right\}$ is degree-sequence-forcing. By Proposition 3.10, $n K_{1}$ switches to $B$, so by Lemma $3.22 B$ must be an induced subgraph of $K_{2}+$ $(n-2) K_{1}$. If $B$ has no edges, then it is induced in $n K_{1}$, and by Proposition 3.4 the set $\{B\}$ is degree-sequence-forcing. This contradicts Theorem 3.17 , since $B$ has at least 3 vertices; thus $B$ has an edge and hence is of the form $n^{\prime} K_{1}+e$ for some $n^{\prime}$ at most $n$. However, Proposition 3.10 implies that $B$ switches to $n K_{1}$, and by Lemma 3.24 we have that $n^{\prime} \geq n+2$, a contradiction. Thus $\left\{n K_{1}, B\right\}$ is not degree-sequence-forcing.

Suppose that $\left\{K_{2}+(n-2) K_{1}, B\right\}$ is degree-sequence-forcing. By Proposition 3.10, $K_{2}+(n-2) K_{1}$ switches to $B$, and Lemma 3.24 implies that $B$ has the form $c K_{1}$ for $c \leq n-2$, since $B$ has at least three vertices. However, $B$ must switch to $K_{2}+(n-2) K_{1}$, and this contradicts Lemma 3.22, since $K_{2}+(n-2) K_{1}$ has more vertices than $B$. Thus $\left\{K_{2}+(n-2) K_{1}, B\right\}$ is not degree-sequence-forcing.

By Proposition 3.6, neither $\left\{K_{n}, B\right\}$ nor $\left\{K_{n}-e, B\right\}$ are degree-sequence-forcing for any $B$ on at least three vertices.

We now finish the proof of Theorem 3.18

Proof of Theorem 3.18. By the results of this section it suffices to suppose that $\mathcal{F}$ is a degree-sequence-forcing set, where $\mathcal{F}=\left\{F_{1}, F_{2}\right\}$ and both $F_{1}$ and $F_{2}$ have at least four vertices. We must show that $\mathcal{F}=\left\{2 K_{2}, C_{4}\right\}$. By Propositions 3.12 and 3.15 and Corollaries 3.14 and $3.16, \mathcal{F}$ must contain an element from each of $\mathbb{K}, \mathbb{K}^{c}, \mathbb{S}$, and $\mathbb{S}^{c}$. It is easy to see that $\mathbb{K} \cap \mathbb{K}^{c}$ contains only complete or edgeless graphs, so by Proposition 3.26 , one of $F_{1}$ and $F_{2}$ belongs to $\mathbb{K}$ while the other belongs to $\mathbb{K}^{c}$. Without loss of generality, assume that $F_{1} \in \mathbb{K}$ and $F_{2} \in \mathbb{K}^{c}$. We also have $\mathbb{S} \cap \mathbb{S}^{c}=\left\{K_{1}, K_{2}, 2 K_{1}, K_{2}+K_{1}, P_{3}\right\}$, so since $F_{1}$ and $F_{2}$ both have at least four vertices, one $F_{i}$ belongs to $\mathbb{S}$ while the other belongs to $\mathbb{S}^{c}$.

Suppose that $F_{1} \in \mathbb{S}^{c}$ and $F_{2} \in \mathbb{S}$. The class $\mathbb{K} \cap \mathbb{S}^{c}$ consists of complete graphs and complete graphs plus an isolated vertex. By Proposition 3.26, we may write $F_{1}=K_{a}+K_{1}$, where $a \geq 3$. Since $\mathbb{K}^{c} \cap \mathbb{S}$ consists of edgeless graphs and stars, Proposition 3.26 also implies that $F_{2}=K_{1, b}$ for some integer $b \geq 3$. If $H=K_{2, b}$, and let $H^{\prime}$ be the graph $K^{\prime}$ from Figure 3.4 (where $n=b$ ), then $\left(H, H^{\prime}\right)$ is an $\mathcal{F}$-breaking pair, a contradiction.

Suppose instead that $F_{1} \in \mathbb{S}$ and $F_{2} \in \mathbb{S}^{c}$. The class $\mathbb{K} \cap \mathbb{S}$ consists of disjoint unions of complete graphs with one or two vertices each, and the class $\mathbb{K}^{c} \cap \mathbb{S}^{c}$ consists of complete multipartite graphs where every partite set has size at most 2. Thus $F_{1}=a K_{2}+b K_{1}$ for nonnegative integers $a$ and $b$; by Proposition 3.26, $a \geq 2$. Proposition 3.26 also implies that at least two of the partite sets in $F_{2}$ have size 2 , so $F_{2}$ induces $C_{4}$. If $H$ and $H^{\prime}$ are the graphs formed by taking the disjoint union of $(a-2) K_{2}+b K_{1}$ with the co-4-pan and 4-pan graphs, respectively, then $\left(H, H^{\prime}\right)$ is $\left\{F_{1}\right\}$-breaking. It follows that $F_{2}$ is induced in $H^{\prime}$, and since the only


Figure 3.6: A $\left\{2 K_{2}, C_{4}, K_{1,4}\right\}$-breaking pair.
complete multipartite induced subgraph of $F_{2}$ containing $C_{4}$ is $C_{4}$ itself, we have $F_{2}=C_{4}$. By Proposition 3.21 we conclude that $\mathcal{F}=\left\{2 K_{2}, C_{4}\right\}$.

### 3.4 Non-minimal degree-sequence-forcing triples

In comparing Theorems 3.17 and 3.18 , we notice that by appending any graph to a degree-sequence-forcing singleton set we obtain a degree-sequence-forcing pair, though there are degree-sequence-forcing pairs that do not contain a degree-sequence-forcing singleton. We define a degree-sequence-forcing set to be minimal if it contains no proper subset that is degree-sequence-forcing, and non-minimal otherwise.

For example, from Table 3.1 we observe that the set of forbidden subgraphs for the class of matroidal graphs is a non-minimal degree-sequence-forcing set, since it properly contains the set of forbidden subgraphs for the class of matrogenic graphs. Likewise, $\left\{2 K_{2}, C_{4}, C_{5}\right\}$ and $\left\{2 K_{2}, C_{4}, P_{4}\right\}$ are nonminimal degree-sequence-forcing sets, since they contain the (minimal) degree-sequence-forcing pair $\left\{2 K_{2}, C_{4}\right\}$. In this section we study non-minimal degree-sequence-forcing sets, turning to the minimal degree-sequence-forcing sets in the next section.

We note that not every set of graphs that contains a degree-sequence-forcing subset is degree-sequence-forcing. For example, though the set $\left\{2 K_{2}, C_{4}\right\}$ is degree-sequence-forcing, the set $\left\{2 K_{2}, C_{4}, K_{1,4}\right\}$ is not: the graphs in Figure 3.6 constitute a $\left\{2 K_{2}, C_{4}, K_{1,4}\right\}$-breaking pair. We characterize all non-minimal degree-sequence-forcing triples with the next theorem, whose proof will be the focus of


Figure 3.7: The graphs from Theorem 1(viii).
this section. The chair graph is the unique 5 -vertex graph with degree sequence (3, 2, 1, 1, 1); the kite graph is its complement.

Theorem 3.27. A set $\mathcal{F}$ of 3 graphs is a non-minimal degree-sequence-forcing set if and only if one of the following conditions holds:
(1) $\mathcal{F}$ contains a proper degree-sequence-forcing subset other than $\left\{2 K_{2}, C_{4}\right\}$;
(2) $\mathcal{F}=\left\{2 K_{2}, C_{4}, F\right\}$, where $F$ satisfies one of the following:
(i) $F$ induces $2 K_{2}$ or $C_{4}$;
(ii) $F \cong n K_{1}$ or $F \cong K_{n}$ for some $n \geq 1$;
(iii) $F \cong C_{5}+n K_{1}$ or $F \cong C_{5} \vee K_{n}$ for some $n \geq 0$;
(iv) $F \cong\left(\left(C_{5}+n K_{1}\right) \vee K_{1}\right)+m K_{1}$ or $F \cong\left(\left(C_{5} \vee K_{n}\right)+K_{1}\right) \vee K_{m}$ for some $m, n \geq 0 ;$
(v) $F \cong K_{2}+(n-2) K_{1}$ or $F \cong K_{n}-e$ for some $n \geq 2$;
(vi) $F$ or $\bar{F}$ is isomorphic to $\left(\left(C_{5} \vee K_{1}\right)+2 K_{1}\right) \vee K_{1}$;
(vii) F has 4 or fewer vertices or is isomorphic to the chair or kite;
(viii) $F$ is isomorphic to one of the graphs in Figure 3.7;
(ix) $F \cong K_{1,3}+K_{1}$ or $F \cong\left(K_{3}+K_{1}\right) \vee K_{1}$.

We give the proof in stages. In Section 3.4.1 we show that each of the triples from Theorem 3.27 is degree-sequence-forcing, and in Section 3.4.2 we show that
there are no other non-minimal degree-sequence-forcing triples by studying an analogue of degree-sequence-forcing sets in the context of bipartite graphs.

### 3.4.1 Proof of sufficiency in Theorem 3.27

We begin with a few basic results.

Remark 3.28. By Proposition 3.6, the set $\left\{2 K_{2}, C_{4}, F\right\}$ is degree-sequence-forcing if and only if $\left\{2 K_{2}, C_{4}, \bar{F}\right\}$ is, since $2 K_{2}$ and $C_{4}$ are complements of each other.

Remark 3.29. Let $\mathcal{G}$ be a family of graphs. If $\left(H, H^{\prime}\right)$ is a $\left\{2 K_{2}, C_{4}\right\} \cup \mathcal{G}$-breaking pair, then $\left(H, H^{\prime}\right)$ is a $\mathcal{G}$-breaking pair, and $H$ and $H^{\prime}$ are both $\left\{2 K_{2}, C_{4}\right\}$-free.

Non-minimal degree-sequence-forcing triples are formed by appending suitable graphs to the degree-sequence-forcing sets from Theorems 3.17 and 3.18. For degree-sequence-forcing proper sets other than $\left\{2 K_{2}, C_{4}\right\}$, we may append any graphs we wish, as the following remark shows.

Remark 3.30. If a set $\mathcal{F}$ contains a degree-sequence-forcing singleton or pair other than $\left\{2 K_{2}, C_{4}\right\}$, then the $\mathcal{F}$-free graphs are unigraphs by Proposition 3.19. By Remark 3.7, $\mathcal{F}$ is a degree-sequence-forcing set.

This proves that the sets listed in item 1 of Theorem 3.27 are degree-sequenceforcing. We now examine the triple $\mathcal{F}=\left\{2 K_{2}, C_{4}, F\right\}$. By Proposition 3.4, $\mathcal{F}$ is degree-sequence-forcing if $F$ induces $\left\{2 K_{2}, C_{4}\right\}$, as stated in item 2(i).

We henceforth assume that $F$ is $\left\{2 K_{2}, C_{4}\right\}$-free. The next several definitions and results provide a framework for discussion of the structure of $\left\{2 K_{2}, C_{4}\right\}$ free graphs and the 2 -switches possible on them. We begin with a structural characterization of $\left\{2 K_{2}, C_{4}\right\}$-free graphs due to Blázsik et al. [7].

Theorem 3.31. A graph $G$ is $\left\{2 K_{2}, C_{4}\right\}$-free if and only if there exists a partition $V_{1}, V_{2}, V_{3}$ of $V(G)$ such that
(i) $V_{1}$ is an independent set,
(ii) $V_{2}$ is a clique,
(iii) $V_{3}=\emptyset$ or $G\left[V_{3}\right] \cong C_{5}$,
(iv) every possible edge exists between $V_{2}$ and $V_{3}$, and
(v) no edge in $G$ has one endpoint in $V_{1}$ and the other endpoint in $V_{3}$.

Given a $\left\{2 K_{2}, C_{4}\right\}$-free graph $G$, we call the triple $\left(V_{1}, V_{2}, V_{3}\right)$ a pseudo-splitting partition of $V(G)$ if $V_{1}, V_{2}, V_{3}$ satisfy the conditions of the partition set forth in Theorem 3.31. The name is suggested by [36], in which $\left\{2 K_{2}, C_{4}\right\}$-free graphs are called pseudo-split graphs. Similarly, for a split graph $G$, define a splitting partition of $V(G)$ to be an ordered partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ into an independent set and a clique, respectively.

Note that there is at most one induced $C_{5}$ in any $\left\{2 K_{2}, C_{4}\right\}$-free graph. Given a $\left\{2 K_{2}, C_{4}\right\}$-free graph $C$, define the split part $G^{s}$ of $G$ to be the induced subgraph resulting from deleting the vertices of the induced $C_{5}$ from $G$ if such a 5 -cycle exists, and letting $G^{s}=G$ otherwise.

The following is an easy consequence of Theorem 3.31.

Corollary 3.32. Let $H$ be an arbitrary $\left\{2 K_{2}, C_{4}\right\}$-free graph, and let $\left(W_{1}, W_{2}, W_{3}\right)$ be a pseudo-splitting partition of $V(H)$. Any induced $P_{4}$ in $H$ either lies in $H\left[W_{3}\right]$ or has its endpoints in $W_{1}$ and its midpoints in $W_{2}$.

Proposition 3.33. Let $H$ be an arbitrary $\left\{2 K_{2}, C_{4}\right\}$-free graph with pseudosplitting partition $\left(W_{1}, W_{2}, W_{3}\right)$. Let $H^{\prime}$ be a graph obtained via a 2-switch on $H$, with $H^{\prime} \nexists H$. The following statements all hold.
(i) The 2-switch changing $H$ into $H^{\prime}$ is performed on a set of vertices in $W_{1} \cup W_{2}$ on which a $P_{4}$ is induced in both $H$ and $H^{\prime}$.
(ii) The triple $\left(W_{1}, W_{2}, W_{3}\right)$ is a pseudo-splitting partition of $H^{\prime}$.
(iii) For any $u \in W_{1}$ and $v \in W_{2}$, we have $\left|N_{H}(u) \cap W_{2}\right|=\left|N_{H^{\prime}}(u) \cap W_{2}\right|$ and $\left|N_{H}(v) \cap W_{1}\right|=\left|N_{H^{\prime}}(v) \cap W_{1}\right|$.

Proof. (i) The four vertices on which the 2-switch is performed must induce $2 K_{2}$, $C_{4}$, or $P_{4}$; since the first two graphs are forbidden in $H$, the 2-switch must have occurred on an induced $P_{4}$. Any 2-switch on an induced $P_{4}$ leaves an induced $P_{4}$ on the four vertices involved. By Corollary 3.32 the $P_{4}$ must either be located entirely within $W_{3}$ or within $W_{1} \cup W_{2}$. From Theorem 3.31, any 2-switch on a $P_{4}$ contained in $G\left[W_{3}\right]$ will not change the isomorphism class of the graph, since every 2-switch on a copy of $C_{5}$ produces another copy of $C_{5}$, every vertex of $W_{2}$ dominates the induced $C_{5}$ in both $H$ and $H^{\prime}$, and every vertex of $W_{1}$ is nonadjacent to every vertex of the induced $C_{5}$. Hence the isomorphism-class-changing 2-switch must occur on the vertex set of an induced $P_{4}$ in $G\left[W_{1} \cup W_{2}\right]$.
(ii) Let abcd be the induced $P_{4}$ on which the 2-switch changing $H$ into $H^{\prime}$ occurred. By (i) and Corollary 3.32, $a, d \in W_{1}$ and $b, c \in W_{2}$. Note that in the 2-switch the edges deleted are $a b, c d$ and the edges added are $a d, b c$. Thus after the 2-switch no edge exists between vertices in $W_{1}$, no non-edge exists in $W_{2}$, and all the other requirements for $\left(W_{1}, W_{2}, W_{3}\right)$ to be a pseudo-splitting partition hold.
(iii) This is clear upon considering the edges deleted and added as part of the 2-switch in the proof of (ii).

Lemma 3.34. Let $H$ be a $\left\{2 K_{2}, C_{4}\right\}$-free graph with pseudo-splitting partition $\left(W_{1}, W_{2}, W_{3}\right)$, and let $H^{\prime}$ be a graph obtained by performing a 2-switch on $H$. If $G$ is an induced subgraph of $H$ that is not induced in $H^{\prime}$, then $\left|V(G) \cap W_{2}\right| \geq 2$.

Proof. Let $H, H^{\prime}$, and $G$ be as described in the hypothesis, and let $V_{2}=V(F) \cap$ $W_{2}$. Since $H\left[W_{1} \cup W_{3}\right] \cong H^{\prime}\left[W_{1} \cup W_{3}\right]$ and $H^{\prime}$ is $F$-free, we have $\left|V_{2}\right| \geq 0$.

Suppose that $\left|V_{2}\right|=1$, and let $V_{2}=\{v\}$. Let $p_{1}$ and $p_{2}$ denote respectively the number of vertices in $V(F) \cap W_{1}$ to which $v$ is and is not adjacent to. By Proposition 3.33, after the 2 -switch that creates $H^{\prime}$ there are still at least $p_{1}$ vertices in $W_{1}$ to which $v$ is adjacent, and at least $p_{2}$ vertices in $W_{1}$ to which $v$ is not adjacent. These $p_{1}+p_{2}$ vertices, together with $v$ and $V(F) \cap W_{3}$, clearly induce $F$ in $H^{\prime}$, a contradiction; thus $\left|V_{2}\right| \geq 2$, as claimed.

We now show that the sets described in items 2(ii), 2(iii), and 2(iv) of Theorem 3.27 are degree-sequence-forcing.

Corollary 3.35. The set $\mathcal{F}=\left\{2 K_{2}, C_{4}, F\right\}$ is degree-sequence-forcing whenever $F$ is one of the following:
(i) $n K_{1}, n \geq 1$;
(ii) $K_{n}, n \geq 1$;
(iii) $C_{5}+n K_{1}, n \geq 0$;
(iv) $C_{5} \vee K_{n}, n \geq 0$;
(v) $\left(\left(C_{5}+n K_{1}\right) \vee K_{1}\right)+m K_{1}, m, n \geq 0$;
(vi) $\left(\left(C_{5} \vee K_{n}\right)+K_{1}\right) \vee K_{m}, m, n \geq 0$.

Proof. If $F$ is any of the graphs described in (i), (iii), or (v), then every pseudosplitting partition $\left(V_{1}, V_{2}, V_{3}\right)$ of $V(F)$ has $\left|V_{2}\right| \leq 1$. By Lemma 3.34 and Remark 3.29 , there exist no $\left\{2 K_{2}, C_{4}, F\right\}$-breaking pairs, so $\left\{2 K_{2}, C_{4}, F\right\}$ is degree-sequence-forcing. The cases (ii), (iv), and (vi) follow from the cases (i), (iii) and (v) by Proposition 3.6.

We now consider sets of the form listed in item 2(v) of Theorem 3.27.

Proposition 3.36. The triples $\mathcal{F}=\left\{2 K_{2}, C_{4}, K_{2}+(n-2) K_{1}\right\}$ and $\mathcal{G}=\left\{2 K_{2}, C_{4}\right.$, $\left.K_{n}-e\right\}$ are degree-sequence-forcing for all $n \geq 2$.

Proof. By Proposition 3.6, it suffices to show that the triple $\mathcal{F}$ is degree-sequenceforcing.

Corollary 3.35 handles the case when $n=2$, so we assume that $n \geq 3$. Suppose that $\mathcal{F}$ is not degree-sequence-forcing, and let $\left(H, H^{\prime}\right)$ be an $\mathcal{F}$-breaking pair. By Remark 3.29, $\left(H, H^{\prime}\right)$ is an $\left\{K_{2}+(n-2) K_{1}\right\}$-breaking pair where both $H$ and $H^{\prime}$ are $\left\{2 K_{2}, C_{4}\right\}$-free. Let $V=\left\{a, b, i_{3}, i_{4}, \ldots, i_{n}\right\}$ be the vertex set of an induced copy of $K_{2}+(n-2) K_{1}$ in $H$, with $a b \in E(H)$. By Proposition 3.33, we may fix a pseudo-splitting partition $\left(W_{1}, W_{2}, W_{3}\right)$ of both $V(H)$ and $V\left(H^{\prime}\right)$. From Lemma 3.34 it follows that $\left|V \cap W_{2}\right|=2$, so $V \cap W_{2}=\{a, b\}$, and $V-\{a, b\} \subseteq W_{1}$. Graph $H^{\prime}$ is $\left\{K_{2}+(n-2) K_{1}\right\}$-free, so the 2-switch transforming $H$ into $H^{\prime}$ must add an edge between either $a$ or $b$ and $i_{k}$ for some $k \in\{3, \ldots, n\}$; without loss of generality assume the edge $a i_{3}$ is added. The 2 -switch must be $\left\{a x, i_{3} y\right\} \rightrightarrows$ $\left\{a i_{3}, x y\right\}$ for some $x \in W_{1}$ and some $y \in W_{2}$. However, then $H^{\prime}\left[\left\{a, x, i_{3}, \ldots, i_{n}\right\}\right] \cong$ $K_{2}+(n-2) K_{1}$, a contradiction. Thus $\mathcal{F}$ is degree-sequence-forcing.

The next result addresses the sets described in item 2(vi) of Theorem 3.27.
Proposition 3.37. The sets $\left\{2 K_{2}, C_{4}, F\right\}$ and $\left\{2 K_{2}, C_{4}, \bar{F}\right\}$ are degree-sequenceforcing, where $F \cong\left(\left(C_{5} \vee K_{1}\right)+2 K_{1}\right) \vee K_{1}$.

Proof. Suppose that $\left(H, H^{\prime}\right)$ is a $\left\{2 K_{2}, C_{4}, F\right\}$-breaking pair, where $F \cong\left(\left(C_{5} \vee\right.\right.$ $\left.\left.K_{1}\right)+2 K_{1}\right) \vee K_{1}$. By Remark 3.29 and Proposition 3.33, we may assume that $H$ induces $F$ and that $H$ and $H^{\prime}$ have the same vertex set and a common pseudosplitting partition $\left(W_{1}, W_{2}, W_{3}\right)$. Fix a copy of $F$ in $H$. Note that there is a unique pseudo-splitting partition of $F$, and it must be $\left(W_{1} \cap V(F), W_{2} \cap V(F), W_{3} \cap V(F)\right)$. Within the induced copy of $F$, let $c$ and $\ell_{1}$ be the vertices having degrees 8 and 6 in $H$, respectively, and let $\ell_{2}$ and $\ell_{3}$ be the pendant vertices. By Proposition 3.11
and Remark 3.29, we may assume that $\left(H, H^{\prime}\right)$ is an $F$-breaking pair, and that $H$ contains at most 2 vertices not contained in the copy of $F$. In order for there to be an isomorphism-class-changing 2-switch on $H$, there must be an induced copy of $P_{4}$ on $H\left[W_{1} \cup W_{2}\right]$ that includes a vertex from each of $W_{1} \cap V(F)$ and $W_{2} \cap V(F)$. There then exists a vertex $y \in W_{1}-V(F)$ such that $y$ has a neighbor other than $c$ in $W_{2}$ and $y$ does not dominate $W_{2}$. If $\left|W_{2}\right|=2$, then $y$ is adjacent to $\ell_{1}$ but not to $c$; but then any 2-switch involving $y$ has the form $\left\{\ell_{1} y, v c\right\} \rightrightarrows\left\{\ell_{1} v, y c\right\}$ for some $v \in W_{1}-\{y\}$, and $H^{\prime}\left[\{y, w\} \cup W_{2} \cup W_{3}\right]$ is a copy of $F$, where $w \in\left\{\ell_{2}, \ell_{3}\right\}-v$. Thus $H$ contains a vertex $x \in W_{2}$ that does not belong to $F$, and $V(H)=V(F) \cup\{x, y\}$.

If $N_{H}(y)=\{x\}$, then the 2-switch changing $H$ into $H^{\prime}$ must be $\{x y, v c\} \rightrightarrows$ $\{x v, y c\}$, where $v \in\left\{\ell_{2}, \ell_{3}\right\}$; since $x v \notin E(H)$, the 2-switch in effect merely switches the roles of $y$ and $v$ without changing the isomorphism class of $H$. A similar contradiction arises if $N_{H}(y)=\left\{\ell_{1}\right\}$. The neighborhood of $y$ in $H$ cannot be $\{x, c\}$ or $\left\{\ell_{1}, c\right\}$ or $\left\{x, c, \ell_{1}\right\}$, for no 2 -switch would then be possible on $H$. Thus $N_{H}(y)=\left\{\ell_{1}, x\right\}$, and the 2-switch changing $H$ into $H^{\prime}$ then has the form $\{v y, w c\} \rightrightarrows\{v w, y c\}$, where $v \in\left\{\ell_{1}, x\right\}$ and $w \in\left\{\ell_{2}, \ell_{3}\right\}$. If $v=\ell_{1}$ then $\ell_{1} y \notin$ $E\left(H^{\prime}\right)$, and $H^{\prime}\left[W_{3} \cup\left\{c, \ell_{1}, y, u\right\}\right] \cong F$, where $u \in\left\{\ell_{2}, \ell_{3}\right\}-w$. If $v=x$ then since $x y \notin E\left(H^{\prime}\right)$ and $H^{\prime}$ cannot induce $F$ on $W_{3} \cup\{c, x, y, u\}$, where $u \in\left\{\ell_{2}, \ell_{3}\right\}-w$, we must have $x u \in E\left(H^{\prime}\right)$; but then $H^{\prime}\left[W_{3} \cup\left\{x, \ell_{1}, \ell_{2}, \ell_{3}\right\}\right] \cong F$, a contradiction.

We conclude that no $\left\{2 K_{2}, C_{4}, F\right\}$-breaking pair exists, so this set is degree-sequence-forcing. By Proposition 3.6, it follows that $\left\{2 K_{2}, C_{4}, \bar{F}\right\}$ is also degree-sequence-forcing.

We now prove that the sets described in item 2(vii) of Theorem 3.27 are degree-sequence-forcing, beginning with a few technical results.

Lemma 3.38. If $G$ is a $\left\{2 K_{2}, C_{4}\right\}$-free graph and abcd is an induced copy of $P_{4}$ such that every vertex not in $\{a, b, c, d\}$ is adjacent to exactly 0 or 2 vertices in
$\{a, d\}$, then the graph $G^{\prime}$ formed by performing the 2 -switch $\{a b, c d\} \rightrightarrows\{a c, b d\}$ is isomorphic to $G$.

Proof. It is easy to verify that the bijection from $V(G)$ to $V\left(G^{\prime}\right)$ that maps $a$ and $d$ to each other and fixes every other element (recall that $V(G)=V\left(G^{\prime}\right)$ is an isomorphism.

Lemma 3.39. If abcd is an induced copy of $P_{4}$ in a $\left\{2 K_{2}, C_{4}\right.$, kite $\}$-free graph $G$, then every vertex of $V(G)-\{a, b, c, d\}$ is adjacent to exactly 0 or 2 of $\{a, d\}$.

Proof. Let $\left(V_{1}, V_{2}, V_{3}\right)$ be a pseudo-splitting partition of $G$. By Corollary 3.32, either the path $\langle a, b, c, d\rangle$ is contained within $G\left[V_{3}\right]$, in which case the claim is clearly true by Theorem 3.31, or $a, d \in V_{1}$ and $b, c \in V_{2}$. Assume that the latter holds, and suppose that $u \neq b$ and $u a \in E(G)$. It follows that $u \in V_{2}$, so $u b, u c \in E(G)$. Since $G$ does not induce the kite on $\{a, b, c, d, u\}$, we must have $u d \in E(G)$. Similar arguments show that any vertex other than $c$ adjacent to $d$ must also be adjacent to $a$, and the result follows.

Proposition 3.40. If $\mathcal{F}$ is $\left\{2 K_{2}, C_{4}\right.$, kite $\}$ or $\left\{2 K_{2}, C_{4}\right.$, chair $\}$, then the $\mathcal{F}$-free graphs are unigraphs.

Proof. Any 2-switch on a $\left\{2 K_{2}, C_{4}\right.$, kite $\}$-free graph $G$ must be performed on an induced copy of $P_{4}$. Lemmas 3.38 and 3.39 imply that the graph resulting from such a 2 -switch is isomorphic to $G$, so by Theorem $3.8 G$ is a unigraph. Since every $\left\{2 K_{2}, C_{4}\right.$, chair $\}$-free graph $H$ is the complement of a $\left\{2 K_{2}, C_{4}\right.$, kite $\}$-free graph, $H$ is also a unigraph.

Corollary 3.41. The triple $\mathcal{F}=\left\{2 K_{2}, C_{4}, F\right\}$ is degree-sequence-forcing if $F$ is the kite or chair graph, or any graph on 4 or fewer vertices.

Proof. If $F \in\left\{2 K_{2}, C_{4}\right\}$ then $\mathcal{F}=\left\{2 K_{2}, C_{4}\right\}$ which by Theorem 3.18 is degree-sequence-forcing. If $F \in\left\{4 K_{1}, K_{4}\right\}$, then by Corollary $3.35 \mathcal{F}$ is degree-sequenceforcing. If $F$ is any other graph on 4 or fewer vertices, or if $F$ is the chair or kite
graph, then $F$ is induced in either the chair or the kite graph. The $\left\{2 K_{2}, C_{4}, F\right\}$ free graphs are thus $\left\{2 K_{2}, C_{4}\right.$, chair $\}$-free or $\left\{2 K_{2}, C_{4}\right.$, kite $\}$-free and hence are unigraphs by Proposition 3.40 , so $\left\{2 K_{2}, C_{4}, F\right\}$ is degree-sequence-forcing by Remark 3.7.

In the next few results we show that the graphs in item 2(viii) of Theorem 3.27 (those illustrated in Figure 3.7) complete a degree-sequence-forcing triple with $\left\{2 K_{2}, C_{4}\right\}$. We begin by establishing some facts about the triple $\mathcal{F}$ where $F$ induces $C_{5}$.

Proposition 3.42. Let $G$ and $H$ be $C_{5}$-inducing graphs that are $\left\{2 K_{2}, C_{4}\right\}$-free. If the vertex set of the split part $G^{s}$ of $G$ has a unique partition into a clique and an independent set, then $H$ is $G$-free if and only if $H^{s}$ is $G^{s}$-free.

Proof. Suppose first that $H^{s}$ induces $G^{s}$, and assume that $V\left(G^{s}\right) \subseteq V\left(H^{s}\right)$. Let $\left(W_{1}, W_{2}, W_{3}\right)$ be the pseudo-splitting partition of $H$. The ordered partition $\left(W_{1}, W_{2}\right)$ is a splitting partition of $V\left(H^{s}\right)$, and if $\left(V_{1}, V_{2}\right)$ is a splitting partition of $V\left(G^{s}\right)$, then the uniqueness of the latter partition forces $V_{1} \subseteq W_{1}$ and $V_{2} \subseteq W_{2}$. Now in $H$ there is an induced copy of $C_{5}$ on $V_{3}$ in which every vertex dominates $W_{2}$. Since $G$ is constructed by making each vertex of a copy of $C_{5}$ adjacent to each vertex in $V_{2}$ and not adjacent to any vertex in $V_{1}$, it is clear that $G$ is induced in $H$.

For the converse, suppose that $H$ induces $G$, and assume $V(G) \subseteq V(H)$. Let $\left(W_{1}, W_{2}, W_{3}\right)$ be a pseudo-splitting partition of $H$, and let $\left(V_{1}, V_{2}, V_{3}\right)$ be a pseudo-splitting partition of $G$. Now $H$ induces a single copy of $C_{5}$, as does $G$, so $V_{3}=W_{3}$. Then $V_{1} \cup V_{2} \subseteq W_{1} \cup W_{2}$, and it is clear that $G^{s}$ is induced in $H^{s}$.

Proposition 3.43. Suppose that $G$ is a $\left\{2 K_{2}, C_{4}\right\}$-free graph such that $G$ induces $C_{5}$, and $V\left(G^{s}\right)$ has a unique partition into a clique and an independent set.

If $\left\{2 K_{2}, C_{4}, G^{s}\right\}$ is degree-sequence-forcing, then $\left\{2 K_{2}, C_{4}, G\right\}$ is degree-sequenceforcing as well.

Proof. Suppose that $\mathcal{G}=\left\{2 K_{2}, C_{4}, G\right\}$ is not degree-sequence-forcing, and let $\left(H_{1}, H_{2}\right)$ be a $\mathcal{G}$-breaking pair. Proposition 3.42 implies that $H_{1}^{s}$ induces $G^{s}$, and $H_{2}^{s}$ is $G^{s}$-free; thus $\left(H_{1}^{s}, H_{2}^{s}\right)$ is a $G^{s}$-breaking pair and hence a $\left\{2 K_{2}, C_{4}, G^{s}\right\}$ breaking pair. We conclude that $\left\{2 K_{2}, C_{4}, G^{s}\right\}$ is not degree-sequence-forcing.

Corollary 3.44. Let $F$ be the unique $C_{5}$-inducing $\left\{2 K_{2}, C_{4}\right\}$-free graph such that $F^{s} \cong$ chair. Let $G$ be the unique $C_{5}$-inducing $\left\{2 K_{2}, C_{4}\right\}$-free graph such that $G^{s} \cong P_{4}$. The sets $\left\{2 K_{2}, C_{4}, F\right\},\left\{2 K_{2}, C_{4}, \bar{F}\right\}$, and $\left\{2 K_{2}, C_{4}, G\right\}$ are degree-sequence-forcing.

We conclude our proof of the sufficiency of the conditions listed in Theorem 3.27 by addressing the case listed in item 2(ix) of Theorem 3.27.

Proposition 3.45. The sets $\left\{2 K_{2}, C_{4}, K_{1,3}+K_{1}\right\}$ and $\left\{2 K_{2}, C_{4},\left(K_{3}+K_{1}\right) \vee K_{1}\right\}$ are degree-sequence-forcing.

Proof. Let $\mathcal{F}=\left\{2 K_{2}, C_{4}, K_{1,3}+K_{1}\right\}$. If $\mathcal{F}$ is not degree-sequence-forcing, then there exists a $\left\{K_{1,3}+K_{1}\right\}$-breaking pair $\left(H_{1}, H_{2}\right)$ of $\left\{2 K_{2}, C_{4}\right\}$-free graphs, and we may assume that $H_{2}$ is obtained by performing a single 2-switch on $H_{1}$, so that the two have the same vertex set. Let $\left(W_{1}, W_{2}, W_{3}\right)$ be a pseudo-splitting partition of $V\left(H_{1}\right)$. It follows from Lemma 3.34 that any induced subgraph isomorphic to $K_{1,3}+K_{1}$ contains exactly two vertices from $W_{2}$. Fix an induced subgraph $G$ of $H_{1}$ isomorphic to $K_{1,3}+K_{1}$. It follows from Theorem 3.31 that $G$ has three vertices $s, \ell_{2}$, and $\ell_{3}$ in $W_{1}$ and two vertices $c$ and $\ell_{1}$ in $W_{2}$, with $c$ and $s$ the vertices of degrees 3 and 0 , respectively, in $G$. Since $H_{2}$ induces no copy of $K_{1,3}+K_{1}$ on $V(G)$, it follows from Proposition 3.33 that the 2-switch changing $H_{1}$ into $H_{2}$ must either add an edge between $\ell_{1}$ and one of $\ell_{2}$ or $\ell_{3}$, add the edge $\ell_{1} s$ to $G$,
add the edge $c s$ to $G$, or delete an edge joining $c$ and one of $\ell_{2}$ or $\ell_{3}$. We consider each of these possibilities.

If the 2 -switch adds an edge between $\ell_{1}$ and either $\ell_{2}$ or $\ell_{3}$, without loss of generality we may assume that the 2 -switch has the form $\left\{\ell_{1} y, \ell_{2} x\right\} \rightrightarrows\left\{\ell_{1} \ell_{2}, y x\right\}$ for some vertex $x \in W_{2}$ and some $y \in W_{1}$ We make no initial assumption that $x$ or $y$ is distinct from a vertex in $V(G)$ (other than the vertices $\ell_{1}$ and $x$ involved in the 2-switch); however, since $\ell_{1} y$ is an edge in $H_{1}$, we deduce that $y \notin\left\{\ell_{2}, \ell_{3}\right\}$. If $c y$ were an edge of $H_{1}$, then $H_{1}$ would induce a copy of $K_{1,3}+K_{1}$ on $\left\{c, \ell_{2}, \ell_{3}, s, y\right\}$ having only one vertex in $W_{2}$, a contradiction; thus $c y \notin E\left(H_{1}\right)$. Now in $H_{2}$ we have edges $c x, c \ell_{2}, c \ell_{3}$ and non-edges $x \ell_{2}, \ell_{2} \ell_{3}, s \ell_{2}, s \ell_{3}$; since $H_{2}$ is $\left\{K_{1,3}+K_{1}\right\}$ free, $H_{2}$ must contain either $x \ell_{3}$ or $x s$ as an edge. If $H_{2}$ had both of these edges then it would induce $K_{1,3}+K_{1}$ on $\left\{\ell_{2}, \ell_{3}, s, x, y\right\}$, a contradiction, so exactly one of $x \ell_{3}$ or $x s$ is and edge of $G$. In either case $H_{2}$ induces $K_{1,3}+K_{1}$ on $\left\{\ell_{1}, \ell_{3}, s, x, y\right\}$, a contradiction.

If instead the 2 -switch producing $H_{2}$ adds the edge $\ell_{1} s$, then the 2 -switch has the form $\left\{\ell_{1} y, s x\right\} \rightrightarrows\left\{\ell_{1} s, y x\right\}$ for some $x \in W_{2}$ and $y \in W_{1}$. Since $x$ is adjacent to $s$, we have $x \notin\left\{c, \ell_{1}\right\}$, and since $y$ is adjacent to $\ell_{1}$, we have $\left\{y \notin \ell_{2}, \ell_{3}, s\right\}$. Since $\left\{c, \ell_{2}, \ell_{3}, s, y\right\}$ cannot induce $K_{1,3}+K_{1}$ in $H_{1}$ (only one of these vertices belongs to $W_{2}$ ), we have $c y \notin E\left(H_{1}\right)$. In $H_{2}$ we have $y$ adjacent to neither of $c$ or $\ell_{1}$, so $H_{2}$ induces $K_{1,3}+K_{1}$ on $\left\{c, \ell_{1}, \ell_{2}, \ell_{3}, y\right\}$, a contradiction.

If the 2 -switch adds instead the edge $c s$ to $G$, then the 2 -switch performed has the form $\{c y, s x\} \rightrightarrows\{c s, x y\}$ for some $x \in W_{2}$ and $y \in W_{1}$. Since $x$ is adjacent to $s$ in $H_{1}$, we have $x \neq \ell_{1}$. However, since $H_{1}$ cannot induce $K_{1,3}+K_{1}$ on $\left\{c, \ell_{2}, \ell_{3}, s, y\right\}$, we must have $y \in\left\{\ell_{2}, \ell_{3}\right\}$. Without loss of generality we assume that $y=\ell_{2}$, so that the 2-switch performed is $\left\{c \ell_{2}, s x\right\} \rightrightarrows\left\{c s, x \ell_{2}\right\}$. The subgraph of $H_{2}$ induced on $\left\{c, \ell_{1}, \ell_{2}, \ell_{3}, s\right\}$ is then isomorphic to $K_{1,3}+K_{1}$, a contradiction.

Finally, if the 2-switch changing $H_{1}$ into $H_{2}$ deletes an edge joining $c$ to one of
$\ell_{2}$ or $\ell_{3}$, then we may assume without loss of generality that the 2 -switch has the form $\left\{c \ell_{2}, y x\right\} \rightrightarrows\left\{c y, \ell_{2} x\right\}$ for some $x \in W_{2}$ and $y \in W_{1}$. Since $x y$ is an edge in $H_{1}$, we cannot have both $x=\ell_{1}$ and $y=s$. If $y \neq s$, then $H_{2}$ induces $K_{1,3}+K_{1}$ on $\left\{c, \ell_{3}, s, x, y\right\}$ unless $x$ is adjacent to $\ell_{3}$ or $s$. Since $H_{2}$ is $\left\{K_{1,3}+K_{1}\right\}$-free, $x$ cannot be adjacent to both vertices, and if $x$ is adjacent to either one, then $H_{2}$ induces $K_{1,3}+K_{1}$ on $\left\{\ell_{1}, \ell_{2}, \ell_{3}, s, x\right\}$, a contradiction. Thus $y=s$ and $x \neq \ell_{1}$; in this case $H_{2}$ induces $K_{1,3}+K_{1}$ on $\left\{c, \ell_{1}, \ell_{2}, \ell_{3}, s\right\}$, a contradiction.

Since every case yields a contradiction, we conclude that no $\mathcal{F}$-breaking pair exists. Thus $\left\{2 K_{2}, C_{4}, K_{1,3}+K_{1}\right\}$ is degree-sequence-forcing, and by Proposition 3.6 the set $\left\{2 K_{2}, C_{4},\left(K_{3}+K_{1}\right) \vee K_{1}\right\}$ is degree-sequence-forcing as well.

### 3.4.2 Proof of necessity in Theorem 3.27

In this subsection we show that the only non-minimal degree-sequence-forcing triples are the ones presented in Theorem 3.27. In the previous section, we used an observation on order-preserving graph parameters (Remark 3.13) to show that every degree-sequence-forcing set contains graphs of certain types (namely, from the classes $\mathbb{K}, \mathbb{K}^{c}, \mathbb{S}$, and $\mathbb{S}^{c}$ ). These results were useful in showing that no other degree-sequence-forcing pairs existed than those listed in Theorem 3.18.

In this subsection we again seek to show that all but certain specified sets are not degree-sequence-forcing. However, our assumption that the degree-sequenceforcing triples are non-minimal renders Remark 3.13 and the results that accompany it useless, because by assumption the sets we consider contain a degree-sequence-forcing set as a subset, and hence contain elements from $\mathbb{K}, \mathbb{S}$, and any other graph class determined by values of an order-preserving parameter.

Instead, we use the structure of $\left\{2 K_{2}, C_{4}\right\}$-free graphs to formulate a notion of a degree-sequence-forcing sets in the context of bipartite graphs. We then use our
results to complete the proof of Theorem 3.27. We begin with several definitions.
A bipartitioned graph is a triple $\left(G, V_{1}, V_{2}\right)$ where $G$ is a bipartite graph with partite sets $V_{1}$ and $V_{2}$. We use $G\left(V_{1}, V_{2}\right)$ to denote the bipartitioned graph and refer to $G$ as the underlying graph. We define two bipartitioned graphs $G\left(V_{1}, V_{2}\right)$ and $G^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ to be isomorphic if there exists a graph isomorphism $\phi: V(G) \rightarrow$ $V\left(G^{\prime}\right)$ such that $\phi\left(V_{1}\right)=V_{1}^{\prime}$ (and hence $\phi\left(V_{2}\right)=V_{2}^{\prime}$ ).

We define the bicomplement $\overline{G\left(V_{1}, V_{2}\right)}$ of a bipartitioned graph $G\left(V_{1}, V_{2}\right)$ to be the bipartitioned graph $H\left(V_{2}, V_{1}\right)$ such that $E(H)=\left\{u v: u \in V_{2}, v \in V_{1}, u v \notin\right.$ $E(G)\}$. Note that in the bicomplement the roles of $V_{1}$ and $V_{2}$ are interchanged.

Given a split graph $G$ and a splitting partition $\left(V_{1}, V_{2}\right)$ of $V(G)$, we define the associated bipartitioned graph to be $G^{b}\left(V_{1}, V_{2}\right)$, where $G^{b}$ is formed by deleting all edges with both endpoints in $V_{2}$. Note that an arbitrary split graph may have more than one partition into an independent set and a clique, and hence more than one associated bipartitioned graph. If $H$ is a pseudo-split graph that induces $C_{5}$ and has pseudo-splitting partition $\left(V_{1}, V_{2}, V_{3}\right)$, then the associated bipartitioned graph is defined to be $H^{b}\left(V_{1}, V_{2}\right)$, where $H^{b}$ is formed by deleting $V_{3}$ from $H$ and removing all edges with both endpoints in $V_{2}$; equivalently, $H^{b}=\left(H^{s}\right)^{b}$. A pseudo-split graph that induces $C_{5}$ has exactly one bipartitioned graph associated with it.

We say a bipartitioned graph $H\left(W_{1}, W_{2}\right)$ is an induced subgraph of $G\left(V_{1}, V_{2}\right)$ if $W_{i} \subseteq V_{i}$ for $i \in\{1,2\}$ and $H=G\left[W_{1} \cup W_{2}\right]$. We will often be more interested in isomorphism classes of bipartitioned graphs than with specific graphs themselves; for that reason, we say that $G\left(V_{1}, V_{2}\right)$ is $F\left(X_{1}, X_{2}\right)$-free if there is no induced subgraph of $G\left(V_{1}, V_{2}\right)$ isomorphic to $F\left(X_{1}, X_{2}\right)$, and we say that $G\left(V_{1}, V_{2}\right)$ induces $F\left(X_{1}, X_{2}\right)$ if there exists an induced subgraph of $G\left(V_{1}, V_{2}\right)$ isomorphic to $F\left(X_{1}, X_{2}\right)$.

We define the degree sequence of a bipartitioned graph $G\left(V_{1}, V_{2}\right)$ to be the


Figure 3.8: The chair graph and its associated bipartitioned graph.


Figure 3.9: A bipartitioned 2-switch and a non-bipartitioned 2-switch.
ordered pair $\left(d ; d^{\prime}\right)$, where $d$ and $d^{\prime}$ are lists of the degrees in $G$ of the vertices in $V_{1}$ and $V_{2}$, respectively, written in nonincreasing order. If $G\left(V_{1}, V_{2}\right)$ has degree sequence $\left(d ; d^{\prime}\right)$, then we say that $G\left(V_{1}, V_{2}\right)$ is a realization of $\left(d ; d^{\prime}\right)$.

Example 3.46. The chair graph $G$ is shown on the left in Figure 3.8. Its unique associated bipartitioned graph $G^{b}\left(V_{1}, V_{2}\right)$ is shown on the right, with vertices in $V_{1}$ on the bottom row and vertices in $V_{2}$ on the top row. The degree sequence of $G^{b}\left(V_{1}, V_{2}\right)$ is $(1,1,1 ; 2,1)$.

We note that nonisomorphic bipartitioned graphs may have a common degree sequence. We define a set $\mathcal{F}=\left\{F_{1}\left(V_{1}^{1}, V_{2}^{1}\right), \ldots, F_{k}\left(V_{1}^{k}, V_{2}^{k}\right)\right\}$ of bipartitioned graphs to be degree-sequence-forcing if whenever a bipartitioned graph $G\left(W_{1}, W_{2}\right)$ with degree sequence $\left(d ; d^{\prime}\right)$ induces no element of $\mathcal{F}$, no other realization of $\left(d ; d^{\prime}\right)$ induces an element of $\mathcal{F}$.

In examining degree-sequence-forcing sets of bipartitioned graphs, we begin with the following useful note:

Remark 3.47. Given a set $\mathcal{F}$ of bipartitioned graphs, let $\mathcal{F}^{c}$ denote the collection of bicomplements of elements of $\mathcal{F}$. The set $\mathcal{F}$ is degree-sequence-forcing if and only if $\mathcal{F}^{c}$ is degree-sequence-forcing.

We define a bipartitioned 2 -switch on $G\left(V_{1}, V_{2}\right)$ as the deletion of two edges $u v, x y$ of $G$ and the addition of edges $u y, x v$ not already belonging to $G$, where
we require that $u, x \in V_{1}$ and $v, y \in V_{2}$, as shown on the left in Figure 3.9. As before, we denote this 2 -switch by $\{u v, y x\} \rightrightarrows\{u y, v x\}$. A bipartitioned 2-switch is a 2-switch on the underlying graph. However, the definition of a bipartitioned 2-switch is more restrictive; after the 2-switch $\{u v, y x\} \rightrightarrows\{u y, v x\}$ on $G\left(V_{1}, V_{2}\right)$, the sets $V_{1}, V_{2}$ still partition $V(G)$ into two independent sets. This need not be the case for an arbitrary 2-switch on a bipartite graph, as shown on the right in Figure 3.9, where the bottom and top rows of vertices contain subsets of $V_{1}$ and $V_{2}$, respectively.

As with general 2-switches, a bipartitioned 2-switch does not change the degree of any vertex in the bipartitioned graph. We arrive at an analogue of Theorem 3.8:

Proposition 3.48. Bipartitioned graphs $G\left(W_{1}, W_{2}\right)$ and $H\left(W_{1}, W_{2}\right)$ on the same vertex set satisfy $d_{G}(v)=d_{H}(v)$ for every vertex $v \in W_{1} \cup W_{2}$ if and only if $H$ can be obtained by performing a sequence of bipartitioned 2-switches on $G$.

Proof. Let $G\left(W_{1}, W_{2}\right)$ and $H\left(W_{1}, W_{2}\right)$ be bipartitioned graphs as described in the hypothesis. We proceed by induction on $\left|W_{1}\right|$. When $\left|W_{1}\right|=1$ there is nothing to prove; suppose that $\left|W_{1}\right|>1$. Let $u$ be a vertex of maximum degree $\Delta$ among vertices in $W_{1}$, and let $v_{1}, \ldots, v_{\Delta}$ be a set of vertices in $W_{2}$ with the $\Delta$ highest degrees among vertices in $W_{2}$. We show that by means of bipartitioned 2-switches we can arrive at a bipartitioned graph where $N(u)=\left\{v_{1}, \ldots, v_{\Delta}\right\}$. Suppose that $u v_{i} \notin E(G)$ for some $i \in\{1, \ldots, \Delta\}$. The vertex $u$ has a neighbor $w$ in $W_{2}-\left\{v_{1}, v_{2}, \ldots, v_{\Delta}\right\}$. Since $v_{i}$ has degree at least as large as that of $w$, the vertex $v_{i}$ has a neighbor $x$ in $W_{1}-N(w)$. We may perform the 2 -switch $\left\{u w, v_{i} x\right\} \rightrightarrows\left\{u v_{i}, w x\right\}$ and obtain a graph where $\left|N(u) \cap\left\{v_{1}, \ldots, v_{\Delta}\right\}\right|$ is larger than it previously was. Repeating this procedure as necessary, we arrive at a graph $G^{*}$ where $N(u)=\left\{v_{1}, \ldots, v_{\Delta}\right\}$. We may also perform a sequence of 2 -switches on $H\left(W_{1}, W_{2}\right)$ to form a graph $H^{*}\left(W_{1}, W_{2}\right)$ such that $N(u)=\left\{v_{1}, \ldots, v_{\Delta}\right\}$. The bi-
partitioned graphs $G^{*}\left(W_{1}, W_{2}\right)-u$ and $H^{*}\left(W_{1}, W_{2}\right)-u$ agree on the degrees of all vertices, and by the inductive hypothesis there exists a finite sequence of bipartitioned 2-switches that changes $G^{*}\left(W_{1}, W_{2}\right)-u$ into $H^{*}\left(W_{1}, W_{2}\right)-u$. None of these bipartitioned 2-switches involve the vertex $u$, so the bipartitioned 2 -switches that change $G\left(W_{1}, W_{2}\right)$ into $G^{*}\left(W_{1}, W_{2}\right)$, followed by the same bipartitioned 2-switches that change $G^{*}\left(W_{1}, W_{2}\right)-u$ into $H^{*}\left(W_{1}, W_{2}\right)-u$, followed by the bipartitioned 2-switches that change $H^{*}\left(W_{1}, W_{2}\right)$ into $H\left(W_{1}, W_{2}\right)$, give a sequence of bipartitioned 2-switches that change $G\left(W_{1}, W_{2}\right)$ into $H\left(W_{1}, W_{2}\right)$. The result follows by induction.

We are now in a position to show the relationship between degree-sequenceforcing sets of graphs and degree-sequence-forcing sets of bipartitioned graphs.

Theorem 3.49. Let $\mathcal{F}$ be a collection of $\left\{2 K_{2}, C_{4}\right\}$-free graphs that either all induce $C_{5}$ or are all $C_{5}$-free. Let $\mathcal{G}$ be the set of all bipartitioned graphs associated with elements of $\mathcal{F}$. The set $\left\{2 K_{2}, C_{4}\right\} \cup \mathcal{F}$ is a degree-sequence-forcing set of graphs if and only if $\mathcal{G}$ is a degree-sequence-forcing set of bipartitioned graphs.

Proof. Let $\mathcal{F}$ and $\mathcal{G}$ be as defined above. Suppose first that $\left\{2 K_{2}, C_{4}\right\} \cup \mathcal{F}$ is degree-sequence-forcing. Let $H\left(W_{1}, W_{2}\right)$ be a bipartitioned graph inducing $G\left(V_{1}, V_{2}\right)$, where $G\left(V_{1}, V_{2}\right)$ is an element of $\mathcal{G}$. By definition, $V_{1} \subseteq W_{1}$ and $V_{2} \subseteq W_{2}$. Let $H^{\prime}\left(W_{1}, W_{2}\right)$ be any other realization of the degree sequence of $H\left(W_{1}, W_{2}\right)$, and let $J_{1}$ and $J_{2}$ be pseudo-split graphs for which $H$ and $H^{\prime}$ are associated bipartitioned graphs, respectively, such that $J_{1}$ and $J_{2}$ induce $C_{5}$ if and only if the graphs in $\mathcal{F}$ do. It is clear that $J_{1}$ and $J_{2}$ have the same degree sequence, and that $J_{1}$ induces some element of $\mathcal{F}$. Since $\left\{2 K_{2}, C_{4}\right\} \cup \mathcal{F}$ is degree-sequence-forcing, it follows that $J_{2}$ also induces some element of $\mathcal{F}$; thus $H^{\prime}\left(W_{1}, W_{2}\right)$ induces some element of $\mathcal{G}$. We conclude that $\mathcal{G}$ is degree-sequenceforcing.

Conversely, let $\mathcal{G}$ be degree-sequence-forcing, and suppose that $\left\{2 K_{2}, C_{4}\right\} \cup \mathcal{F}$ is not degree-sequence-forcing. By Remark 3.29 there exists a $\left\{2 K_{2}, C_{4}\right\} \cup \mathcal{F}$ breaking pair $\left(H_{1}, H_{2}\right)$ of $\left\{2 K_{2}, C_{4}\right\}$-free graphs. There exists a sequence of 2 switches that transforms $H_{1}$ into $H_{2}$; by Proposition 3.33 there exists a partition $W_{1}, W_{2}, W_{3}$ of $V\left(H_{1}\right)=V\left(H_{2}\right)$ such that in both $H_{1}$ and $H_{2}$ the set $W_{1}$ is an independent set, $W_{2}$ is a clique, and $W_{3}$ is either empty or the vertex set of an induced $C_{5}$. Consider the bipartitioned graphs $H_{1}^{b}\left(W_{1}, W_{2}\right)$ and $H_{2}^{b}\left(W_{1}, W_{2}\right)$ associated with $H_{1}$ and $H_{2}$. We have that $H_{1}^{b}\left(W_{1}, W_{2}\right)$ induces $G\left(V_{1}, V_{2}\right)$, where $G\left(V_{1}, V_{2}\right)$ is some element of $\mathcal{G}$. Since $\mathcal{G}$ is degree-sequence-forcing, $H_{2}^{b}\left(W_{1}, W_{2}\right)$ also induces some element $G^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ of $\mathcal{G}$. Let $F$ be the element of $\mathcal{F}$ having $G^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ as an associated bipartitioned graph. The only way that $F$ may not be induced in $H_{2}$ is for $H_{2}$ to be $C_{5}$-free while $F$ is not. However, if $F$ induces $C_{5}$, then by assumption every element of $\mathcal{F}$ induces $C_{5}$, which implies that $H_{1}$ and hence $H_{2}$ induce $C_{5}$ as well. This is a contradiction, since $H_{2}$ then induces an element of $\mathcal{F}$. We conclude that $\left\{2 K_{2}, C_{4}\right\} \cup \mathcal{F}$ is degree-sequence-forcing.

As we noted at the beginning of this subsection, the use of order-preserving parameters for general graphs as outlined in Remark 3.13 yields no new requirements of a potential non-minimal degree-sequence-forcing set. However, if we adapt the approach to the context of bipartitioned graphs, then we are able to obtain some necessary conditions on degree-sequence-forcing sets of bipartitioned graphs, as follows.

Proposition 3.50. Every degree-sequence-forcing set $\mathcal{G}$ of bipartitioned graphs contains an element whose underlying graph is a forest.

Proof. Let $\rho(H)$ denote the number of cycles in a graph $H$. Note that $\rho$ is orderpreserving: if $F$ is an induced subgraph of $H$, then $\rho(F) \leq \rho(H)$. Let $\mathcal{G}$ be a set of bipartitioned graphs, and let $G\left(V_{1}, V_{2}\right)$ be an element of $\mathcal{G}$ whose underlying
graph $G$ minimizes $\rho$. If $\rho(G)>0$, then let $u v$ be an edge of $G$ on a cycle, where $u \in V_{1}$ and $v \in V_{2}$. For vertices $x, y \notin V_{1} \cup V_{2}$, define $V_{1}^{\prime}=V_{1} \cup\{x\}$ and $V_{2}^{\prime}=V_{2} \cup\{y\}$; define $H\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ to be the bipartitioned graph whose edge set consists of all edges of $G+x y$, plus the edge $x y$. Let $H^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ be the bipartitioned graph resulting from the bipartitioned 2-switch $\{u v, x y\} \rightrightarrows\{u y, x v\}$ on $H\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$. Note that $\rho\left(H^{\prime}\right)<\rho(G)$. Since $\rho$ is order-preserving and $G\left(V_{1}, V_{2}\right)$ is minimal with respect to $\rho$, we have that $H^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ is $\mathcal{G}$-free. Since $H\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ has the same degree sequence as $H^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ and clearly induces an element of $\mathcal{G}$, we conclude that $\mathcal{G}$ is not degree-sequence-forcing. Thus every degree-sequence-forcing set of bipartitioned graphs contains an element $G\left(V_{1}, V_{2}\right)$ such that $\rho(G)=0$, and the result follows.

Proposition 3.51. Every degree-sequence-forcing set $\mathcal{G}$ of bipartitioned graphs contains an element whose underlying graph is of the form $K_{\ell, m}+n K_{2}+p K_{1}$ for $\ell, m, n, p \geq 0$.

Proof. For any bipartitioned graph $H\left(V_{1}, V_{2}\right)$, let $\rho\left(H\left(V_{1}, V_{2}\right)\right)$ denote the minimum number of edges that can be added to $H\left(V_{1}, V_{2}\right)$ so that the resulting underlying graph has the form $K_{\ell, m}+n K_{2}+p K_{1}$ and is still bipartite with partite sets $V_{1}, V_{2}$. Note that if $F\left(W_{1}, W_{2}\right)$ is induced in $H\left(V_{1}, V_{2}\right)$, then $\rho\left(F\left(W_{1}, W_{2}\right)\right) \leq$ $\rho\left(H\left(V_{1}, V_{2}\right)\right)$. Now let $\mathcal{G}$ be a set of bipartitioned graphs, and let $G\left(V_{1}, V_{2}\right)$ be an element of $\mathcal{G}$ that minimizes $\rho$. Suppose that $\rho\left(G\left(V_{1}, V_{2}\right)\right)>0$. Choose $u \in V_{1}$ and $v \in V_{2}$ such that $u v$ belongs to a set of $\rho\left(G\left(V_{1}, V_{2}\right)\right)$ edges, each having an endpoint in each of $V_{1}$ and $V_{2}$, that can be added to $G$ to make it of the form $K_{\ell, m}+n K_{2}+p K_{1}$. For vertices $x, y \notin V_{1} \cup V_{2}$, define $V_{1}^{\prime}=V_{1} \cup\{x\}$ and $V_{2}^{\prime}=V_{2} \cup\{y\}$, and define $H\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ to be the bipartitioned graph whose edge set consists of all edges of $G$, plus the edges $u y$ and $x v$. Let $H^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ be the bipartitioned graph resulting from the bipartitioned 2-switch $\{x v, u y\} \rightrightarrows\{u v, x y\}$
on $H\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$. It is easily seen that $\rho\left(H^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)\right)<\rho\left(G\left(V_{1}, V_{2}\right)\right)$. Since $\rho$ is orderpreserving and $G\left(V_{1}, V_{2}\right)$ is minimal with respect to $\rho$, we find that $H^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ is $\mathcal{G}$-free. Since $H\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ has the same degree sequence as $H^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ and clearly induces an element of $\mathcal{G}$, we conclude that $\mathcal{G}$ is not degree-sequence-forcing. Thus if $\mathcal{G}$ is a degree-sequence-forcing set of bipartitioned graphs, then some element $G\left(V_{1}, V_{2}\right)$ in $\mathcal{G}$ satisfies $\rho\left(G\left(V_{1}, V_{2}\right)\right)=0$, and the result follows.

Corollary 3.52. Every degree-sequence-forcing set of bipartitioned graphs contains two elements $G\left(V_{1}, V_{2}\right)$ and $H\left(W_{1}, W_{2}\right)$ such that $\overline{G\left(V_{1}, V_{2}\right)}$ has a forest for its underlying graph, and $\overline{H\left(W_{1}, W_{2}\right)}$ has an underlying graph of the form $K_{\ell, m}+n K_{2}+p K_{1}$ for some $\ell, m, n, p \geq 0$.

Proof. This follows from Remark 3.47 and Propositions 3.50 and 3.51.

Our first application of these results will be to characterize the degree-sequenceforcing singleton sets $\left\{G\left(V_{1}, V_{2}\right)\right\}$ of bipartitioned graphs.

Lemma 3.53. Bipartitioned graphs $G\left(V_{1}, V_{2}\right)$ and $\overline{G\left(V_{1}, V_{2}\right)}$ both have the property that their underlying graphs are forests and graphs of the form $K_{\ell, m}+n K_{2}+p K_{1}$ where $\ell, m, n, p \geq 0$ if and only if either $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \leq 1$ or $G \cong K_{1, m}+K_{n}$, where $1 \leq n \leq 2$.

Proof. If $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \leq 1$ or $G \cong K_{1, m}+K_{n}$, where $1 \leq n \leq 2$, then $G\left(V_{1}, V_{2}\right)$ and its bicomplement satisfy the properties required. We now prove the converse. Let $G\left(V_{1}, V_{2}\right)$ and its bicomplement both have underlying graphs that have the forms specified. The graph $G$ then has the form $K_{\ell, m}+n K_{2}+p K_{1}$ for some $\ell, m, n, p \geq 0$ with $\ell \leq m$. Since $G$ is also a forest, we have $0 \leq \ell \leq 1$.

Suppose first that $\ell=n=0$. In this case, $G \cong(m+p) K_{1}$. Since the bicomplement of $G\left(V_{1}, V_{2}\right)$ is also a forest, either $V_{1}$ or $V_{2}$ contains at most one vertex.

If $\ell=0$ and $n \geq 1$, then $G \cong n K_{2}+(m+p) K_{1}$. Fix an edge $u v$ in $G$. For any $x \in V_{1}-\{u, v\}$ and $y \in V_{2}-\{u, v\}$, we have $x$ adjacent to $y$; otherwise, $u, v, x, y$ belong to a component in $\overline{G\left(V_{1}, V_{2}\right)}$ that is not complete bipartite, a contradiction to our assumption. Thus either $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}=1$, or $m=p=0$ and $n=2$ and hence $G \cong 2 K_{2} \cong K_{1,1}+K_{2}$.

Suppose instead that $\ell=1$. We may assume that $m \geq 2$ since otherwise we could write $G$ as $n^{\prime} K_{2}+p^{\prime} K_{1}$, which was handled in the previous case. Suppose that $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \geq 2$. We may also assume that the component $K_{1, m}$ has its center in $V_{2}$ (otherwise, the bicomplement of $G\left(V_{1}, V_{2}\right)$ contains a star component on 3 or more vertices whose center belongs to $V_{2}$, and we may proceed in the proof with the bicomplement). There is some vertex $u$ in $V_{2}$ not belonging to the copy of $K_{1, m}$. If there is another vertex $v$ in $V_{2}$ not belonging to the copy of $K_{1, m}$, then $\overline{G\left(V_{1}, V_{2}\right)}$ is not a forest; hence $\left|V_{2}\right|=2$. Since $G$ has the form $K_{1, m}+n K_{2}+p K_{1}$, the vertex $u$ has at most one neighbor in $V_{1}$. Any vertex in $V_{1}$ not contained in the copy of $K_{1, m}$ is adjacent to $u$; otherwise, $u$ belongs to a component in $\overline{G\left(V_{1}, V_{2}\right)}$ that is not complete bipartite. Thus $G$ is isomorphic to either $K_{1, m}+K_{2}$ or $K_{1, m}+K_{1}$.

Proposition 3.54. The set $\mathcal{G}=\left\{G\left(V_{1}, V_{2}\right)\right\}$ is degree-sequence-forcing if and only if $G\left(V_{1}, V_{2}\right)$ satisfies one of the following:
(i) $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \leq 1$;
(ii) $G \cong 2 K_{2}$;
(iii) $G \cong K_{1,2}+K_{n}$, where $1 \leq n \leq 2$.

Proof. Let $\mathcal{G}$ be a degree-sequence-forcing set. By Propositions 3.50 and 3.51, Lemma 3.53, and Corollary 3.52, we have that either $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \leq 1$ or $G \cong$ $K_{1, m}+K_{n}$ for $1 \leq n \leq 2$. Suppose first that $G \cong K_{1, m}+K_{2}$, with $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \geq$
2. We have $m>0$; suppose that $m \geq 3$. Assume first that the center $y$ of the copy of $K_{1, m}$ in $G$ belongs to $V_{2}$. Let $V_{2}^{\prime}=V_{2} \cup\{x\}$, where $x \notin V_{1} \cup V_{2}$, and form the bipartitioned graph $H_{1}\left(V_{1}, V_{2}^{\prime}\right)$ whose edge set consists of $E(G)$ plus an edge from $x$ to a vertex in $V_{1}$ in each component of $G$. Let $a$ be the neighbor of $x$ belonging to the component of order 2 in $G$, and let $b$ be a leaf of the copy of $K_{1, m}$ to which $x$ is not adjacent in $H_{1}$. Form $H_{2}\left(V_{1}, V_{2}^{\prime}\right)$ by performing on $H_{1}\left(V_{1}, V_{2}^{\prime}\right)$ the bipartitioned 2-switch $\{x a, y b\} \rightrightarrows\{x b, y a\}$. Since $\mathcal{G}$ is degree-sequence-forcing, $H_{2}\left(V_{1}, V_{2}^{\prime}\right)$ induces $G\left(V_{1}, V_{2}\right)$, and to obtain a copy of $G\left(V_{1}, V_{2}\right)$ we must delete $x$, the only vertex of degree 2 in $V_{2}^{\prime}$. However, deleting $x$ yields an isolated vertex in $H_{2}\left(V_{1}, V_{2}^{\prime}\right)$, a contradiction, since $G$ has no isolated vertex. A similar contradiction arises if we assume that $y$ belongs to $V_{1}$; we simply interchange the roles of $V_{1}$ and $V_{2}$. Thus $m \leq 2$; hence $G \cong 2 K_{2}$ or $G \cong K_{1,2}+K_{2}$.

Suppose next that $G \cong K_{1, m}+K_{1}$ with $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \geq 2$. We have $m>0$, and the isolated vertex $z$ in $G$ belongs to the same partite set as the center $y$ of the copy of $K_{1, m}$. Suppose that $m \geq 3$, and assume that $y$ and $z$ belong to $V_{2}$. Let $V_{2}^{\prime}=V_{2} \cup\{x\}$ and $V_{1}^{\prime}=V_{1} \cup\{a\}$, where $x, a \notin V_{1} \cup V_{2}$, and let $b, c$ be two neighbors of $y$ in $V_{1}$. Form the bipartitioned graph $H_{1}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ whose edge set consists of $E(G)$ plus the edges $x c, x a$, and $z a$. Form $H_{2}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ by performing on $H_{1}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ the bipartitioned 2-switch $\{y b, x a\} \rightrightarrows\{y a, x b\}$. For $H_{2}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ to induce $G\left(V_{1}, V_{2}\right)$, the vertex $y$ must be the center of the copy of $K_{1, m}$, as it is the only vertex with degree greater than 2 ; the neighbors of $y$ must be the leaves of the copy of $K_{1, m}$. However, both $x$ and $z$ are adjacent to a neighbor of $y$, so $G\left(V_{1}, V_{2}\right)$ is not induced in $H_{2}\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$, a contradiction. A similar argument produces a contradiction when $y$ and $z$ belong to $V_{1}$. We conclude again that $m \leq 2$, which produces the desired result.

We have shown that the degree-sequence-forcing set $\mathcal{G}$ must satisfy the conditions stated in the proposition. To see that these conditions are sufficient for $\mathcal{G}$
to be degree-sequence-forcing, we apply Theorem 3.49 to the $C_{5}$-inducing graphs $F$ from Corollary 3.35, Proposition 3.37, and Corollary 3.44. Every bipartitioned graph of the form described in the proposition appears as the associated bipartitioned graph of some such $F$.

In preparation for later results we now present a proposition on the structure of split graphs.

Proposition 3.55. Suppose that $S$ is a split graph with more than one associated bipartitioned graph, up to isomorphism. It follows that $S$ has exactly two associated bipartitioned graphs $G\left(V_{1}, V_{2}\right)$ and $H\left(W_{1}, W_{2}\right)$, up to isomorphism, with $\left|V_{2}\right|$ equal to the clique number $\omega(S)$ and $\left|W_{2}\right|=\omega(S)-1$. The graph $G\left(V_{1}, V_{2}\right)$ has some isolated vertex $u \in V_{2}$, and the graph $H\left(W_{1}, W_{2}\right)$ has some vertex $v \in W_{1}$ that dominates $W_{2}$ such that $G\left(V_{1}, V_{2}\right)-u \cong H\left(W_{1}, W_{2}\right)-v$.

Proof. Let $S$ be a split graph. Suppose that $G\left(V_{1}, V_{2}\right)$ and $H\left(W_{1}, W_{2}\right)$ are two bipartitioned graphs associated with $S$, where $\left|V_{2}\right|=\left|W_{2}\right|$. We show that $G\left(V_{1}, V_{2}\right) \cong$ $H\left(W_{1}, W_{2}\right)$. We may assume without loss of generality that $V_{1} \cup V_{2}=W_{1} \cup W_{2}=$ $V(S)$. Since the independent set $W_{1}$ can intersect the clique $V_{2}$ in at most one vertex, we have $\left|V_{2} \cap W_{2}\right| \geq\left|V_{2}\right|-1$. If $\left|V_{2} \cap W_{2}\right|=\left|V_{2}\right|$, then $V_{2}=W_{2}$ and in fact $G\left(V_{1}, V_{2}\right)=H\left(W_{1}, W_{2}\right)$. Suppose instead that $\left|V_{2} \cap W_{2}\right|=\left|V_{2}\right|-1$. We may write $V_{2}-W_{2}=\{v\}$ and $W_{2}-V_{2}=\{w\}$, and we have $v \in W_{1}$ and $w \in V_{1}$. Since $V_{1}$ and $W_{1}$ are independent sets, we find that $N_{S}(v) \subseteq W_{2}$ and $N_{S}(w) \subseteq V_{2}$. Since $N_{S}(v)$ and $N_{S}(w)$ both contain $V_{2} \cap W_{2}$, the map $\phi: V(S) \rightarrow V(S)$ that transposes $v$ and $w$ and fixes all other vertices in $S$ is an automorphism such that $\phi\left(V_{2}\right)=W_{2}$. This same map translates to an isomorphism between bipartitioned graphs. Thus we have shown that if $\left|V_{2}\right|=\left|W_{2}\right|$, then $G\left(V_{1}, V_{2}\right) \cong H\left(W_{1}, W_{2}\right)$.

Suppose now that $G\left(V_{1}, V_{2}\right)$ and $H\left(W_{1}, W_{2}\right)$ are two nonisomorphic bipartitioned graphs associated with $S$. We have $\left|V_{2}\right| \neq\left|W_{2}\right|$; assume without loss of
generality that $\left|V_{2}\right|>\left|W_{2}\right|$. Since at most one vertex of a maximum clique can belong to $W_{1}$, we have $\left|W_{2}\right| \geq \omega(S)-1$; hence $\left|V_{2}\right|=\omega(S)$ and $\left|W_{2}\right|=\omega(S)-1$. Let $Q$ be a clique of size $\omega(S)$ in $S$. Since $W_{1}$ is an independent set in $S$, at most one vertex of $Q$ can belong to $W_{1}$. It follows that we may write $Q=W_{2} \cup\{q\}$, where $q$ is some vertex in $W_{1}$. Note that $q$ is adjacent to every vertex in $W_{2}$ in $S$ and hence in $H$. Since $W_{1}$ is an independent set, $q$ has no other neighbors in $S$. Thus ( $W_{1}-\{q\}, W_{2} \cup\{q\}$ ) is a splitting partition of $V(S)$. Let $H^{*}\left(W_{1}-\{q\}, W_{2} \cup\{q\}\right)$ be the bipartitioned graph associated with this partition. The vertex $q$ is an isolated vertex in $W_{2} \cup\{q\}$, and $\left|W_{2} \cup\{q\}\right|=\omega(S)$. As we showed above, $H^{*}\left(W_{1}-\{q\}, W_{2} \cup\{q\}\right)$ is isomorphic to $G\left(V_{1}, V_{2}\right)$. Let $q^{\prime}$ be the image of $q$ under an isomorphism from $H^{*}\left(W_{1}-\{q\}, W_{2} \cup\{q\}\right)$ to $G\left(V_{1}, V_{2}\right)$. The vertex $q^{\prime}$ is an isolated vertex in $V_{2}$ whose deletion from $G\left(V_{1}, V_{2}\right)$ yields a bipartitioned graph isomorphic to $H\left(W_{1}, W_{2}\right)-q$, as desired.

As a consequence of Proposition 3.55, if a split graph has two associated bipartitioned graphs, we may express them in the form $G\left(V_{1}, V_{2}+u\right)$ and $H\left(V_{1}+\right.$ $u, V_{2}$ ) for some graphs $G, H$ on the same vertex set.

Proposition 3.56. Let $\mathcal{F}=\left\{G\left(V_{1}, V_{2}+u\right), H\left(V_{1}+u, V_{2}\right)\right\}$ be the set of associated bipartitioned graphs of a split graph $S$. Let $G^{\prime}=G-u$ and $H^{\prime}=H-u$. If $\mathcal{F}$ is a degree-sequence-forcing pair of bipartitioned graphs, then $G^{\prime}\left(V_{1}, V_{2}\right) \cong H^{\prime}\left(V_{1}, V_{2}\right)$ is one of the following:
(i) $n K_{1}$, with $n \geq 0$ and $\left|V_{2}\right| \leq 1$,
(ii) $K_{2}$,
(iii) $K_{1,2}$,
(iv) $K_{2}+K_{1}$, with $\left|V_{2}\right|=1$,


Figure 3.10: Bipartitioned graphs from Subcase 1b of Proposition 3.56.
(v) $K_{1,2}+K_{1}$, with $\left|V_{2}\right|=1$,
(vi) the bicomplement of one of the graphs above.

Proof. By Proposition 3.55 we may assume that $\mathcal{F}$ has the form $\mathcal{F}=\left\{G\left(V_{1}, V_{2}+\right.\right.$ $\left.u), H\left(V_{1}+u, V_{2}\right)\right\}$ and that $G^{\prime}\left(V_{1}, V_{2}\right) \cong H^{\prime}\left(V_{1}, V_{2}\right)$ as bipartitioned graphs, where $G^{\prime}=G-u$ and $H^{\prime}=H-u$. By Propositions 3.50 and 3.51, Corollary 3.52, and the fact that the classes of forests, bicomplements of forests, graphs of the form $K_{\ell, m}+n K_{2}+p K_{1}$, and bicomplements of these last graphs are hereditary under induced subgraphs, we find that $G^{\prime}\left(V_{1}, V_{2}\right)$ (and hence $H^{\prime}\left(V_{1}, V_{2}\right)$ ) must be one of the graphs mentioned in Lemma 3.53.

Case 1: $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \leq 1$.
Subcase 1a: $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}=0$. In this case all vertices belong to one part of the bipartition in both $G^{\prime}$ and $H^{\prime}$, and $\mathcal{F}$ is clearly degree-sequence-forcing.

Subcase 1b: $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\}=1$. We assume that $\left|V_{2}\right|=1$, since if $\left|V_{1}\right|=1$ then the bicomplement of $G^{\prime}\left(V_{1}, V_{2}\right)$ falls under this case. With $\left|V_{2}\right|=1$, we find that $G^{\prime}\left(V_{1}, V_{2}\right) \cong H^{\prime}\left(V_{1}, V_{2}\right) \cong K_{1, m}+n K_{1}$, where $m, n \geq 0$.

Claim 1: If $m \geq 3$ and $n \geq 0$, then $\left\{G\left(V_{1}, V_{2}+u\right), H\left(V_{1}+u, V_{2}\right)\right\}$ is not degree-sequence-forcing.

Proof. Graphs $G$ and $H$ are as shown in Figure 3.10. Let $c$ denote the center of the nontrivial star component in $G$, let $v_{1}, \ldots, v_{m}$ denote the leaves adjacent to $c$, and let $a_{1}, \ldots, a_{n}$ denote the isolated vertices in $V_{1}$. Form $H_{1}\left(V_{1}+y, V_{2}+u+x\right)$ by adding to $G$ vertices $x$ and $y$ and edges $x v_{1}, x y$, $u y$, as shown in Figure 3.10. Let $H_{2}\left(V_{1}+y, V_{2}+u+x\right)$ be the bipartitioned graph resulting from the 2 -switch $\left\{c v_{m}, x y\right\} \rightrightarrows\left\{x v_{m}, c y\right\}$. Suppose that a copy of $G\left(V_{1}, V_{2}+u\right)$ is induced in $H_{2}\left(V_{1}+y, V_{2}+u+x\right)$. We may obtain this copy by deleting a vertex in each of $V_{1}+y$ and $V_{2}+u+x$. Because of degree and distance conditions, we cannot delete $c$ and hence must delete both $u$ and $x$, a contradiction. We also see that $H$ is not induced in $H_{2}$. Thus $\left\{G\left(V_{1}, V_{2}+u\right), H\left(V_{1}+u, V_{2}\right)\right\}$ is not degree-sequenceforcing.

Claim 2: If $m \in\{1,2\}$ and $n \geq 2$, then $\left\{G\left(V_{1}, V_{2}+u\right), H\left(V_{1}+u, V_{2}\right)\right\}$ is not degree-sequence-forcing.

Proof. Graphs $G$ and $H$ are as shown in Figure 3.11 (we have illustrated the case $m=2$ ). Again let $c$ denote the center of the nontrivial star component in $G$, let $v_{1}, \ldots, v_{m}$ denote the leaves adjacent to $c$, and let $a_{1}, \ldots, a_{n}$ denote the isolated vertices in $V_{1}$. As shown in Figure 3.11, form $H_{1}\left(V_{1}+y, V_{2}+u+x\right)$ by adding to $G$ vertices $x$ and $y$ and edges $x y, x a_{1}, x a_{2}, \ldots, x a_{n}, u y$; also add edge $x v_{2}$ if $m=2$. Form the bipartitioned graph $H_{2}\left(V_{1}+y, V_{2}+u+x\right)$ by performing on $H_{1}$ the 2-switch $\left\{c v_{1}, x y\right\} \rightrightarrows\left\{c y, x v_{1}\right\}$. Suppose that $H_{2}\left(V_{1}+y, V_{2}+u+x\right)$ induces a copy of $G\left(V_{1}, V_{2}+u\right)$. We may obtain this copy (call it $G^{\prime \prime}\left(W_{1}, W_{2}\right)$ ) by deleting one vertex in $H_{2}$ from each of $V_{1}+y$ and $V_{2}+u+x$. In order to leave $n$ isolated vertices in $W_{1} \cap\left(V_{1}+y\right)$, we must delete $x$; in order to leave an isolated vertex in $W_{2} \cap\left(V_{2}+u+x\right)$, we must delete $y$. However, no vertex in $W_{2}$ would then have degree at least $m$ in $G^{\prime \prime}$, a contradiction. Furthermore, if a copy of $H\left(V_{1}+u, V_{2}\right)$ were induced in $H_{2}\left(V_{1}+y, V_{2}+u+x\right)$, then deleting two vertices of $V_{2}+u+x$ would yield this subgraph, and for no pair is this the case. Thus


Figure 3.11: Bipartitioned graphs from Subcase 1b of Proposition 3.56.


Figure 3.12: Bipartitioned graphs from Subcase 2a of Proposition 3.56.
$\left\{G\left(V_{1}, V_{2}+u\right), H\left(V_{1}+u, V_{2}\right)\right\}$ is not degree-sequence-forcing.
Case 2: $G^{\prime}\left(V_{1}, V_{2}\right) \cong H^{\prime}\left(V_{1}, V_{2}\right) \cong K_{1, m}+K_{n}$ for $1 \leq n \leq 2$. If $m+n \leq 2$ then Case 1 applies, so we assume that $m+n \geq 3$.

Subcase 2a: $G^{\prime}\left(V_{1}, V_{2}\right) \cong H^{\prime}\left(V_{1}, V_{2}\right) \cong K_{1, m}+K_{1}$, where $m \geq 2$. Graphs $G$ and $H$ are as shown in Figure 3.12. Form $H_{1}\left(V_{1}+y, V_{2}+u\right)$ by adding to $G$ vertex $y$ and edges $y b, y u$. Let $H_{2}\left(V_{1}+y, V_{2}+u\right)$ be the bipartitioned graph resulting from the 2 -switch $\left\{c v_{m}, b y\right\} \rightrightarrows\left\{c y, b v_{m}\right\}$. If a copy of $G\left(V_{1}, V_{2}+u\right)$ is induced in $H_{2}\left(V_{1}+y, V_{2}+u\right)$, it may be obtained by deleting a vertex in $V_{1}+y$. Since $c$ is the only vertex in $V_{2}+u$ having degree $m$, none of its neighbors may be the deleted vertex; however, deleting $v_{m}$ leaves a subgraph not isomorphic to $G$. No vertex of $H_{2}$ has degree $m+1$, so $H\left(V_{1}+u, V_{2}\right)$ is also not an induced subgraph of $H_{2}\left(V_{1}+y, V_{2}+u\right)$. Thus $\left\{G\left(V_{1}, V_{2}+u\right), H\left(V_{1}+u, V_{2}\right)\right\}$ is not degree-sequenceforcing.

Subcase 2b: $G^{\prime}\left(V_{1}, V_{2}\right) \cong H^{\prime}\left(V_{1}, V_{2}\right) \cong K_{1, m}+K_{2}$, where $m \geq 1$. Graphs $G$ and $H$ must be as shown in Figure 3.13. Form $H_{1}\left(V_{1}+u+y, V_{2}+x\right)$ by adding to $H$ the vertices $x, y$ and edges $x v$ for $v \in\left\{v_{1}, v_{2}, \ldots, v_{m}, y\right\}$. Obtain


Figure 3.13: Bipartitioned graphs from Subcase 2b of Proposition 3.56.
$H_{2}\left(V_{1}+u+y, V_{2}+x\right)$ by performing on $H_{1}$ the 2-switch $\{x y, b u\} \rightrightarrows\{x u, b y\}$. If a copy of $H\left(V_{1}+u, V_{2}\right)$ is induced in $H_{2}\left(V_{1}+u+y, V_{2}+x\right)$, we may isolate it by deleting from $H_{2}$ one vertex in each of $V_{1}+u+y, V_{2}+x$. However, $H$ is connected, and there is no suitable pair of vertices in $H_{2}$ that may be deleted to leave a connected subgraph. Thus $H_{2}\left(V_{1}+u+y, V_{2}+x\right)$ is $\left\{H\left(V_{1}+u, V_{2}\right)\right\}$-free. Graph $H_{2}\left(V_{1}+u+y, V_{2}+x\right)$ is also $\left\{G\left(V_{1}, V_{2}+u\right)\right\}$-free, since no two vertices may be deleted to leave in $V_{1}+u+y$ exactly two vertices of degree 1 with different neighbors. Thus $\left\{G\left(V_{1}, V_{2}+u\right), H\left(V_{1}+u, V_{2}\right)\right\}$ is not degree-sequence-forcing.

We conclude with the characterization of all non-minimal degree-sequenceforcing triples of graphs.

Proof of Theorem 3.27. By the results of Section 3.4.1, it suffices to show that every degree-sequence-forcing triple $\mathcal{F}$ is listed in the statement of the theorem. As indicated by items 1 and 2(i) in the theorem, we may assume that $\mathcal{F}$ has the form $\left\{2 K_{2}, C_{4}, F\right\}$, where $F$ is $\left\{2 K_{2}, C_{4}\right\}$-free. It follows from Theorem 3.49 that to characterize $F$ such that $\mathcal{F}$ is degree-sequence-forcing, it suffices to characterize the degree-sequence-forcing sets $\mathcal{G}$ of bipartitioned graphs such that $\mathcal{G}$ consists of the bipartitioned graph or graphs associated with a single pseudo-split graph $F$.

Propositions 3.54 and 3.56 provide requirements on the structure of $F$, which we now examine in detail. Suppose first that $F$ has a unique pseudo-splitting partition. This implies that $F$ induces $C_{5}$, or $F^{s}$ has a unique partition into a clique and independent set. In either case $\mathcal{G}$ consists of a single graph, and from Proposition 3.54 it follows that $F$ is one of the graphs listed in items 2(iii), 2(iv), 2 (vi), and 2 (viii) in the statement of the theorem. Suppose instead that $F$ has more than one pseudo-splitting partition. This happens only if $F$ is split, and it implies that $\mathcal{G}$ consists of two graphs as described in Proposition 3.56. It follows that $F$ is one of the graphs listed in items 2 (ii), $2(\mathrm{v}), 2(\mathrm{vii})$, or $2(\mathrm{ix})$ in the theorem.

### 3.5 Minimal degree-sequence-forcing sets

In this section we present results on minimal degree-sequence-forcing sets, those degree-sequence-forcing sets that contain no proper subset that is also degree-sequence-forcing. As we observed in Section 3.4.2, arguments that use orderpreserving parameters to impose conditions on a degree-sequence-forcing set are neutralized when the set considered contains a degree-sequence-forcing proper subset; this approach yields no information on the other elements of the larger degree-sequence-forcing set. In contrast, as we now show, every element of a minimal degree-sequence-forcing set is subject to bounds on the numbers of vertices and edges that it may contain.

Proposition 3.57. Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$, where the graphs in $\mathcal{F}$ are indexed in order of the sizes of their vertex sets, from smallest to largest. If $\mathcal{F}$ is a minimal degree-sequence-forcing set, then $\left|V\left(F_{i+1}\right)\right|-\left|V\left(F_{i}\right)\right| \leq 2$ for all $i \in\{1, \ldots, k-1\}$. Proof. Let $\mathcal{F}$ be a minimal degree-sequence-forcing set with elements indexed as described. For any $i \in\{1, \ldots, k-1\}$, let $\mathcal{G}$ be the set $\left\{F_{1}, \ldots, F_{i}\right\}$. Since $\mathcal{F}$
is minimal, $\mathcal{G}$ is not degree-sequence-forcing. By Proposition 3.11 there exists a $\mathcal{G}$-breaking pair $\left(H, H^{\prime}\right)$ such that $\left|V\left(H^{\prime}\right)\right| \leq\left|V\left(F_{i}\right)\right|+2$. since $\mathcal{F}$ is degree-sequence-forcing, $H^{\prime}$ induces an element $F_{j}$ of $\mathcal{F}$; note that $j>i$. Thus

$$
\left|V\left(F_{i+1}\right)\right|-\left|V\left(F_{i}\right)\right| \leq\left|V\left(F_{j}\right)\right|-\left|V\left(F_{i}\right)\right| \leq\left|V\left(H^{\prime}\right)\right|-\left|V\left(F_{i}\right)\right| \leq 2
$$

as claimed.

Proposition 3.58. Let $\mathcal{F}=\left\{F_{1}^{\prime}, \ldots, F_{k}^{\prime}\right\}$, where the graphs in $\mathcal{F}$ are indexed in order of the sizes of their edge sets, from smallest to largest. If $\mathcal{F}$ is a minimal degree-sequence-forcing set, then

$$
\left|E\left(F_{i+1}^{\prime}\right)\right| \leq \max _{j \leq i}\left\{\left|E\left(F_{j}^{\prime}\right)\right|+2\left|V\left(F_{j}^{\prime}\right)\right|\right\}
$$

for all $i \in\{1, \ldots, k-1\}$.

Proof. Let $\mathcal{F}$ be a minimal degree-sequence-forcing set with elements indexed as described. For any $i \in\{1, \ldots, k-1\}$, let $\mathcal{G}^{\prime}$ be the set $\left\{F_{1}^{\prime}, \ldots, F_{i}^{\prime}\right\}$. Since $\mathcal{F}$ is minimal, $\mathcal{G}^{\prime}$ is not degree-sequence-forcing. As we see in the proof of Proposition 3.11 there exists a $\mathcal{G}^{\prime}$-breaking pair $\left(H, H^{\prime}\right)$ such that every vertex of $H$ not belonging to a chosen induced copy of an element $F_{j}^{\prime}$ of $\mathcal{G}^{\prime}$ belongs to one of the edges involved in the 2-switch that changes $H$ into $H^{\prime}$; there are at most two such vertices. These vertices are incident with all edges of $H$ that do not belong to the chosen copy of $F_{j}^{\prime}$; thus $H$ contains at most $\left|E\left(F_{j}^{\prime}\right)\right|+2\left|V\left(F_{j}^{\prime}\right)\right|$ edges (note that any vertex not in the copy of $F_{j}^{\prime}$ is involved in the 2-switch changing $H$ into $H^{\prime}$ and hence is not a dominating vertex in $H$ ). Note that $H^{\prime}$ has the same number of edges as $H$, and since $\mathcal{F}$ is degree-sequence-forcing, $H^{\prime}$ induces an element $F_{\ell}^{\prime}$
of $\mathcal{F}$ where $\ell>i$. It follows that

$$
\left|E\left(F_{i+1}^{\prime}\right)\right| \leq\left|E\left(F_{\ell}^{\prime}\right)\right| \leq\left|E\left(H^{\prime}\right)\right| \leq\left|E\left(F_{j}^{\prime}\right)\right|+2\left|V\left(F_{j}^{\prime}\right)\right|,
$$

which completes the proof.

These restrictions imply that degree-sequence-forcing sets with few elements contain graphs that do not differ greatly in the numbers of vertices and edges they contain. It also implies that small degree-sequence-forcing sets contain small graphs, as the next result shows.

Theorem 3.59. If $\mathcal{F}$ is a minimal degree-sequence-forcing set of $k$ graphs, then the number of vertices in any element of $\mathcal{F}$ is at most

$$
4 k-\frac{3}{2}+\sqrt{12 k^{2}-10 k+\frac{1}{4}} ;
$$

hence there are finitely many minimal degree-sequence-forcing $k$-sets.
Proof. Let $\mathcal{F}$ be a minimal degree-sequence-forcing set of $k$ graphs, and denote the graphs of $\mathcal{F}$ both by $\left\{F_{1}, \ldots, F_{k}\right\}$ and by $\left\{F_{1}^{\prime}, \ldots, F_{k}^{\prime}\right\}$, where the graphs are indexed in order of the sizes of their vertex sets and edge sets, respectively, from smallest to largest. Let $n_{1}=\left|V\left(F_{1}\right)\right|$. As a consequence of Proposition 3.57, we observe that

$$
\left|V\left(F_{k}\right)\right| \leq n_{1}+2(k-1) .
$$

Using this result and Proposition 3.58, we find that

$$
\begin{aligned}
\left|E\left(F_{j}^{\prime}\right)\right| & \leq \max _{i<j}\left\{\left|E\left(F_{i}^{\prime}\right)\right|+2\left|V\left(F_{i}^{\prime}\right)\right|\right\} \\
& \leq\left|E\left(F_{j-1}^{\prime}\right)\right|+2\left|V\left(F_{k}\right)\right| \\
& \leq\left|E\left(F_{j-1}^{\prime}\right)\right|+2 n_{1}+4(k-1) .
\end{aligned}
$$

Summing the values of $\left|E\left(F_{j}^{\prime}\right)\right|-\left|E\left(F_{j-1}^{\prime}\right)\right|$ as $j$ ranges from 2 to $k$ yields

$$
\begin{equation*}
\left|E\left(F_{k}^{\prime}\right)\right|-\left|E\left(F_{1}^{\prime}\right)\right| \leq 2(k-1) n_{1}+4(k-1)^{2} . \tag{3.1}
\end{equation*}
$$

We thus arrive at an upper bound on the difference in the number of edges between any two graphs in the set $\mathcal{F}$. To find a lower bound on this difference, we recall from Proposition 3.12 and Corollary 3.14 that some element $F_{s}$ of $\mathcal{F}$ is a forest of stars, while some element $F_{c}$ of $\mathcal{F}$ is the complement of a forest of stars. Recall that an $n$-vertex graph has $n(n-1) / 2$ edges, and a forest on $n$ vertices has at most $n-1$ edges, so the number of edges in the complement of a forest is at least $n(n-1) / 2-(n-1)$, which simplifies to $(n-2)(n-1) / 2$. We have

$$
\begin{aligned}
\left|E\left(F_{k}^{\prime}\right)\right|-\left|E\left(F_{1}^{\prime}\right)\right| & \geq\left|E\left(F_{c}\right)\right|-\left|E\left(F_{s}\right)\right| \\
& \geq \frac{\left(n_{1}-2\right)\left(n_{1}-1\right)}{2}-\left(\left|V\left(F_{k}\right)\right|-1\right) \\
& \geq \frac{\left(n_{1}-2\right)\left(n_{1}-1\right)}{2}-\left(n_{1}+2(k-1)-1\right) .
\end{aligned}
$$

Combining this inequality and the one in (3.1), we find that

$$
\frac{\left(n_{1}-2\right)\left(n_{1}-1\right)}{2}-\left(n_{1}+2(k-1)-1\right) \leq 2(k-1) n_{1}+4(k-1)^{2}
$$

which reduces to

$$
n_{1} \leq 2 k+\frac{1}{2}+\sqrt{12 k^{2}-10 k+\frac{1}{4}} .
$$

Since $\left|V\left(F_{k}\right)\right| \leq n_{1}+2(k-1)$, the result follows.
The bound on $\left|V\left(F_{k}\right)\right|$ in Theorem 3.59 does not appear to be tight. The theorem implies that the largest graphs that minimal degree-sequence-forcing singletons and pairs can contain have at most four and at most nine vertices, respectively, when in fact the largest graph in any degree-sequence-forcing singleton has
two vertices, and the largest graph in any minimal degree-sequence-forcing pair has five vertices.

As an illustration of Theorem 3.59, observe that Theorems 3.17 and 3.18 show that there are finitely many minimal degree-sequence-forcing singletons and pairs. Theorems 3.18 and 3.27 demonstrate that the condition of minimality is necessary, as there are infinitely many non-minimal degree-sequence-forcing pairs and triples.

Although for any natural number $k$ there are finitely many minimal degree-sequence-forcing $k$-sets, we observe that there are infinitely many minimal degree-sequence-forcing sets. To see this, note that for any natural number $n$ the set $\mathcal{F}$ of all graphs on $n$ vertices is a degree-sequence-forcing set: given a graphic sequence $\pi$, a realization of $\pi$ induces an element of $\mathcal{F}$ if and only if $\pi$ has at least $n$ entries. The set $\mathcal{F}$ may not be a minimal degree-sequence-forcing set, but by definition it must contain such a subset. Thus for any natural number $n$ there exists a minimal degree-sequence-forcing set $\mathcal{F}$ containing only $n$-vertex graphs. Theorem 3.59 implies a lower bound on the size of such a set. Thus minimal degree-sequence-forcing sets can be arbitrarily large. We conclude this section with a question: Does there exist an infinite minimal degree-sequence-forcing set?

### 3.6 Edit-leveling sets

Our motivation for defining degree-sequence-forcing sets came, in part, from the characterizations that split graphs have in terms of their degree sequences and forbidden subgraphs. The split graphs also provide the motivation for the final topic of this chapter on degree-sequence-forcing sets. In the paper [20] in which they gave a degree sequence characterization of split graphs, Hammer and Simeone defined the splittance $\sigma(G)$ of a graph $G$ to be the minimum number of edges that can be added to or deleted from $G$ to produce a split graph. The split graphs are
precisely those graphs $G$ for which $\sigma(G)=0$. Hammer and Simeone showed that the splittance of a graph $G$ may be computed directly from the degree sequence of $G$.

Theorem 3.60 ([20]). Let $G$ be a graph with degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ such that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. Let $m=\max \left\{k: 1 \leq k \leq n\right.$ and $\left.d_{k} \geq k-1\right\}$. The splittance of $G$ is given by

$$
\sigma(G)=\frac{1}{2}\left(m(m-1)-\sum_{i=1}^{m} d_{i}+\sum_{i=m+1}^{n} d_{i}\right) .
$$

Thus, if $\mathcal{F}=\left\{2 K_{2}, C_{4}, C_{5}\right\}$, then $\mathcal{F}$ has the property that for every graph $G$ the degree sequence not only determines whether $G$ is $\mathcal{F}$-free, but also provides an exact measure of how far $G$ is from being $\mathcal{F}$-free. We seek to generalize this property.

For a graph $G$ and a graph class $\mathcal{P}$, the edit distance from $G$ to $\mathcal{P}$, denoted $\operatorname{dist}(G, \mathcal{P})$, is the minimum number of edges that can be added or deleted to $G$ to produce an element of $\mathcal{P}$ (if this is possible); in other words,

$$
\operatorname{dist}(G, \mathcal{P})=\min \left\{\left|E(G) \triangle E\left(G^{\prime}\right)\right|: G^{\prime} \in \mathcal{P} \text { and }|V(G)|=\left|V\left(G^{\prime}\right)\right|\right\}
$$

where $A \triangle B$ denotes the symmetric difference of sets $A$ and $B$. If $\mathcal{P}$ contains no graphs on $|V(G)|$ vertices, then we $\operatorname{define} \operatorname{dist}(G, \mathcal{P})=\infty$.

Define a graph class $\mathcal{P}$ to be edit-level if for every graph sequence $\pi$ and two realizations $G$ and $G^{\prime}$ of $\pi$ we have $\operatorname{dist}(G, \mathcal{P})=\operatorname{dist}\left(G^{\prime}, \mathcal{P}\right)$. Thus the degree sequence of a graph uniquely determines the edit distance from the graph to an edit-level graph class. Define a set $\mathcal{F}$ of graphs to be edit-leveling if the class of $\mathcal{F}$-free graphs is edit-level.

With these definitions, the set $\left\{2 K_{2}, C_{4}, C_{5}\right\}$ is edit-leveling. Furthermore, for
each natural number $n$ the set $\mathcal{F}$ of all graphs on $n$ vertices is edit-leveling, since the edit distance from a graph $G$ to the $\mathcal{F}$-free graphs is either 0 or $\infty$, depending on how many vertices $G$ contains, and this can be determined immediately from the degree sequence of $G$. Thus there are infinitely many edit-leveling sets. We present another example of one.

Proposition 3.61. For any natural number $k$, let

$$
\mathcal{F}_{k}=\{F: k \leq|E(F)| \leq k+\delta(F)-1\} .
$$

The set $\mathcal{F}_{k}$ is edit-leveling.
Proof. If $G$ has at most $k-1$ edges, then $G$ is $\mathcal{F}_{k}$-free. We show that the inverse of this statement is true. If $G$ has $k$ or more edges, then we iteratively delete vertices from $G$ that leave the remaining graph with at least $k$ edges until this is no longer possible. Let $G^{\prime}$ be the resulting induced subgraph. Since deleting any vertex from $G^{\prime}$ yields a graph with fewer than $k$ edges, $\left|E\left(G^{\prime}\right)\right|-\delta\left(G^{\prime}\right)<k$; thus $G^{\prime}$ has at most $k+\delta\left(G^{\prime}\right)-1$ edges. We conclude that $G$ induces a subgraph $G^{\prime}$ isomorphic to an element of $\mathcal{F}_{k}$.

By the Degree Sum Formula, we may determine from the degree sequence of a graph how many edges it has; thus if $G$ is a graph with degree sequence $\left(d_{1}, \ldots, d_{n}\right)$, then the edit distance from $G$ to the class of $\mathcal{F}_{k}$-free graphs is given by $\frac{1}{2} \sum d_{i}-(k-1)$. Since the edit distance depends only on the degree sequence of $G$ and not on $G$ itself, $\mathcal{F}_{k}$ is edit-leveling.

If $\mathcal{F}$ is any set of graphs and $\mathcal{P}$ is the class of $\mathcal{F}$-free graphs, then for every nonnegative integer $k$ define $\mathcal{P}^{(k)}$ to be the set of graphs at edit-distance at most $k$ from $\mathcal{P}$. Observe that $\mathcal{P}^{(k)}$ is a hereditary family of graphs, so it can be characterized in terms of a set of minimal forbidden subgraphs; let $\mathcal{F}^{(k)}$ denote this set.

As an example, if $\mathcal{F}=\left\{K_{2}\right\}$ and $\mathcal{P}$ is the set of $\mathcal{F}$-free (that is, edgeless) graphs, then $\mathcal{P}^{(k)}$ is set of graphs on at most $k$ edges, so $\mathcal{F}^{(k)}=\mathcal{F}_{k+1}$, another edit-leveling set. In general, we have the following.

Proposition 3.62. If $\mathcal{F}$ is an edit-leveling set of graphs, then for every nonnegative integer $k$ the set $\mathcal{F}^{(k)}$ is edit-leveling.

Proof. Let $\mathcal{P}$ denote the set of $\mathcal{F}$-free graphs. The statement follows from observing that $\operatorname{dist}\left(G, \mathcal{P}^{(k)}\right)=\max \{\operatorname{dist}(G, \mathcal{P})-k, 0\}$ for every graph $G$, and the quantity on the right-hand side of the equation is uniquely determined by the degree sequence of $G$, since $\mathcal{F}$ is assumed to be edit-leveling.

For an edit-level family $\mathcal{P}$ of graphs, knowing the degree sequence of a graph $G$ is enough to determine whether $\operatorname{dist}(G, \mathcal{P})=0$, that is, whether $G \in \mathcal{P}$. Hence edit-level families are degree-determined, and edit-leveling sets are necessarily degree-sequence-forcing. Not every degree-sequence-forcing set is edit-leveling, however. For example, let $\mathcal{F}$ be the set $\left\{2 K_{2}, C_{4}\right\}$, and let $\mathcal{P}$ be the set of $\left\{2 K_{2}, C_{4}\right\}$-free graphs. The graphs $C_{5}+K_{2}$ and $C_{4}+P_{3}$ are both realizations of the degree sequence $(2,2,2,2,2,1,1)$. We have $\operatorname{dist}\left(C_{5}+K_{2}, \mathcal{P}\right)=1$, since $C_{5}+K_{2}$ induces $2 K_{2}$ but $C_{5}+2 K_{1}$ is $\left\{2 K_{2}, C_{4}\right\}$-free and may be obtained by deleting an edge from $C_{5}+K_{2}$. We have $\operatorname{dist}\left(C_{4}+P_{3}, \mathcal{P}\right)>1$, since no single edge may be added or deleted from $C_{4}+P_{3}$ to produce a $\left\{2 K_{2}, C_{4}\right\}$-free graph. Hence $\left\{2 K_{2}, C_{4}\right\}$ is not edit-leveling.

As our final result of this section, we give a characterization of edit-leveling sets in terms of degree-sequence-forcing sets.

Proposition 3.63. A set $\mathcal{F}$ is edit-leveling if and only if the set $\mathcal{F}^{(k)}$ is degree-sequence-forcing for every nonnegative integer $k$.

Proof. Let $\mathcal{P}$ be the set of $\mathcal{F}$-free graphs. Suppose first that $\mathcal{F}$ is edit-level. Let $G$ and $G^{\prime}$ be any two graphs having the same degree sequence. Fix a nonnegative
integer $k$, and suppose that $G$ is $\mathcal{F}^{(k)}$-free. We have

$$
\begin{aligned}
\operatorname{dist}\left(G^{\prime}, P^{(k)}\right) & =\max \left\{\operatorname{dist}\left(G^{\prime}, \mathcal{P}\right)-k, 0\right\} \\
& =\max \{\operatorname{dist}(G, \mathcal{P})-k, 0\} \\
& =\operatorname{dist}\left(G, P^{(k)}\right) \\
& =0
\end{aligned}
$$

so $G^{\prime}$ is also $\mathcal{F}^{(k)}$-free. It follows that $\mathcal{F}^{(k)}$ is degree-sequence-forcing.
Suppose now that $\mathcal{F}$ is not edit-level. This implies the existence of two graphs $G$ and $G^{\prime}$ having the same degree sequence for which $\operatorname{dist}(G, \mathcal{P})<\operatorname{dist}\left(G^{\prime}, \mathcal{P}\right)$. Let $k=\operatorname{dist}(G, \mathcal{P})$. Note that $G$ belongs to $\mathcal{P}^{(k)}$ and is hence $\mathcal{F}^{(k)}$-free; note also that $\operatorname{dist}\left(G^{\prime}, \mathcal{P}^{(k)}\right)=\operatorname{dist}\left(G^{\prime}, \mathcal{P}\right)-k>0$, so $G^{\prime}$ is not $\mathcal{F}^{(k)}$-free. Thus $\left(G^{\prime}, G\right)$ is an $\mathcal{F}^{(k)}$-breaking pair, and $\mathcal{F}^{(k)}$ is not degree-sequence-forcing.

## CHAPTER 4

## The $A_{4}$-structure of a graph

### 4.1 Introduction

Given a simple graph $G$, the $P_{4}$-structure of $G$ is the 4-uniform hypergraph with the same vertex set as $G$ whose edges are the vertex subsets inducing 4 -vertex paths. Chvátal [13] defined the $P_{4}$-structure in 1984 in studying the complexity of recognizing perfect graphs. Since its introduction, the $P_{4}$-structure has also been used in refinements of the modular decomposition of a graph (see [29] and [46]) and in defining or characterizing several classes of graphs (see [11] for a hierarchy of several graph classes defined in terms of their $P_{4}$-structure).

If $\mathcal{F}$ is any set of unlabeled graphs, we may similarly define the $\mathcal{F}$-structure of a graph $G$ as the hypergraph on the vertex set of $G$ having as edges the vertex subsets on which $G$ induces elements of $\mathcal{F}$. Such structures have been considered for the cases where $\mathcal{F}$ is $\left\{P_{3}\right\},\left\{C_{5}\right.$, paw, $\left.P_{3}+K_{1}\right\},\left\{2 K_{2}, C_{4}, C_{5}\right\},\left\{P_{3}, K_{2}+K_{1}\right\}$, and $\left\{K_{3}, 3 K_{1}\right\}$ (see [24-28]). A realization of an $\mathcal{F}$-structure $H$ is a graph whose $\mathcal{F}$-structure is $H$, up to hypergraph isomorphism.

In this chapter we consider the $A_{4}$-structure of a graph $G$, which we define as the 4-uniform hypergraph on the vertex set of $G$ having as edges those vertex subsets that induce an element of $\left\{2 K_{2}, C_{4}, P_{4}\right\}$. The name for this hypergraph comes from the fact that $2 K_{2}, C_{4}$, and $P_{4}$ are the 4 -vertex graphs that have an alternating 4-cycle, as shown in Chapter 3. Consider an alternating 4-cycle on vertex set $\{a, b, c, d\}$ in the graph $G$, such that $a b, c d \in E(G)$ and $b c, a d \notin E(G)$.


Figure 4.1: The configuration $\mathcal{C}$.

We will denote such a configuration by $[a, b: c, d]$.
Our motivation for studying this hypergraph comes from several sources. First, alternating 4 -cycles are a fundamental notion in the study of degree sequences. Recall our definition of a 2-switch from Section 3.2 and in particular the result of Fulkerson, Hoffman, and McAndrew [17] cited in Theorem 3.8. Since alternating 4-cycles play an important role in the study of realizations of a degree sequence, we might expect to find relationships between the $A_{4}$-structure and the degree sequence of a graph.

As a second motivation, we note that alternating 4-cycles have been used in defining or characterizing several interesting classes of graphs. For example, the threshold graphs are precisely those graphs containing no alternating 4-cycle [14], matroidal graphs are those graphs for which the pairs of edges inducing alternating 4-cycles are exactly the circuits of a matroid on the edge set of the graph [42], and matrogenic graphs are the graphs for which the vertex sets of induced copies of $2 K_{2}, C_{4}$, and $P_{4}$ form the circuits of a matroid on the vertex set of the graph [15].

Matroidal and matrogenic graphs also have characterizations in terms of other forbidden structures. Matroidal graphs were characterized in [42] as those graphs that do not contain an induced 5-cycle or the configuration $\mathcal{C}$ shown in Figure 4.1. Matrogenic graphs were characterized in [15] as those graphs that forbid $\mathcal{C}$ (but allow induced 5-cycles).

Characterizations exist in terms of the $A_{4}$-structure for threshold, matroidal, and matrogenic graphs. Examining the $A_{4}$-structures of all graphs on five vertices,
we see that $C_{5}$ is the only one having more than three edges in its $A_{4}$-structure, and that those in which $\mathcal{C}$ occurs are the ones whose $A_{4}$-structures have exactly two or three edges.

Observation 4.1. A graph is a threshold graph if and only if its $A_{4}$-structure contains no edges. A graph is matroidal if and only if no five of its vertices induce more than one edge in the $A_{4}$-structure. A graph is matrogenic if and only if no five of its vertices induce exactly two or three edges in the $A_{4}$-structure.

A similar notion arises in the study of $P_{4}$-structures. The $(q, t)$-graphs were defined in [2] as those graphs on which no $q$ vertices induce more than $t$ copies of $P_{4}$; the $P_{4}$-free graphs are the $(4,0)$-graphs, and the $P_{4}$-sparse graphs [23] are the $(5,1)$-graphs. If we were to define the $[q, t]$-graphs as those in which no $q$ vertices induced more than $t$ edges in the $A_{4}$-structure, then the threshold graphs would be the [4, 0]-graphs, and the matroidal graphs would be the [5, 1]-graphs.

As a final motivation for our study of $A_{4}$-structure, we note that alternating 4-cycles and degree sequences are closely related to the canonical decomposition of a graph, defined by Tyshkevich in [51] (see also [49]). As we will show in this chapter, a graph is indecomposable with respect to the canonical decomposition if and only if its $A_{4}$-structure is connected.

In the remainder of this thesis, we provide some initial results on the $A_{4^{-}}$ structure of a graph. In Section 4.2 we examine the $A_{4}$-structures of cycles. We show that long cycles and their complements are the unique realizations of their respective $A_{4}$-structures; as a consequence, perfect graphs are recognizable from their $A_{4}$-structures. We also show that the $A_{4}$-structure in some sense determines the structure of matchings in a triangle-free graph. In Section 4.3 we show how the $A_{4}$-structure of a graph is related to its canonical decomposition, as defined by Tyshkevich $[49,51]$. In Section 4.4 we show that $A_{4}$-structure, canonical decom-
position, and vertex subsets known as strict modules satisfy analogues of several results on $P_{4}$-structure, modular decomposition, and graph modules. Finally, in Section 4.5 we discuss the problem of obtaining all realizations of a given $A_{4^{-}}$ structure, which leads us to characterize the $A_{4}$-split graphs, those graphs having the same $A_{4}$-structure as some split graph.

We conclude this section with some definitions. Given two graphs $G$ and $G^{\prime}$ with $A_{4}$-structures $H$ and $H^{\prime}$, respectively, we define a bijection $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ to be an $A_{4}$-isomorphism from $G$ to $G^{\prime}$ if it is a hypergraph isomorphism from $H$ to $H^{\prime}$. If an $A_{4}$-isomorphism exists from $G$ to $G^{\prime}$, then we say that $G$ and $G^{\prime}$ have the same $A_{4}$-structure, or that they are $A_{4}$-isomorphic.

## 4.2 $\quad A_{4}$-structure and cycles

In this section we show that long cycles and their complements are characterized by their $A_{4}$-structures. As a consequence, perfect graphs may also be recognized from their $A_{4}$-structures. We conclude the section by showing how $A_{4}$-structure and matchings are related in triangle-free graphs.

In [13], Chvátal showed that odd cycles of length at least 5 and their complements are the only realizations of their respective $P_{4}$-structures, and he conjectured that two graphs with the same $P_{4}$-structure are either both perfect or both imperfect. Reed [47] proved this conjecture, now known as the Semistrong Perfect Graph Theorem since it implies the Perfect Graph Theorem of Lovász [34] and is in turn implied by the Strong Perfect Graph Theorem. This last result, proved much later by Chudnovsky et al. [12] states that a graph $G$ is perfect if and only if no odd cycle of length at least 5 or its complement is an induced subgraph of G.

Motivated by the results of Chvátal and Reed, we show that for $n=5$ and
$n \geq 7$, the cycle $C_{n}$ and its complement are the only realizations of their $A_{4^{-}}$ structure. By the Strong Perfect Graph Theorem, it then follows that graphs with the same $A_{4}$-structures are either both perfect or both imperfect.

For any cycle $C_{n}$, the edges of the $A_{4}$-structure of $C_{n}$ are the 4 -sets consisting of two disjoint consecutive pairs of vertices in the cycle. We begin with some fundamental observations.

Observation 4.2. If four vertices induce an alternating 4-cycle in a graph, then they also induce an alternating 4-cycle in the complement of the graph. Hence a graph and its complement have the same $A_{4}$-structure.

Lemma 4.3. In any graph, four vertices comprise an edge in the $A_{4}$-structure of the graph if and only if none of the vertices dominates or is isolated from the other three. Four vertices also comprise an edge in the $A_{4}$-structure if and only if no three of them form a clique or independent set in the graph.

Proof. Recall that $2 K_{2}, P_{4}$, and $C_{4}$ are the only 4 -vertex graphs in which an alternating 4-cycle occurs. Of the eleven graphs on four vertices, these three graphs are the only graphs having neither a dominating nor an isolated vertex, and they are also the only graphs having no 3-clique or independent set of size 3.

In the discussion that follows, suppose that $C_{n}$ is $A_{4}$-isomorphic to a graph $G$. Denoting $C_{n}$ by $\left[u_{1}, \ldots, u_{n}\right]$, we name the vertices of $G$ as $v_{1}, \ldots, v_{n}$ so that $u_{i}$ is mapped to $v_{i}$ by a given $A_{4}$-isomorphism. Note that $C_{n}$ is $A_{4}$-isomorphic to both $G$ and $\bar{G}$ under this map. We will show that if $v_{1} v_{2}$ is an edge in $G$, then the $A_{4}$-isomorphism from $C_{n}$ to $G$ is in fact a graph isomorphism.

Let all addition and subtraction in the indices of vertices be done modulo $n$.
Lemma 4.4. No triangle or independent set of size 3 in $G$ can contain both $v_{i}$ and $v_{i+1}$ for some $i$.

Proof. For any $i, j \in\{1, \ldots, n\}$, from the description of the $A_{4}$-structure of $C_{n}$ there is some edge of the $A_{4}$-structure containing $v_{i}, v_{i+1}$, and $v_{j}$; by Lemma 4.3, these vertices induce no triangle or $3 K_{1}$ in $G$.

In what follows, define an alternating path $\left\langle u_{1}, \ldots, u_{j}\right\rangle$ to be a configuration on distinct vertices $\left\{u_{1}, \ldots, u_{j}\right\}$ such that pairs of consecutive vertices are alternately adjacent and non-adjacent. (Note that the usage of $\left\langle u_{1}, \ldots, u_{j}\right\rangle$ to denote an alternating path is a departure from the notation of previous chapters, where it was used to describe paths. We will use this new notation throughout the rest of the thesis.) We denote the vertex set of an alternating path $A$ by $V(A)$.

Lemma 4.5. If $n \geq 7$, then the pairs $v_{i}, v_{i+1}$ are either all adjacent or all nonadjacent in $G$.

Proof. Suppose that the pairs $v_{i}, v_{i+1}$ are not all adjacent and not all non-adjacent. There exists an index $j$ such that exactly one of $v_{j-1} v_{j}$ and $v_{j} v_{j+1}$ is an edge of $G$. Since exactly one of these pairs is an edge of $\bar{G}$, and $G$ and $\bar{G}$ have the same $A_{4}$-structure, we may assume that $v_{j-1} v_{j+1} \notin E(G)$, and by symmetry we may assume that $v_{j-1} v_{j} \in E(G)$ and $v_{j} v_{j+1} \notin E(G)$. We illustrate the vertices $v_{j-3}, \ldots, v_{j+2}$ of $G$ in Figure 4.2. Since $n \geq 7$, these vertices are all distinct, and $v_{j-3}$ and $v_{j+2}$ are not consecutively-indexed vertices.

Let $H$ be the $A_{4}$-structure of $G$. Since $E(H)$ contains both $\left\{v_{j-2}, v_{j-1}, v_{j}, v_{j+1}\right\}$ and $\left\{v_{j-1}, v_{j}, v_{j+1}, v_{j+2}\right\}$, Lemma 4.3 implies that $v_{j-2} v_{j+1}, v_{j+1} v_{j+2} \in E(G)$. By Lemma 4.4, we have $v_{j-2} v_{j+2} \notin E(G)$. Since $\left\{v_{j-3}, v_{j-2}, v_{j+1}, v_{j+2}\right\} \in E(H)$, we have $v_{j-3} v_{j+1} \notin E(G)$ by Lemma 4.3. By Lemma 4.4 we have $v_{j-3} v_{j} \in E(G)$. Since $\left\langle v_{j}, v_{j+1}, v_{j-2}, v_{j+2}\right\rangle$ is an alternating path in $G$ but $\left\{v_{j-2}, v_{j}, v_{j+1}, v_{j+2}\right\} \notin$ $E(H)$, we have $v_{j} v_{j+2} \notin E(G)$. However, we then have $\left\{v_{j-3}, v_{j}, v_{j+2}, v_{j+1}\right\} \in$ $E(H)$, a contradiction.


Figure 4.2: The subgraph of $G$ from Lemma 4.5.

Assume now that $n \geq 7$. Since $G$ and its complement have the same $A_{4}$ structure, we will also assume that $v_{1} v_{2} \in E(G)$.

Lemma 4.6. The graph $G$ has no edges of the form $v_{i} v_{j}$ where $|j-i| \neq 1$. Consequently, $G$ is isomorphic to $C_{n}$.

Proof. By Lemma 4.5, $\left[v_{1}, \ldots, v_{n}\right]$ is a spanning cycle of $G$. By Lemma 4.4, $v_{i} v_{i+2} \notin E(G)$ for all $i$. Suppose that $G$ has a chord $v_{j} v_{k}$ for vertices $v_{j}$ and $v_{k}$ at a distance of at least 3 on the cycle. By Lemma 4.4, $v_{j} v_{k-1}, v_{j} v_{k+1} \notin E(G)$. It follows that $\left[v_{j}, v_{k}: v_{k-2}, v_{k-1}\right]$ and $\left[v_{j}, v_{k}: v_{k+2}, v_{k+1}\right]$ are alternating 4 -cycles in $G$. Since $n \geq 7$, either $v_{k-2}$ or $v_{k+2}$ is not consecutive to $v_{j}$, which contradicts the description of the $A_{4}$-structure of $C_{n}$. Thus $G$ has no chords and hence is isomorphic to $C_{n}$.

Recall that $C_{5}$ is the only graph with five vertices whose $A_{4}$-structure has more than three edges. The results above imply the following.

Theorem 4.7. If $n=5$ or $n \geq 7$, then $C_{n}$ and its complement are the only graphs having their $A_{4}$-structure.

Corollary 4.8. If two graphs have the same $A_{4}$-structure, then they are either both perfect or both imperfect.

Proof. Suppose that $G$ and $G^{\prime}$ have the same $A_{4}$-structure, and let $\varphi: V(G) \rightarrow$ $V\left(G^{\prime}\right)$ be an $A_{4}$-isomorphism. Let $n$ be an odd integer such that $n \geq 5$. By Theorem 4.7, $G$ induces $C_{n}$ or $\overline{C_{n}}$ on a vertex subset $S$ if and only if $G^{\prime}$ induces $C_{n}$ or $\overline{C_{n}}$ on $\varphi(S)$. The Strong Perfect Graph Theorem then implies the result.

The conclusion of Theorem 4.7 does not hold when $n=6$; the graph $C_{6}$ shares its $A_{4}$-structure with $G^{\prime}$ and $\overline{G^{\prime}}$, where $G^{\prime}$ is any graph obtained by deleting up to three pairwise non-incident edges from $K_{3,3}$. Note also that Theorem 4.7 applies to long cycles of both parities, whereas Chvátal's analogous result for $P_{4}$-structure deals only with odd cycles.

We conclude our discussion of cycles and $A_{4}$-structure by presenting a result on matchings in triangle-free graphs. A graph $G$ has a perfect matching if it has a matching of size $\frac{1}{2}|V(G)|$.

Lemma 4.9. If $G$ is a 6-vertex triangle-free graph whose vertex set can be partitioned into three pairs of vertices such that the union of any two of these pairs is an edge in the $A_{4}$-structure of $G$, then $G$ has a perfect matching.

Proof. Let $H$ be the $A_{4}$-structure of $G$, and let $A, B$, and $C$ denote the vertex pairs described, so that $V(G)=A \cup B \cup C$ and $A \cup B, A \cup C, B \cup C \in E(H)$. If the vertices in each of $A, B$, and $C$ induce an edge in $G$, then $G$ has a perfect matching. If not, then we may assume without loss of generality that $a_{1} a_{2} \notin E(G)$, where $A=\left\{a_{1}, a_{2}\right\}$. Since $A \cup B \in E(H)$, vertices $a_{1}$ and $a_{2}$ belong to non-incident edges $a_{1} b_{1}, a_{2} b_{2}$ in $G[A \cup B]$. Similarly, there exist non-incident edges $a_{1} c_{1}, a_{2} c_{2}$ in $G[A \cup C]$. Since $G$ is triangle-free, $b_{1} c_{1}, b_{2} c_{2} \notin E(G)$. However, $B \cup C \in E(H)$, so $B \cup C$ induces two non-incident edges. It follows that $G$ has a spanning cycle and hence a perfect matching.

For graphs $G$ and $G^{\prime}$, we say that a bijection $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ preserves matchings if a set $S$ is the vertex set of a matching of size at least 2 in $G$ if and
only if $\varphi(S)$ is the vertex set of a matching in $G^{\prime}$.
Theorem 4.10. Let $G$ and $G^{\prime}$ be triangle-free graphs, and let $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ be a bijection. The map $\varphi$ is an $A_{4}$-isomorphism if and only if it preserves matchings.

Proof. Suppose that $\varphi$ preserves matchings. In a triangle-free graph $G$, the four vertices spanned by a matching of size 2 contain no 3 -clique or independent set of size 3 , so by Lemma 4.3 these vertices form an edge in the $A_{4}$-structure of $G$. Conversely, the three 4-vertex graphs $2 K_{2}, P_{4}$, and $C_{4}$ that have an alternating 4-cycle all have perfect matchings. Thus a vertex subset $S$ in $G$ induces an alternating 4-cycle if and only if $\varphi(S)$ induces an alternating 4-cycle in $G^{\prime}$; hence $\varphi$ is an $A_{4}$-isomorphism.

Suppose instead that $\varphi: V(G) \rightarrow V\left(G^{\prime}\right)$ is an $A_{4}$-isomorphism, and let $S$ be the vertex set of some matching in $G$ of size at least 2 . We may partition the edges of the matching on $S$ into pairs and triples of edges; let $S_{1}, S_{2}, \ldots, S_{j}$ be the vertex sets of these edge sets. By the previous paragraph and Lemma 4.9, the sets $\varphi\left(S_{i}\right)$ are the vertex sets of disjoint matchings in $G^{\prime}$. The union of these matchings is a matching on $\varphi(S)$, so $\varphi$ preserves matchings.

### 4.3 Canonical decomposition and $A_{4}$-structure

In this section we describe the relationship that the $A_{4}$-structure of a graph has with its canonical decomposition, as defined by Tyshkevich [49,51].

A splitted graph is a triple $(G, A, B)$ such that $G$ is a split graph whose vertices partition into an independent set $A$ and a clique $B$. Two splitted graphs ( $G, A, B$ ) and $\left(G^{\prime}, A^{\prime}, B^{\prime}\right)$ are isomorphic if there exists a graph isomorphism $\varphi: V(G) \rightarrow$ $V\left(G^{\prime}\right)$ such that $\varphi(A)=A^{\prime}$. Given a splitted graph $(G, A, B)$ and a graph $H$ on disjoint vertex sets, we define the composition of $(G, A, B)$ and $H$ to be the


Figure 4.3: The compositions $(G, A, B) \circ H$ and $(G, A, B) \circ(G, A, B) \circ H$.
graph $(G, A, B) \circ H$ formed by adding to $G+H$ all edges $u v$ such that $u \in B$ and $v \in V(H)$. For example, when $H=K_{3}$ and $G=P_{4}$, with $A$ the set of endpoints and $B$ the set of midpoints of $G$, the composition $(G, A, B) \circ K_{3}$ is the graph on the left in Figure 4.3 (here and in the future, heavy lines joining sets of vertices imply that all edges joining vertices from one set to the other are present). On the right we show $(G, A, B) \circ\left((G, A, B) \circ K_{3}\right)$. The operation $\circ$ is associative, so in the future we will omit grouping parentheses when performing multiple compositions. Observe that in a composition $\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0}$, each vertex in $B_{i}$ is adjacent to every vertex in $\bigcup_{j<i} V\left(G_{j}\right)$, each vertex in $A_{i}$ is adjacent to none of the vertices in $\bigcup_{j<i} V\left(G_{j}\right)$, and only the rightmost graph in the composition can fail to be a split graph.

A graph is decomposable if it can be written as a composition $(G, A, B) \circ H$, where $G$ and $H$ both have at least one vertex. Otherwise, it is indecomposable. Tyshkevich showed the following:

Theorem 4.11 (Tyshkevich [49]). (i) Every graph $G$ can be expressed as a composition

$$
\begin{equation*}
G=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0} \tag{*}
\end{equation*}
$$

of indecomposable components. Here the $\left(G_{i}, A_{i}, B_{i}\right)$ are indecomposable splitted graphs and $G_{0}$ is an indecomposable graph. (If $G$ is indecomposable, then $k=0$; that is, there are no splitted components in $(*))$.
(ii) Graphs $G$ and $G^{\prime}$ expressed as (*) and

$$
G^{\prime}=\left(G_{\ell}^{\prime}, A_{\ell}^{\prime}, B_{\ell}^{\prime}\right) \circ \cdots \circ\left(G_{1}^{\prime}, A_{1}^{\prime}, B_{1}^{\prime}\right) \circ G_{0}^{\prime}
$$

are isomorphic if and only if the following conditions hold:
(1) $G_{0} \cong G_{0}^{\prime}$,
(2) $k=\ell$,
(3) $\left(G_{i}, A_{i}, B_{i}\right) \cong\left(G_{i}^{\prime}, A_{i}^{\prime}, B_{i}^{\prime}\right)$ for $1 \leq i \leq k$.

Theorem 4.11 implies that there is only one such composition of a graph $G$ into indecomposable components, up to isomorphism of the components. Therefore, we call it the canonical decomposition.

The following result provides a characterization of indecomposable graphs in terms of their $A_{4}$-structures.

Theorem 4.12. A graph is indecomposable with respect to canonical decomposition if and only if its $A_{4}$-structure is connected. Hence, the vertex sets of the $G_{i}$ in the canonical decomposition

$$
G=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0}
$$

are exactly the vertex sets of the components in the $A_{4}$-structure of $G$.

The proof is lengthy, so we first prove several preliminary results. Given an alternating 4-cycle $C=[a, b: c, d]$, let $V(C)$ denote the set $\{a, b, c, d\}$.

Observation 4.13. If a graph $G$ has more than one vertex and has canonical decomposition $\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0}$, then $G$ has an isolated vertex or dominating vertex if and only if $k \geq 1$ and $G_{k}$ has exactly one vertex. The vertex is dominating in $G$ if $A_{k}=\emptyset$ and is isolated in $G$ if $B_{k}=\emptyset$.

Observation 4.14. If $G=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0}$, then $\bar{G}=$ $\left(\overline{G_{k}}, B_{k}, A_{k}\right) \circ \cdots \circ\left(\overline{G_{1}}, B_{1}, A_{1}\right) \circ \overline{G_{0}}$.

Proposition 4.15. If $G$ is an indecomposable graph with more than one vertex, then every vertex of $G$ belongs to an alternating 4-cycle in $G$.

Proof. We prove the contrapositive. Suppose that some vertex $v$ in $G$ belongs to no alternating 4 -cycle. If $v$ is a dominating or isolated vertex, then $G$ is decomposable by Observation 4.13, so we may assume that $v$ is neither. Let $V_{1}=N(v)$ and $V_{2}=V(G) \backslash N[v]$.

If $V_{1}$ is not a clique, then there exist $u, w \in V_{1}$ such that $u w \notin E(G)$. For $a \in V_{2}$, since neither $[v, w: u, a]$ nor $[v, u: w, a]$ is an alternating 4-cycle (both contain $v$ ), $a$ is adjacent to neither $u$ nor $w$. Hence if $A=\left\{x \in V_{1}: N_{G}(x) \cap V_{2} \neq\right.$ $\emptyset\}$, then each vertex in $A$ dominates $V_{1}$, which makes $A$ a clique. Furthermore, $V_{2}$ is independent, since if $a$ and $b$ were adjacent vertices in $V_{2}$, then $[v, u: a, b]$ would be an alternating 4-cycle containing $v$. Letting $B=V_{1} \backslash A$, we obtain a decomposition $G=\left(G^{\prime}, V_{2}, A\right) \circ\left(K_{1}, \emptyset,\{v\}\right) \circ G[B]$, where $G^{\prime}=G\left[V_{2} \cup A\right]$. Since $G$ has more than one vertex, at least one of $V_{2}, A, B$ is nonempty, so $G$ is decomposable. Hence we may assume that $V_{1}$ is a clique in $G$.

We note that the complement of an alternating 4-cycle is an alternating 4cycle, so $v$ belongs to no alternating 4-cycle in $\bar{G}$. Since $N_{\bar{G}}(v)=V_{2}$ and $V(\bar{G}) \backslash N_{\bar{G}}[v]=V_{1}$, the preceding argument shows that either $\bar{G}$ (and hence $G$, by Observation 4.14) is decomposable or $V_{2}$ is a clique in $\bar{G}$ and hence an independent set in $G$. We assume the latter.

With $V_{1}$ a clique and $V_{2}$ an independent set, we have $G=\left(G^{\prime}, V_{2}, V_{1}\right) \circ G[\{v\}]$, where $G^{\prime}=G\left[V_{2} \cup V_{1}\right]$. Hence in all cases $G$ is decomposable.

Given alternating 4-cycles $A=[a, b: c, d]$ and $B=[e, f: g, h]$ in $G$, we define the relation $A \rightarrow B$ to mean that $G[V(A)] \cong P_{4}$, the midpoints of $G[V(A)]$
dominate $V(B)$, and the endpoints of $G[V(A)]$ are nonadjacent to each vertex in $V(B)$.

Lemma 4.16. If $A$ and $B$ are disjoint alternating 4 -cycles in a graph $G$ such that no alternating 4 -cycle in $G$ intersects both $A$ and $B$, then either $A \rightarrow B$ or $B \rightarrow A$.

Proof. Let $A=[a, b: c, d]$ and $B=[e, f: g, h]$. Since $\{a, b, e, f\}$ is not the vertex set of an alternating 4 -cycle in $G$, by Lemma 4.3 one of these four vertices dominates the other three; suppose that $a$ is this vertex. Since neither $[a, f: g, h]$ nor $[a, e: h, g]$ is an alternating 4-cycle in $G$, we have $a g, a h \in E(G)$. Thus $a$ dominates $V(B)$. It follows that $d$ has no neighbor $v$ in $V(B)$, for otherwise $[a, u: v, d]$ would be an alternating 4-cycle, where $u$ is the non-neighbor of $v$ in $B$. Making the same argument starting with $\{c, d, g, h\}$ now implies that $c$ dominates $B$ and $b$ has no neighbor in $V(B)$.

Finally, note that $b d \notin E(G)$, since otherwise $[b, d: e, f]$ would be an alternating 4-cycle, and $a c \in E(G)$, since otherwise $[a, e: h, c]$ would be an alternating 4-cycle. We conclude that $G[V(A)] \cong P_{4}$, with midpoints $a, c$ dominating $B$ and endpoints $b, d$ adjacent to no vertex of $B$. Thus $A \rightarrow B$.

The same conclusion holds by a symmetric argument if $b$ dominates $\{a, e, f\}$. If instead $e$ or $f$ dominates the other three vertices of $\{a, b, e, f\}$, then we arrive similarly at $B \rightarrow A$.

This last result shows, incidentally, that if two vertices each belong to an induced $2 K_{2}$ or $C_{4}$, then they have distance at most 3 in the $A_{4}$-structure of the graph, since some edge of the $A_{4}$-structure must intersect these edges containing them. We also have the following result.

Corollary 4.17. Let $G$ be a graph, and let $H$ be the $A_{4}$-structure of $G$. If $A$ and $B$ are alternating 4 -cycles in $G$ such that $V(A)$ and $V(B)$ are contained in
distinct components of $H$, then $A \rightarrow B$ or $B \rightarrow A$.

Lemma 4.18. If $A, B$, and $C$ are alternating 4 -cycles in a graph $G$ such that $A \rightarrow B$ and $V(A) \cap V(C)$ is nonempty, then $B \leftrightarrow C$.

Proof. If $B \rightarrow C$, then the midpoints of the path induced by $B$ dominate $C$, and the endpoints have no neighbors in $C$. Hence no vertex in $C$ can dominate or be independent of $B$. This requires $V(A) \cap V(C)=\emptyset$.

Proposition 4.19. Let $G$ be a graph, and let $H$ be the $A_{4}$-structure of $G$. Let $Q_{1}$ and $Q_{2}$ be distinct components of $H$, and let $A$ and $B$ be alternating 4-cycles in $G$ such that $V(A) \subseteq V\left(Q_{1}\right)$ and $V(B) \subseteq V\left(Q_{2}\right)$. If $A \rightarrow B$, then $C \rightarrow D$ for any alternating 4-cycles $C$ and $D$ in $G$ such that $V(C) \subseteq V\left(Q_{1}\right)$ and $V(D) \subseteq V\left(Q_{2}\right)$.

Proof. Since $V(B)$ and $V(D)$ both lie in $V\left(Q_{2}\right)$, there are alternating 4-cycles $R_{0}, R_{1}, \ldots, R_{k}$ such that $B=R_{0}, D=R_{k}$, and $V\left(R_{i-1}\right) \cap V\left(R_{i}\right) \neq \emptyset$ for $1 \leq i \leq k$. By Corollary 4.17, $A \rightarrow R_{i}$ or $R_{i} \rightarrow A$ for each $i$. If $R_{1} \rightarrow A$, then Lemma 4.18 implies $A \nrightarrow B$, which is false. Hence $A \rightarrow R_{1}$. Iterating the argument yields $A \rightarrow R_{i}$ for all $i \in\{1, \ldots, k\}$. In particular, $A \rightarrow D$.

Similarly, since $V(A)$ and $V(C)$ lie in $V\left(Q_{1}\right)$, there are alternating 4-cycles $S_{0}, \ldots, S_{\ell}$ with $A=S_{0}, C=S_{\ell}$, and $V\left(S_{i-1}\right) \cap V\left(S_{i}\right) \neq \emptyset$ for $i=1, \ldots, \ell$. Corollary 4.17 implies that $S_{i} \rightarrow D$ or $D \rightarrow S_{i}$ for each $i$. Since $A \rightarrow D$, Lemma 4.18 yields $S_{1} \rightarrow D$. Again iterating the argument, we conclude that $C \rightarrow D$.

In the following, let $H$ be the $A_{4}$-structure of a graph $G$. We define a relation on the components of $H$. Given components $Q_{1}, Q_{2}$ of $H$, we write $Q_{1} \rightarrow Q_{2}$ if $Q_{1}$ contains an alternating 4-cycle $A$ and $Q_{2}$ contains an alternating 4-cycle $B$ such that $A \rightarrow B$. By Proposition 4.19, $Q_{1} \rightarrow Q_{2}$ implies $Q_{2} \rightarrow Q_{1}$.

Assume now that $G$ is indecomposable in the canonical decomposition. Proposition 4.15 implies that each component of $H$ contains at least one alternating

4 -cycle, so for any two components $Q_{1}, Q_{2}$ of $H$, either $Q_{1} \rightarrow Q_{2}$ or $Q_{2} \rightarrow Q_{1}$. We may now define a tournament $T$ whose vertices are the components of $H$, with edges oriented according to the relation $\rightarrow$ on the components of $H$.

Lemma 4.20. The tournament $T$ is acyclic.

Proof. If $T$ contains a cycle, then $T$ contains a cyclic triangle with vertices $Q_{1}, Q_{2}, Q_{3}$ in order. By Proposition 4.19, it follows that there are alternating 4-cycles $A_{1}, A_{2}, A_{3}$ with $V\left(A_{i}\right) \subseteq V\left(Q_{i}\right)$ for $i \in\{1,2,3\}$, such that $A_{1} \rightarrow A_{2}$, $A_{2} \rightarrow A_{3}$, and $A_{3} \rightarrow A_{1}$. In particular, $G\left[V\left(A_{1}\right)\right] \cong G\left[V\left(A_{2}\right)\right] \cong G\left[V\left(A_{3}\right)\right] \cong P_{4}$.

Let $a$ denote a vertex of degree 2 in $G\left[V\left(A_{1}\right)\right]$, let $b$ denote a vertex of degree 1 in $G\left[V\left(A_{2}\right)\right]$, let $c$ denote a vertex of degree 2 in $G\left[V\left(A_{3}\right)\right]$, and let $d$ denote the vertex of degree 1 in $G\left[V\left(A_{3}\right)\right]$ adjacent to $c$. The adjacencies implied by the $\rightarrow$ relation on the $A_{i}$ imply that $[a, b: c, d]$ is an alternating 4-cycle in $G$. This contradicts that $Q_{1}, Q_{2}$, and $Q_{3}$ are distinct components in $H$.

Proposition 4.21. Any two vertices that lie on an alternating 4-cycle in $G$ belong to the same component in the canonical decomposition of $G$.

Proof. Let $\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0}$ be the canonical decomposition of $G$. Suppose that some alternating 4-cycle $[u, v: w, x]$ has vertices in more than one $G_{i}$. Let $j$ be the largest index such that $G_{j}$ contains some vertex of the alternating 4-cycle, and assume without loss of generality that $u$ belongs to $V\left(G_{j}\right)$. Suppose first that $u \in B_{j}$. Since $x$ is not adjacent to $u, x$ cannot belong to $B_{j}$ or to $V\left(G_{i}\right)$ for $i<j$; thus $x \in A_{j}$. Since $w$ is adjacent to $x$, vertex $w$ cannot belong to $A_{j}$ or to $V\left(G_{i}\right)$ for $i<j$; hence $w \in B_{j}$. Repeating the argument for $x$ now yields $v \in A_{j}$. Thus $\{u, v, w, x\} \in V\left(G_{j}\right)$. A similar result follows if we instead start with $u \in A_{j}$.

We are now ready to prove our main result:

Proof of Theorem 4.12. Let $G$ be an arbitrary graph, and let $H$ be its $A_{4^{-}}$ structure.

Suppose first that $H$ is connected. For $u, v \in V(G)$, there exist edges $E_{0}, \ldots, E_{k}$ of $H$ such that $u \in E_{0}$ and $v \in E_{k}$, and $E_{i} \cap E_{i-1} \neq \emptyset$ for $1 \leq i \leq k$. Applying Proposition 4.21 to vertices in the sets $E_{0}, \ldots, E_{k}$ in turn, we find that $u$ and $v$ belong to the same component in the canonical decomposition of $G$. Thus $G$ is indecomposable.

Suppose instead that $H$ is disconnected. If $G$ is not decomposable, then Proposition 4.15 implies that each component of $H$ contains at least one alternating 4-cycle, so the relation $\rightarrow$ is defined on the components of $H$, and the acyclic tournament $T$ described above exists. Let $Q$ be the component of $H$ that is the source vertex of $T$. Every alternating 4-cycle in $G[V(Q)]$ corresponds to an induced $P_{4}$ in $G$ whose midpoints dominate every vertex not in $V(Q)$, and whose endpoints only have neighbors in $V(Q)$. These adjacency requirements ensure that no vertex in $V(Q)$ is both a midpoint of some induced $P_{4}$ and an endpoint of another. Thus we may partition $V(Q)$ into sets $A$ and $B$, where $A$ and $B$ denote the set of all endpoints and the set of all midpoints of induced $P_{4}$ 's in $G[V(Q)]$, respectively. Let $[a, b: c, d]$ be an alternating 4 -cycle of $G$ whose vertices belong to $V(G) \backslash V(Q)$. Further let $s$ and $t$ be any vertices in $A$, and let $u$ and $v$ be any vertices of $B$. If $s$ and $t$ are adjacent, then $[s, t: a, b]$ is an alternating 4 -cycle in $G$, which contradicts the assumption that $a, b \notin V(Q)$. Similarly, if $u, v$ are non-adjacent in $G$, then $G$ contains the alternating 4-cycle $[b, u: v, c]$, again a contradiction. We conclude that $B$ is a clique and $A$ is an independent set in $G$. Hence $G=\left(G^{\prime}, A, B\right) \circ G[V(G) \backslash V(Q)]$, where $G^{\prime}=G[A \cup B]$, and $G$ is decomposable.

Having shown that $G$ is indecomposable if and only if $H$ is connected, it follows immediately that the components of $H$ partition the set $V(G)$ into exactly the
same subsets that the components in the canonical decomposition do.

Theorem 4.12 provides a connection between the $A_{4}$-structure of a graph and its degree sequence. This is not surprising, since alternating 4-cycles play an important role in realizations of degree sequences. Tyshkevich [49,51] provided a characterization of indecomposable graphs in terms of their degree sequences and showed how the canonical decomposition of a graph corresponds precisely to a decomposition of the degree sequence of the graph. In particular, she showed the following.

Proposition 4.22 (Tyshkevich $[49,51]$ ). For every graph $G$, the degree sequence of $G$ uniquely determines the number of indecomposable components present in the canonical decomposition of $G$ and how many vertices each indecomposable component contains.

It follows immediately that graphs with the same degree sequence have $A_{4}{ }^{-}$ structures with some features the same.

Corollary 4.23. If $G$ and $G^{\prime}$ are graphs with the same degree sequence, then $G$ and $G^{\prime}$ have the same number and sizes of components in their $A_{4}$-structures.

## $4.4 \quad A_{4}$-structure and modules

Based on the results of the previous section, we show in this section how $A_{4^{-}}$ structures and the canonical decomposition have a relationship much like that of $P_{4}$-structures and other graph decompositions. We begin with some facts about modules and the $P_{4}$-structure of a graph. Our presentation follows that of Hougardy [28].

A module in a graph $G$ is a set $S$ of vertices such that every vertex outside $S$ is either adjacent to all vertices of $S$ or to no vertex of $S$. A module $S$ is trivial if
$|S|=1$ or $S=V(G)$, and a graph is prime if it has no nontrivial modules. The modules in a graph are related to the vertex sets inducing $P_{4}$ via the following result.

Lemma 4.24 (Seinsche [48]). The following hold for every graph $G$.
(i) The vertex set of an induced $P_{4}$ in $G$ and a module in $G$ can only intersect in zero, one, or four vertices.
(ii) $G$ is $P_{4}$-free if and only if every induced subgraph with at least three vertices contains a nontrivial module.

The modular decomposition of a graph recursively partitions its vertex set into modules via the following result.

Theorem 4.25 (Gallai [18]). Let $G$ be a graph with at least two vertices. Exactly one of the following conditions holds.
(i) $G$ is disconnected.
(ii) $\bar{G}$ is disconnected.
(iii) There exists a subset $Y$ of $V(G)$, where $|Y| \geq 4$, and a unique partition $V_{1}, \ldots, V_{k}$ of $V(G)$ such that $Y$ induces a maximal prime subgraph in $G$ and every $V_{i}$ is a module with $\left|V_{i} \cap Y\right|=1$.

Jamison and Olariu [29] provided a refinement of the modular decomposition called the primeval decomposition, which makes use of the $P_{4}$-structure of the graph. A graph $G$ is $p$-connected if for every partition of its vertex set into two nonempty disjoint sets, there exists an edge in the $P_{4}$-structure that intersects both sets. A maximal $p$-connected induced subgraph of $G$ is a $p$-component. A $p$-connected graph $G$ is separable if its vertex set can be partitioned into two nonempty disjoint sets such that each $P_{4}$ in $G$ that is not completely contained
within one of the sets has its endpoints in one set and its midpoints in the other set. The primeval decomposition of a graph partitions its vertex set into modules via applications of the following theorem.

Theorem 4.26 (Jamison-Olariu [29]). For a graph $G$, exactly one of the following conditions holds.
(i) $G$ is disconnected.
(ii) $\bar{G}$ is disconnected.
(iii) $G$ is p-connected.
(iv) There is a unique proper separable p-component $Q$ of $G$ with a partition $Q_{1}, Q_{2}$ of $V(Q)$ such that every vertex not in $V(Q)$ is adjacent to all vertices in $Q_{1}$ and not adjacent to any vertex in $Q_{2}$.

We now define a type of module that will play for $A_{4}$-structures much the same role that ordinary modules do for $P_{4}$-structures. Observe that a vertex subset $S$ in a graph $G$ is a module if and only if there is no triple $v_{1}, v_{2}, v_{3}$ in $G$ such that $v_{1}, v_{3} \in S, v_{2} \notin S, v_{1} v_{2} \in E(G)$, and $v_{2} v_{3} \notin E(G)$. We generalize this forbidden configuration: an alternating path $\left\langle v_{1}, \ldots, v_{p}\right\rangle$ is $S$-terminal if $p \geq 3$ and $S \cap\left\{v_{1}, \ldots, v_{p}\right\}=\left\{v_{1}, v_{p}\right\}$. We allow the possibility that the $v_{1}=v_{p}$, but otherwise the vertices are distinct. Define a strict module to be a vertex subset $S$ of $V(G)$ such that $G$ has no $S$-terminal alternating path. Strict modules are clearly modules. We show next that the condition for strict modules can be simplified. The length of an alternating path $\left\langle v_{1}, \ldots, v_{p}\right\rangle$ is defined to be $p-1$.

Proposition 4.27. A vertex subset $S$ is a strict module of $G$ if and only if $G$ has no $S$-terminal alternating paths of length 2 or 3.

Proof. If $S$ is a strict module, then by definition $G$ contains no $S$-terminal alternating paths of lengths 2 or 3 . If $S$ is not a strict module, then there is an $S$-terminal alternating path in $G$; let $\left\langle v_{1}, \ldots, v_{p}\right\rangle$ be a shortest one. If $p \geq 5$, then consider $v_{3}$. Whether $v_{3}$ is adjacent to $v_{1}$ or not, the alternating nature of the original allows a new path to be continued from $v_{3}$ to $v_{2}$ or $v_{4}$. That is, $\left\langle v_{1}, v_{3}, v_{2}, v_{1}\right\rangle$ or $\left\langle v_{1}, v_{3}, v_{4}, \ldots, v_{p}\right\rangle$ is a shorter $S$-terminal alternating path. Thus $p \leq 4$.

As with modules, let us call a strict module $S$ in a graph $G$ trivial if $S=$ $V(G)$. Note, however, that single vertices in $G$ need not comprise strict modules. Proposition 4.29 below provides an analogue to Lemma 4.24. First, we recall that the threshold graphs are those that have no alternating 4-cycles. The threshold graphs have the following two characterizations.

Theorem 4.28 (Chvátal-Hammer [14]). The following are equivalent and characterize the threshold graphs $G$.
(i) $G$ is $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free.
(ii) $G$ can be constructed by starting with a single vertex and iteratively adding either an isolated vertex or a dominating vertex to the graph.

Proposition 4.29. The following hold for every graph $G$.
(i) Every alternating 4-cycle in $G$ and strict module in $G$ intersect in zero or four vertices.
(ii) $G$ contains no alternating 4 -cycles if and only if every induced subgraph with at least two vertices contains a nontrivial strict module.

Proof. (i) One easily checks that if a vertex subset $S$ in $G$ contains exactly one, two, or three vertices of an alternating 4-cycle in $G$, then some subset of the
vertices of the alternating 4 -cycle comprise an $S$-terminal alternating path, so $S$ is not a strict module.
(ii) If every induced subgraph with more than one vertex has a strict module, then $G$ is $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free, since none of these graphs has a strict module. By Theorem 4.28, $G$ has no alternating 4-cycle. Conversely, if $G$ has no alternating 4-cycles, then $G$ is a threshold graph. Hence every induced subgraph $H$ with at least two vertices has a vertex $u$ that is either dominating or isolated in $H$. Now $V(H)-u$ is a strict module in $H$.

We shall later prove an analogue of Theorem 4.26 related to the $A_{4}$-structure of a graph. First, we examine the structure of a graph in terms of its strict modules.

Proposition 4.30. Let $G$ be a graph with strict module $S$. If $A$ and $B$ are the sets of all vertices in $V(G)-S$ that are adjacent to none of $S$ or to all of $S$, respectively, then $A$ is an independent set and $B$ is a clique in $G$. Hence $G=\left(G_{1}, A, B\right) \circ G[S]$, where $G_{1}=G[A \cup B]$.

Proof. If two vertices in $A$ are non-adjacent, or if two vertices of $B$ are adjacent, then these vertices form the midpoints of a (possibly closed) $S$-terminal alternating path of length 3 , which cannot happen when $S$ is a strict module.

In any composition $(G, A, B) \circ H$, the vertex set of $H$ is a strict module. We thus conclude the following.

Corollary 4.31. A graph $G$ is indecomposable with respect to canonical decomposition if and only if it has no nontrivial strict module.

Corollary 4.31 shows that in the study of strict modules, the indecomposable graphs play a role analogous to that of the prime graphs for (ordinary) modules.

We turn our attention now to presenting an analogue of Theorem 4.26 in terms of $A_{4}$-structures and the canonical decomposition. Define an $A_{4}$-component of a


Figure 4.4: Alternating 4-cycles in an $A_{4}$-separable graph.
graph $G$ to be an induced subgraph of $G$ whose vertex set is the vertex set of some component of the $A_{4}$-structure of $G$. Theorem 4.12 shows that the $A_{4}$-components of $G$ are precisely the components of the canonical decomposition of $G$.

Define a graph to be $A_{4}$-separable if there exists a partition of its vertex set into two subsets $V$ and $W$ such that every induced $P_{4}$ has its endpoints in one of $V, W$ and its midpoints in the other, every induced $2 K_{2}$ has one pair of nonadjacent vertices in $V$ and the other two vertices in $W$, and every induced $C_{4}$ has two adjacent vertices in $V$ and the other two in $W$. In other words, a graph is $A_{4^{-}}$ separable if every 4 -vertex induced subgraph having an alternating 4-cycle has an alternating 4-cycle whose vertices alternate between $V$ and $W$, as shown in Figure 4.4.

Note that every split graph $S$ is $A_{4}$-separable; letting $V$ and $W$ partition $V(S)$ into an independent set and a clique, respectively, this claim follows immediately from the following results.

Proposition 4.32 (Földes-Hammer [16]). A graph is split if and only if it is $\left\{2 K_{2}, C_{4}, C_{5}\right\}$-free.

Observation 4.33. In any partition of the vertex set of a split graph $S$ into a clique $Q$ and an independent set I, every induced path on four vertices has its midpoints in $Q$ and its endpoints in $I$.

We will say more about $A_{4}$-separable graphs in the following section. We conclude this section with the analogue for $A_{4}$-structure of Theorem 4.26.

Proposition 4.34. For any graph $G$ having more than one vertex and having canonical decomposition

$$
G=\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0},
$$

exactly one of the following is true:
(i) G has an isolated vertex.
(ii) $\bar{G}$ has an isolated vertex.
(iii) $G$ has a connected $A_{4}$-structure.
(iv) $k \geq 1$, and $G_{k}$ is the unique $A_{4}$-separable $A_{4}$-component $Q$ of $G$ having a partition of $V(Q)$ into nonempty subsets $Q_{1}, Q_{2}$ such that every vertex not in $V(Q)$ is adjacent in $G$ to no vertices in $Q_{1}$ and to all vertices in $Q_{2}$; here $Q_{1}=A_{k}$ and $Q_{2}=B_{k}$.

Proof. We have observed already that no two of (i), (ii), (iii) can simultaneously hold. If (iv) holds, then since $G_{k}$ has at least two vertices, it follows from Observation 4.13 and Theorem 4.12 that none of (i), (ii), or (iii) holds. Hence at most one of these statements holds for $G$.

If none of (i), (ii), or (iii) holds, then $k \geq 1$. By the definition of the canonical decomposition, $G_{k}$ induces a split graph with independent set $A_{k}$ and clique $B_{k}$, and it follows from Observation 4.13 that $A_{k}$ and $B_{k}$ are nonempty. Since split graphs are $A_{4}$-separable, we see that $G_{k}$ is an $A_{4}$-component of $G$ having the properties described in (iv). That $G_{k}$ is the only such $A_{4}$-component follows immediately from the definition of canonical decomposition when $A_{k}$ and $B_{k}$ are nonempty.

## 4.5 $A_{4}$-split graphs

In this section we characterize the $A_{4}$-split graphs, those having the same $A_{4}$ structure as some split graph. As motivation, we show that this problem arises in the problem of constructing all graphs having a given $A_{4}$-structure.

Example 4.35. Graphs with the same $A_{4}$-structures. As shown in Proposition 4.21 , any alternating 4 -cycle is contained within a single component of the canonical decomposition. It follows that permuting the indecomposable components in a canonical decomposition does not change the $A_{4}$-structure of a graph.

By Theorem 4.12 and Proposition 4.21, each component of the $A_{4}$-structure of a graph is uniquely determined by the indecomposable component of the canonical decomposition on the same vertex set. If we replace an indecomposable component of the canonical decomposition with another subgraph having the same $A_{4}$-structure, the resulting graph will have the same $A_{4}$-structure as the original.

To illustrate these two $A_{4}$-structure-preserving operations, let $G_{2}$ be a graph consisting of a single vertex $u$, let $G_{1}$ consist of the single vertex $v$, and let $G_{0}=K_{2}+P_{3}$. Given the graph $G$ with canonical decomposition $\left(G_{2}, \emptyset,\{u\}\right) \circ$ $\left(G_{1},\{v\}, \emptyset\right) \circ G_{0}$, let $H$ be the graph formed by transposing the first two of the indecomposable components in the canonical decomposition; that is, $H=$ $\left(G_{1},\{v\}, \emptyset\right) \circ\left(G_{2}, \emptyset,\{u\}\right) \circ G_{0}$. Let $G_{0}^{\prime}$ be the 5 -vertex graph with degree sequence (3, 2, 1, 1, 1); note that $G_{0}$ and $G_{0}^{\prime}$ have the same $A_{4}$-structure. Let $I$ be the graph formed from $G$ by replacing the indecomposable component $G_{0}$ with $G_{0}^{\prime}$; this is, $I=\left(G_{2}, \emptyset,\{u\}\right) \circ\left(G_{1},\{v\}, \emptyset\right) \circ G_{0}^{\prime}$. Graphs $G, H$, and $I$ are illustrated in Figure 4.5. Though the graphs are pairwise nonisomorphic, all have the same $A_{4}$-structure.

For a graph $G$ with canonical decomposition $\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0}$, we refer to the subgraph $G_{0}$ of $G$ as the core of $G$. Note that the indecomposable


Figure 4.5: Different graphs with the same $A_{4}$-structure.
components of $G$ other than the core are all split graphs. In order to generate other graphs having the same $A_{4}$-structure as $G$, we may wish to permute the indecomposable components of $G$ under the canonical decomposition. However, if the core $G_{0}$ is not split, then we may not move the vertices of $G_{0}$ to a different position in the canonical decomposition unless we first replace $G_{0}$ by a split subgraph $G_{0}^{\prime}$ having the same $A_{4}$-structure. In order to determine if this is possible, we need a characterization of those graphs having the same $A_{4}$-structure as a split graph, i.e., the $A_{4}$-split graphs.

We preface our characterization with a few definitions. An $A_{4}$-structure $H$ is balanced if there is a partition of $V(H)$ into two sets $V_{1}$ and $V_{2}$ such that every edge $e$ of $H$ has two vertices in $V_{1}$ and two vertices in $V_{2}$; the sets $V_{1}$ and $V_{2}$ then form a balancing partition of $V(H)$. A graph is $A_{4}$-balanced if its $A_{4}$-structure is balanced.

Given a balanced $A_{4}$-structure with a fixed balancing partition $V_{1}, V_{2}$ and a vertex $v$ belonging to $V_{i}$, the $v$-restriction of $H$ is the graph on $V_{3-i}$ where two vertices are adjacent if and only if they are the two vertices in $V_{3-i}$ of some edge of $H$ containing $v$. A balanced $A_{4}$-structure $H$ has the bipartite restriction property if there is a balancing partition of $V(H)$ such that for every vertex $v \in V(H)$ the $v$-restriction of $H$ is bipartite.

The $k$-pan is the graph obtained by attaching a pendant vertex to a vertex of a $k$-cycle; the co- $k$-pan is its complement. The 4 -pan and co- 4 -pan are illustrated


Figure 4.6: (a) The 4-pan; (b) the co-4-pan.
in Figure 4.6.
Finally, recall that a graph $G$ is $A_{4}$-separable if there is a partition of $V(G)$ into two sets $V_{1}$ and $V_{2}$ such that every 4 -vertex induced subgraph having an alternating 4-cycle has an alternating 4-cycle whose vertices alternate between $V_{1}$ and $V_{2}$. The partition $V_{1}, V_{2}$ is an $A_{4}$-separating partition of $V(G)$.

Theorem 4.36. For a graph $G$ with core $G_{0}$ and $A_{4}$-structure $H$, the following statements are equivalent.
(a) $G$ is $A_{4}$-split.
(b) $H$ is balanced and has the bipartite restriction property.
(c) $G$ and $\bar{G}$ are both $\left\{C_{5}, P_{5}, K_{2}+K_{3}\right.$, co-4-pan, $\left.K_{2}+P_{4}, K_{2}+C_{4}, 2 K_{2} \vee 2 K_{1}\right\}$ free.
(d) $G$ is split, or $G_{0}$ or $\overline{G_{0}}$ is a disjoint union of stars.
(e) $G$ is $A_{4}$-separable.

Proof. We first show that (a) implies (b). Let $G$ be an $A_{4}$-split graph, let $H$ be its $A_{4}$-structure, and let $G^{\prime}$ be a split graph whose $A_{4}$-structure also is $H$. If $V_{1}, V_{2}$ is a partition of $V\left(G^{\prime}\right)$ into a clique and an independent set, then Proposition 4.32 and Observation 4.33 imply that $V_{1}, V_{2}$ is a balancing partition of $V(G)$; thus $H$ is balanced. Furthermore, in an arbitrary copy of $P_{4}$ in $G^{\prime}$ with vertices $a_{1}, a_{2} \in V_{1}$
and $b_{1}, b_{2} \in V_{2}$, each $a_{i}$ has exactly one neighbor in $\left\{b_{1}, b_{2}\right\}$, and each $b_{i}$ has exactly one neighbor in $\left\{a_{1}, a_{2}\right\}$. Hence if $v$ is a vertex of $G^{\prime}$, and $B$ is the $v$-restriction of $H$, then for any edge $x y$ in $B, v$ is adjacent in $G^{\prime}$ to exactly one of $x$ and $y$. It follows that giving the neighbors and nonneighbors of $v$ in $V(B)$ opposite colors yields a proper 2-coloring of $B$. Thus $B$ is bipartite. We conclude that $H$ has the bipartite restriction property.

The property of being $A_{4}$-balanced is preserved under graph complementation and taking induced subgraphs, as is the property of having an $A_{4}$-structure with the bipartite restriction property. To show that (b) implies (c), it thus suffices to show that each of the graphs listed in (c) is either not $A_{4}$-balanced or does not have an $A_{4}$-structure with the bipartite restriction property. One verifies easily that $C_{5}$ is not $A_{4}$-balanced. The graphs $P_{5}, K_{2}+K_{3}$, and the co-4-pan each have the same $A_{4}$-structure $H^{*}$. In $H^{*}$, the unique balancing partition has two vertices in one set and three vertices in the other, and the $v$-restriction of $H^{*}$ for a vertex $v$ in the set of size two is isomorphic to $K_{3}$, so $H^{*}$ does not have the bipartite restriction property. The $A_{4}$-structures of $K_{2}+P_{4}, K_{2}+C_{4}$, and $2 K_{2} \vee 2 K_{1}$ each have a unique balancing partition and a vertex $v$ in each set of the partition such that the $v$-restriction of the $A_{4}$-structure is isomorphic to $K_{3}$.

We next show that (c) implies (d). Suppose that neither $G$ nor $\bar{G}$ contains any of the graphs listed in (c) as an induced subgraph, and further suppose that $G$ is not split. It follows that the indecomposable core $G_{0}$ of $G$ is not split. Since $G_{0}$ is $C_{5}$-free, Proposition 4.32 implies that $G_{0}$ induces $2 K_{2}$ or $C_{4}$. Suppose first that $G_{0}$ induces $2 K_{2}$ on vertices $a, b, c, d$, with edges $a b$ and $c d$. Since $G$ is $\left\{K_{2}+K_{3}, P_{5}, \bar{P}\right\}$-free, every other vertex in $G_{0}$ is adjacent to 0 , 1 , or 4 vertices in $\{a, b, c, d\}$. Let $X$ denote the set of vertices adjacent to all four vertices in $\{a, b, c, d\}$, and let $Y$ be the set of vertices adjacent to none of $a, b, c$, and $d$. Let $A, B, C$, and $D$ denote the sets of vertices from $V\left(G_{0}\right)-\{a, b, c, d\}$ whose


Figure 4.7: The graph $G$ from Theorem 4.36.
neighborhoods intersect $\{a, b, c, d\}$ in $\{a\},\{b\},\{c\}$, and $\{d\}$, respectively. These vertices and sets are illustrated in Figure 4.7.

Since $G_{0}$ is $\left(2 K_{2} \vee 2 K_{1}\right)$-free, $X$ must be a clique. Suppose that $X$ is nonempty, and let $x$ be an arbitrary vertex in $X$. Since $G_{0}$ is co-4-pan-free, $A, B, C$, and $D$ must all be empty. Let $Y^{\prime}$ be the set of vertices in $Y$ having a neighbor in $Y$, and let $Y^{\prime \prime}=Y-Y^{\prime}$. Note that $Y^{\prime \prime}$ is an independent set. Any two adjacent vertices $y_{1}, y_{2} \in Y^{\prime}$ are both adjacent to $x$; otherwise, $G_{0}$ would induce $K_{2}+K_{3}$ or the co-4-pan on $\left\{y_{1}, y_{2}, x, a, b\right\}$. Thus $G$ contains all edges $u v$ such that $u \in X$ and $v \in Y^{\prime}$, and we may write $G_{0}=\left(G_{0}\left[X \cup Y^{\prime \prime}\right], Y^{\prime \prime}, X\right) \circ G_{0}\left[\{a, b, c, d\} \cup Y^{\prime}\right]$, a contradiction, since $G_{0}$ is indecomposable.

Hence $X=\emptyset$. Since $G_{0}$ is $\left(K_{2}+P_{4}\right)$-free, at least one of $A$ and $B$ must be empty, as must one of $C$ and $D$. By symmetry we may assume that $B=D=\emptyset$. Since $G_{0}$ is $\left\{K_{2}+K_{3}, P_{5}\right\}$-free, $A$ and $C$ must be independent sets, and $G$ has no edge $u v$ such that $u \in A$ and $v \in C$. Since $G_{0}$ is $\left(K_{2}+P_{4}\right)$-free, no vertex of $Y$ has a neighbor in either $A$ or $C$. Thus $G_{0}[A \cup\{a, b\}]$ and $G_{0}[C \cup\{c, d\}]$ are components of $G_{0}$ that are stars. Since $G_{0}$ is $\left\{K_{2}+K_{3}, K_{2}+P_{4}, K_{2}+C_{4}\right\}$-free, $G_{0}[Y]$ must be $\left\{K_{3}, P_{4}, C_{4}\right\}$-free. Note that the $\left\{K_{3}, P_{4}, C_{4}\right\}$-free graphs are necessarily forests with diameter at most 2 and hence are disjoint unions of stars.

Thus if $G_{0}$ induces $2 K_{2}$, then $G_{0}$ is a disjoint union of stars. If instead $G_{0}$ induces $C_{4}$, then $\overline{G_{0}}$ induces $2 K_{2}$, and by the argument above $\overline{G_{0}}$ is a disjoint union of stars.

We now show that (d) implies (e). As we have observed, the clique and in
dependent set of a split graph form an $A_{4}$-separating partition. Since $G$ is split if $G_{0}$ is split, we may assume that $G_{0}$ or $\overline{G_{0}}$ is a disjoint union of stars $G^{\prime}$. Let $A^{\prime}$ be a maximum independent set in $G^{\prime}$, and let $B^{\prime}=V\left(G^{\prime}\right)-A^{\prime}$. Any 4-vertex induced subgraph of $G^{\prime}$ having an alternating 4-cycle is isomorphic to $2 K_{2}$ and has a pair of nonadjacent vertices in each of $A^{\prime}$ and $B^{\prime}$; thus $A^{\prime}, B^{\prime}$ is $A_{4}$-separating. If $G$ has canonical decomposition $\left(G_{k}, A_{k}, B_{k}\right) \circ \cdots \circ\left(G_{1}, A_{1}, B_{1}\right) \circ G_{0}$, then it follows from Proposition 4.21 that the sets $A_{k} \cup \cdots \cup A_{1} \cup A^{\prime}$ and $B_{k} \cup \cdots \cup B_{1} \cup B^{\prime}$ form an $A_{4}$-separating partition of $V(G)$. The graph $G$ is thus $A_{4}$-separable.

Finally, we show that (e) implies (a). Suppose that $G$ is $A_{4}$-separable, and let $V_{1}$ and $V_{2}$ form an $A_{4}$-separating partition of $V(G)$. Form $G^{\prime}$ by deleting all edges of $G$ having both endpoints in $V_{1}$ and adding every edge $u v$ such that $u, v \in V_{2}$ (and $u v$ was not already an edge in $G$ ). The graph $G^{\prime}$ is clearly a split graph, and we claim that its $A_{4}$-structure $H^{\prime}$ is the same as that of $G$. Indeed, each induced $2 K_{2}, C_{4}$, or $P_{4}$ in $G$ becomes an induced $P_{4}$ in $G^{\prime}$, so $E(H) \subseteq E\left(H^{\prime}\right)$. Conversely, consider an edge of $H^{\prime}$ arising from an alternating 4-cycle $[a, b: c, d]$ in $G^{\prime}$, where we may assume that $a \in V_{1}$. By Proposition 4.32 and Observation 4.33, this alternating 4-cycle occurs in an induced $P_{4}$ in $G^{\prime}$ having its endpoints in $V_{1}$ and its midpoints in $V_{2}$; thus $a, c \in V_{1}$ and $b, d \in V_{2}$. Undoing the edge additions and deletions that created $G^{\prime}$ from $G$ cannot destroy the alternating 4-cycle $[a, b: c, d]$, so $[a, b: c, d]$ was an alternating 4-cycle in $G$. Thus $E\left(H^{\prime}\right)=E(H)$, and we have shown that $G^{\prime}$ has the same $A_{4}$-structure as the split graph $G$.

## REFERENCES

[1] K. J. Asciak and J. Lauri. On disconnected graph with large reconstruction number. Ars Combin., 62:173-181, 2002.
[2] L. Babel and S. Olariu. On the structure of graphs with few $P_{4}$ s. Discrete Appl. Math., 84(1-3):1-13, 1998.
[3] M. D. Barrus, M. Kumbhat, and S. G. Hartke. Graph classes characterized both by forbidden subgraphs and degree sequences. J. Graph Theory, 57(2):131-148, 2008.
[4] M. D. Barrus, M. Kumbhat, and S. G. Hartke. Non-minimal degree-sequenceforcing triples. Submitted, 2008.
[5] M. D. Barrus and D. B. West. The $A_{4}$-structure of a graph. Preprint, 2009.
[6] M. D. Barrus and D. B. West. On the degree-associated reconstruction number of a graph. Submitted, 2009.
[7] Z. Blázsik, M. Hujter, A. Pluhár, and Z. Tuza. Graphs with no induced $C_{4}$ and $2 K_{2}$. Discrete Math., 115(1-3):51-55, 1993.
[8] B. Bollobás. Almost every graph has reconstruction number three. J. Graph Theory, 14(1):1-4, 1990.
[9] J. A. Bondy. A graph reconstructor's manual. In Surveys in combinatorics, 1991 (Guildford, 1991), volume 166 of London Math. Soc. Lecture Note Ser., pages 221-252. Cambridge Univ. Press, Cambridge, 1991.
[10] J. A. Bondy and R. L. Hemminger. Graph reconstruction-a survey. J. Graph Theory, 1(3):227-268, 1977.
[11] A. Brandstädt and V. B. Le. Split-perfect graphs: characterizations and algorithmic use. SIAM J. Discrete Math., 17(3):341-360 (electronic), 2004.
[12] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Ann. of Math. (2), 164(1):51-229, 2006.
[13] V. Chvátal. A semistrong perfect graph conjecture. In Topics on perfect graphs, volume 88 of North-Holland Math. Stud., pages 279-280. NorthHolland, Amsterdam, 1984.
[14] V. Chvátal and P. L. Hammer. Aggregation of inequalities in integer programming. In Studies in integer programming (Proc. Workshop, Bonn, 1975), pages 145-162. Ann. of Discrete Math., Vol. 1. North-Holland, Amsterdam, 1977.
[15] S. Földes and P. L. Hammer. On a class of matroid-producing graphs. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq. Math. Soc. János Bolyai, pages 331-352. North-Holland, Amsterdam, 1978.
[16] S. Földes and P. L. Hammer. On split graphs and some related questions. In Problèmes combinatoires et théorie des graphes, volume 260 of Colloques Internationaux du Centre National de la Recherche Scientifique [International Colloquia of the CNRSJ, pages 139-140. Éditions du Centre National de la Recherche Scientifique (CNRS), Paris, 1978. Colloque International CNRS held at the Université d'Orsay, Orsay, July 9-13, 1976.
[17] D. R. Fulkerson, A. J. Hoffman, and M. H. McAndrew. Some properties of graphs with multiple edges. Canad. J. Math., 17:166-177, 1965.
[18] T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar, 18:25-66, 1967.
[19] P. L. Hammer, T. Ibaraki, and B. Simeone. Degree sequences of threshold graphs. In Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1978), Congress. Numer., XXI, pages 329-355, Winnipeg, Man., 1978. Utilitas Math.
[20] P. L. Hammer and B. Simeone. The splittance of a graph. Combinatorica, 1(3):275-284, 1981.
[21] F. Harary and E. Palmer. The reconstruction of a tree from its maximal subtrees. Canad. J. Math., 18:803-810, 1966.
[22] F. Harary and M. Plantholt. The graph reconstruction number. J. Graph Theory, 9(4):451-454, 1985.
[23] C. T. Hoàng. Perfect Graphs. PhD thesis, McGill University, Montreal, 1985.
[24] C. T. Hoàng. On the disc-structure of perfect graphs. I. The co-paw-structure. In Proceedings of the Third International Conference on Graphs and Optimization, GO-III (Leukerbad, 1998), volume 94, pages 247-262, 1999.
[25] C. T. Hoàng. On the disc-structure of perfect graphs. II. The co- $C_{4}$-structure. Discrete Math., 252(1-3):141-159, 2002.
[26] C. T. Hoàng and B. Reed. On the co- $P_{3}$-structure of perfect graphs. SIAM J. Discrete Math., 18(3):571-576 (electronic), 2004/05.
[27] S. Hougardy. On the $P_{4}$-structure of perfect graphs. PhD thesis, Shaker Verlag, Aachen, 1996.
[28] S. Hougardy. The $P_{4}$-structure of perfect graphs. In Perfect graphs, WileyIntersci. Ser. Discrete Math. Optim., pages 93-112. Wiley, Chichester, 2001.
[29] B. Jamison and S. Olariu. p-components and the homogeneous decomposition of graphs. SIAM J. Discrete Math., 8(3):448-463, 1995.
[30] P. J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961-968, 1957.
[31] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund. Math., 15:271-283, 1930.
[32] J. Lauri. Proof of Harary's conjecture on the reconstruction of trees. Discrete Math., 43(1):79-90, 1983.
[33] J. Lauri. Pseudosimilarity in graphs-a survey. Ars Combin., 46:77-95, 1997.
[34] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Math., 2(3):253-267, 1972.
[35] A. Maccari, O. Rueda, and V. Viazzi. A survey on edge reconstruction of graphs. J. Discrete Math. Sci. Cryptography, 5(1):1-11, 2002.
[36] F. Maffray and M. Preissmann. Linear recognition of pseudo-split graphs. Discrete Appl. Math., 52(3):307-312, 1994.
[37] P. Marchioro, A. Morgana, R. Petreschi, and B. Simeone. Degree sequences of matrogenic graphs. Discrete Math., 51(1):47-61, 1984.
[38] B. McMullen and S. P. Radziszowski. Graph reconstruction numbers. J. Combin. Math. Combin. Comput., 62:85-96, 2007.
[39] R. Molina. Correction of a proof on the ally-reconstruction number of a disconnected graph. Correction to: "The ally-reconstruction number of a disconnected graph" [Ars Combin. 28 (1989), 123-127; MR1039138 (90m:05094)] by W. J. Myrvold. Ars Combin., 40:59-64, 1995.
[40] W. Myrvold. The ally-reconstruction number of a disconnected graph. Ars Combin., 28:123-127, 1989.
[41] W. Myrvold. The ally-reconstruction number of a tree with five or more vertices is three. J. Graph Theory, 14(2):149-166, 1990.
[42] U. N. Peled. Matroidal graphs. Discrete Math., 20(3):263-286, 1977/78.
[43] N. Prince. Personal communication, 2008.
[44] S. Ramachandran. On a new digraph reconstruction conjecture. J. Combin. Theory Ser. B, 31(2):143-149, 1981.
[45] S. Ramachandran. Reconstruction number for Ulam's conjecture. Ars Combin., 78:289-296, 2006.
[46] T. Raschle and K. Simon. On the $P_{4}$-components of graphs. Discrete Appl. Math., 100(3):215-235, 2000.
[47] B. Reed. A semistrong perfect graph theorem. J. Combin. Theory Ser. B, 43(2):223-240, 1987.
[48] D. Seinsche. On a property of the class of $n$-colorable graphs. J. Combinatorial Theory Ser. B, 16:191-193, 1974.
[49] R. Tyshkevich. Decomposition of graphical sequences and unigraphs. Discrete Math., 220(1-3):201-238, 2000.
[50] R. I. Tyshkevich. Once more on matrogenic graphs. Discrete Math., 51(1):91100, 1984.
[51] R. I. Tyškevič. Canonical decomposition of a graph. Dokl. Akad. Nauk BSSR, 24(8):677-679, 763, 1980.
[52] S. M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure and Applied Mathematics, no. 8. Interscience Publishers, New YorkLondon, 1960.
[53] D. B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.

## AUTHOR'S BIOGRAPHY

Michael David Barrus was born in Provo, Utah. He received B.S. and M.S. degrees in mathematics from Brigham Young University in 2002 and 2004. In the fall of 2004, he entered the Ph.D. program in mathematics at the University of Illinois at Urbana-Champaign, where he completed a M.S. degree in mathematics teaching in 2008 and wrote his doctoral thesis under the direction of Douglas B. West. Following the completion of his Ph.D. degree in May 2009, Barrus will begin work as an assistant professor of mathematics at Black Hills State University in Spearfish, South Dakota.

