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Abstract

Given a set F of graphs, a graph G is F-free if G does not contain

any member of F as an induced subgraph. We say that F is a degree-

sequence-forcing set if, for each graph G in the class C of F-free graphs,

every realization of the degree sequence of G is also in C. A degree-

sequence-forcing set is minimal if no proper subset is degree-sequence-

forcing. We characterize the non-minimal degree-sequence-forcing sets

F when F has size 3.
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sequence characterization, 2-switch, potentially P -graphic, forcibly P -

graphic

1 Introduction

Given a collection F of graphs, a graph G is said to be F-free if G con-
tains no induced subgraph isomorphic to an element of F . We say that
elements of F are forbidden subgraphs for the class of F -free graphs. Forbid-
den subgraph notions have proven fruitful in graph theory, mainly because
hereditary families have forbidden induced subgraph characterizations. For
example, Kuratowski’s Theorem can be rephrased as a statement of which
induced subgraphs are forbidden for planar graphs, and the Strong Perfect
Graph Theorem [4] characterizes perfect graphs in terms of their forbidden
subgraphs.

The degree sequence d(G) of a graph G is the list (d1, d2, . . . , dn) of degrees
of the vertices of G, written in non-increasing order. We say that a graph
class C has a degree sequence characterization if it is possible to determine
whether or not a graph G is in C based solely on the degree sequence of G.
Degree sequence characterizations do not exist for most graph classes, but
are often useful when they do exist.

In [1], the authors addressed the question of which classes of graphs can
be characterized both in terms of a small collection of forbidden subgraphs
and in terms of their degree sequences. In particular, they defined a collection
F of graphs to be degree-sequence-forcing if whenever any realization of a
graphic sequence π is F -free, every other realization of π is F -free as well.

There are degree-sequence-forcing sets associated with several well-known
classes of graphs. The sets {K2} and {2K1} are the forbidden sets for
the edgeless and the complete graphs, respectively, which have trivial de-
gree sequence characterizations. Furthermore, {2K2, C4, P4}, {2K2, C4, C5},
and {2K2, C4} are sets of forbidden induced subgraphs for the threshold
graphs [5], split graphs [8], and pseudo-split graphs [14], respectively; each
of these classes has a degree sequence characterization ([11], [12], [14]).

In [1] the authors characterized the degree-sequence-forcing sets of order
at most two. In this paper we define a degree-sequence-forcing set F to
be minimal if no proper subset of F is degree-sequence-forcing. Theorem 1
characterizes the non-minimal degree-sequence-forcing sets F when F has
order three. In the theorem we denote disjoint union by + and join by ∨.
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Figure 1: The graphs from Theorem 1(viii).

Theorem 1. A set F of 3 graphs is a non-minimal degree-sequence-forcing
set if and only if one of the following conditions holds:

(1) F contains a proper degree-sequence-forcing subset other than {2K2, C4};

(2) F = {2K2, C4, F}, where F satisfies one of the following:

(i) F induces 2K2 or C4;

(ii) F ∼= nK1 or F ∼= Kn for some n ≥ 1;

(iii) F ∼= C5 + nK1 or F ∼= C5 ∨ Kn for some n ≥ 0;

(iv) F ∼= ((C5 + nK1)∨K1) + mK1 or F ∼= ((C5 ∨Kn) + K1)∨Km for
some m, n ≥ 0;

(v) F ∼= K2 + nK1 or F ∼= Kn+2 − e for some n ≥ 0;

(vi) F or F is ((C5 ∨ K1) + 2K1) ∨ K1;

(vii) F has 4 or fewer vertices;

(viii) F is one of the graphs in Figure 1;

(ix) F ∼= K1,3 + K1 or F ∼= (K3 + K1) ∨ K1.

As a consequence of Theorem 1, we place the threshold and split graphs in
context by determining all graphs F such that the {2K2, C4, F}-free graphs
have a degree sequence characterization.

Our results are particularly interesting in light of recent work done by
others in [6], [7], [10], and [15], where small sets F are characterized that
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force the class of F -free graphs to have a certain property. We find F for
when the property is to have a degree sequence characterization.

The structure of this paper is as follows: Section 2 deals with basic defi-
nitions and preliminaries. In Section 3 we show that each of the triples from
Theorem 1 is degree-sequence-forcing. In Section 4 we show that there are no
other non-minimal degree-sequence-forcing triples by examining an analogue
of degree-sequence-forcing sets in the context of bipartite graphs. Section 5
suggests some directions for future work.

2 Preliminaries

In this paper we follow the terminology and notation of West [16]. Specif-
ically, for any graph G and a vertex v of G, we use n(G), NG(v), dG(v),
and d(G) = (d1, d2, ..., dn) to denote the number of vertices in G, the neigh-
borhood of vertex v in G, the degree of v, and the degree sequence of G in
non-increasing order, respectively. We shall denote the disjoint union and
join of two graphs G and H by G + H and G ∨ H , respectively, and the
complement of G by G. We consider all graphs to be simple and to have
at least one vertex, particularly when considering induced subgraphs. We
will often use “graph” to mean “isomorphism class of graphs,” rather than
a specific element of a given isomorphism class, unless mentioned otherwise.
We trust that the context will make it clear which meaning is intended.

The following theorem from [1] lists all degree-sequence-forcing sets of
order at most two.

Theorem 2 ([1]). The degree-sequence-forcing singleton sets F are {K1},
{K2} and {2K1}. The list of all degree-sequence-forcing pairs is as follows:

(i) {A, B}, where A is one of K1, K2, or 2K1, and B is arbitrary;

(ii) {P3, K3}, {P3, K3 + K1}, {P3, K3 + K2}, {P3, 2K2}, {P3, K2 + K1};

(iii) {K2 + K1, 3K1}, {K2 + K1, K1,3}, {K2 + K1, K2,3}, {K2 + K1, C4};

(iv) {K3, 3K1};

(v) {2K2, C4}.

From the definitions given in Section 1, the following two results are imme-
diate:
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Proposition 3 ([1]). Given F any collection of graphs, let F c denote the
collection of graphs that are complements of those in F . The set F is degree-
sequence-forcing if and only if F c is degree-sequence-forcing.

In particular, {2K2, C4, F} is degree-sequence-forcing if and only if {2K2, C4, F}
is, because 2K2 and C4 are complements of each other.

A graph G is called a unigraph if it is the only realization of its degree
sequence.

Observation 4 ([1]). Given any set F of graphs, if every F-free graph is a
unigraph, then F is degree-sequence-forcing.

Let x, y, u, v be four vertices of a graph where xy, uv are edges and xu, yv
are not edges. A 2-switch is an operation that deletes edges xy, uv and adds
xu, yv. In this paper, we shall denote such a 2-switch by {xy, uv} ⇉ {xu, yv}.
Diagrams showing this 2-switch shall have xy, uv and xu, yv as dotted edges
before and after the 2-switch, respectively. Note that for a 2-switch to be
possible the subgraph induced by x, y, u, v must be 2K2, C4 or P4. Hence
any {2K2, C4, P4}-free graph admits no 2-switch. Also note that any 2-switch
preserves the degree of each vertex of the graph. The following well-known
result will be fundamental in what follows.

Theorem 5 (Fulkerson–Hoffman–McAndrew [9]). Graphs H and H ′ on the
same vertex set have dH(v) = dH′(v) for every vertex v if and only if H ′ can
be obtained by performing a sequence of 2-switches on H.

We shall call (H, H ′) an F-breaking pair if H and H ′ have the same degree
sequence, H is not F -free and H ′ is F -free. If F = {F}, then we say that
the pair (H, H ′) is F -breaking.

Observation 6. Let G be a family of graphs. If (H, H ′) is a {2K2, C4} ∪ G-
breaking pair, then (H, H ′) is a G-breaking pair, and H and H ′ are both
{2K2, C4}-free.

Proposition 7. If F = {2K2, C4, F} is not degree-sequence-forcing, then
there exists an F-breaking pair (H, H ′) on at most n(F ) + 2 vertices.

Proof. Since F is not degree-sequence-forcing, by Observation 6 there exists
an F -breaking pair (J, J ′) of {2K2, C4}-free graphs. By Theorem 5, there
exists some sequence J = J0, J1, J2, ..., Jk = J ′ of {2K2, C4}-free graphs in
which Ji is obtained via a 2-switch on Ji−1 for i = 1, . . . , k. Define ℓ to
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be the largest index such that Jℓ induces F , so that (Jℓ, Jℓ+1) is also an F -
breaking pair. Let V denote the vertex set of an induced copy of F in Jℓ,
and let W denote the set of 4 vertices involved in the 2-switch transforming
Jℓ into Jℓ+1. Since F is not induced on V in Jℓ+1, the 2-switch performed
must add an edge to or delete an edge from Jℓ[V ]; hence |W ∩ V | ≥ 2 and
|V ∪W | ≤ |V | + 2. Thus (Jℓ[V ∪W ], Jℓ+1[V ∪W ]) is an F -breaking pair on
at most n(F ) + 2 vertices.

If four vertices a, b, c, d in G induce P4 with a and d as the endpoints and
b adjacent to a, then we denote the path by 〈a, b, c, d〉 and call b and c the
midpoints of the path.

3 Non-minimal degree-sequence-forcing triples

In this section we show that each of the triples from Theorem 1 is degree-
sequence-forcing. Non-minimal triples are formed by appending suitable
graphs to the degree-sequence-forcing sets from Theorem 2. The sets that
are not {2K2, C4} are handled easily.

Proposition 8. A set F with |F| = 3 is degree-sequence-forcing if F con-
tains a degree-sequence-forcing singleton or pair other than {2K2, C4}.

Proof. The authors showed in [1] that any graph that forbids any of the
degree-sequence-forcing singletons or pairs other than {2K2, C4} is a uni-
graph. Thus any graph that forbids one of these sets and also forbids an ad-
ditional graph is a unigraph. Observation 4 shows that F is degree-sequence-
forcing.

We now examine the triple F = {2K2, C4, F}. Not every such triple will
be degree-sequence-forcing; for example, the two realizations of (4, 3, 3, 2, 1, 1)
show that {2K2, C4, K3 + 2K1} is not:

b

b

b

b

b

b

b

b

b

b

b

b

.

However, there are some triples that are immediately degree-sequence-forcing.

Proposition 9. If F induces either 2K2 or C4, then F is degree-sequence-
forcing.
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Proof. If F induces 2K2 or C4, then the F -free graphs are precisely the
{2K2, C4}-free graphs, and it follows immediately that F is degree-sequence-
forcing.

We henceforth assume F to be {2K2, C4}-free. Such graphs have been
studied in the literature; Blázsik et al. in [3] characterize their structure as
follows:

Theorem 10. A graph G is {2K2, C4}-free if and only if there exists a par-
tition V1, V2, V3 of V (G) such that (i) V1 is an independent set; (ii) V2 is a
clique; (iii) V3 = ∅ or G[V3] ∼= C5; (iv) every possible edge exists between V2

and V3; and (v) no edge in G has one endpoint in V1 and the other endpoint
in V3.

Given a {2K2, C4}-free graph G, we will call the triple (V1, V2, V3) a
pseudo-splitting partition of V (G) if V1, V2, V3 satisfy the conditions of the
partition set forth in Theorem 10. The name is suggested by [14], in which
{2K2, C4}-free graphs are called pseudo-split graphs.

Note that there is at most one induced C5 in any {2K2, C4}-free graph.
Given a {2K2, C4}-free graph C, define the split part Gs of G to be the
induced subgraph resulting from deleting the vertices of the induced C5 from
G if such a 5-cycle exists, and letting Gs = G otherwise.

In the remainder of this section we present all degree-sequence-forcing
triples F = {2K2, C4, F} where F is {2K2, C4}-free. We begin with the
following easy consequence of Theorem 10.

Observation 11. Let H be an arbitrary {2K2, C4}-free graph, and let (W1, W2, W3)
be a pseudo-splitting partition of V (H). Any induced P4 in H either lies in
H [W3] or has its endpoints in W1 and its midpoints in W2.

Proposition 12. Let H be an arbitrary {2K2, C4}-free graph with pseudo-
splitting partition (W1, W2, W3), and let H ′ ≇ H be obtained after performing
a 2-switch on H. The following statements all hold.

(a) The isomorphism-class-changing 2-switch was performed on a set of
vertices in W1 ∪ W2 on which a P4 is induced in both H and H ′.

(b) (W1, W2, W3) is a pseudo-splitting partition of H ′.
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(c) For any u ∈ W1, v ∈ W2,

|NH(u) ∩ W2| = |NH′(u) ∩ W2|;

|NH(v) ∩ W1| = |NH′(v) ∩ W1|.

Proof. (a) The four vertices on which a 2-switch is performed must induce
2K2, C4, or P4; since the first two graphs are forbidden in H , the 2-switch
must have occurred on an induced P4. Any 2-switch on an induced P4 leaves
an induced P4 on the four vertices involved. By Observation 11 the P4 must
either be located entirely within W3 or within W1 ∪ W2. From Theorem 10,
any 2-switch on a P4 contained in G[W3] will not change the isomorphism
class of the graph, since every 2-switch on C5 produces a C5, every vertex
of W2 dominates the induced C5, and every vertex of W1 is nonadjacent to
every vertex of the induced C5. Hence the isomorphism-class-changing 2-
switch must have occurred on an induced P4 in G[W1 ∪ W2].

(b) Let 〈a, b, c, d〉 be the induced P4 on which the 2-switch occurred. By
(a) and Observation 11, a, d ∈ W1 and b, c ∈ W2. Note that in the 2-switch
the edges deleted are ab, cd and the edges added are ad, bc. Thus after the
2-switch no edge exists between vertices in W1, no non-edge exists in W2, and
all the other requirements for (W1, W2, W3) to be a pseudo-splitting partition
hold.

(c) This is clear upon consideration of the edge deletions and additions
under the 2-switch in the proof of (b).

With the following lemma we can present our first examples of degree-
sequence-forcing F .

Lemma 13. Let H be a {2K2, C4}-free graph with pseudo-splitting partition
(W1, W2, W3), and let H ′ be a graph obtained by performing a 2-switch on H.
If F is an induced subgraph of H that is not induced in H ′, then |V (F )∩W2| ≥
2.

Proof. Let H , H ′, and F be as described in the hypothesis, and let V2 =
V (F ) ∩ W2. Since H [W1 ∪ W3] ∼= H ′[W1 ∪ W3] and H ′ is F -free, we have
|V2| ≥ 0.

Suppose that |V2| = 1, and let V2 = {v}. Let p1 and p2 denote respectively
the number of vertices in V (F )∩W1 to which v is and is not adjacent to. By
Proposition 12, after the 2-switch that creates H ′ there are still at least p1

vertices in W1 to which v is adjacent, and at least p2 vertices in W1 to which
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v is not adjacent. These p1 + p2 vertices, together with v and V (F ) ∩ W3,
clearly induce F in H ′, a contradiction.

Thus |V2| ≥ 2, as claimed.

Proposition 14. The set F = {2K2, C4, F} is degree-sequence-forcing when-
ever F is one of the following:

(i) nK1, n ≥ 1;

(ii) Kn, n ≥ 1;

(iii) C5 + nK1, n ≥ 0;

(iv) C5 ∨ Kn, n ≥ 0;

(v) ((C5 + nK1) ∨ K1) + mK1, m, n ≥ 0;

(vi) ((C5 ∨ Kn) + K1) ∨ Km, m, n ≥ 0.

Proof. If F is any of the graphs described in (i), (iii), or (v), then every
pseudo-splitting partition (V1, V2, V3) of V (F ) has |V2| ≤ 1. By Lemma 13
and Observation 6, there exist no {2K2, C4, F}-breaking pairs, so {2K2, C4, F}
is degree-sequence-forcing.

The cases (ii), (iv), and (vi) follow from the cases (i), (iii) and (v) by
Proposition 3.

Proposition 15. The triples F = {2K2, C4, K2+nK1} and G = {2K2, C4, Kn+2−
e} are degree-sequence-forcing for all n ≥ 0.

Proof. By Proposition 3, it suffices to show that the triples F are degree-
sequence-forcing.

Proposition 14 handles the case when n = 0, so assume that n ≥ 1.
Suppose that F is not degree-sequence-forcing, and let (H, H ′) be an F -
breaking pair. By Observation 6, H and H ′ are a K2 + nK1-breaking pair
where each is {2K2, C4}-free. Let V = {a, b, i1, ..., in} be the vertex set
of an induced K2 + nK1 in H , with ab ∈ E(H). By Proposition 12, we
may fix a pseudo-splitting partition (W1, W2, W3) of both V (H) and V (H ′).
From Lemma 13 it follows that |V ∩ W2| = 2, so V ∩ W2 = {a, b}, and
V \ {a, b} ⊆ W1. Graph H ′ is K2 + nK1-free, so the 2-switch transforming H
into H ′ must add an edge between either a or b and ik for some k ∈ {1, ..., n};
without loss of generality assume the edge ai1 is added. The 2-switch must
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be {ay, xi1} ⇉ {ai1, xy} for some x ∈ W2 and some y ∈ W1. However, then
H ′[{a, y, i1, ..., in}] ∼= K2 +nK1, a contradiction. Thus F is degree-sequence-
forcing.

Proposition 16. The sets {2K2, C4, F} and {2K2, C4, F} are degree-sequence-
forcing, where F = ((C5 ∨ K1) + 2K1) ∨ K1.

Proof. Suppose (H, H ′) is a {2K2, C4, F}-breaking pair, where F = ((C5 ∨
K1) + 2K1) ∨ K1. By Observation 6 and Proposition 12, we may assume
that H induces F and that H, H ′ have the same vertex set and a common
pseudo-splitting partition (W1, W2, W3). Fix a copy of F in H . Note that
there is a unique pseudo-splitting partition of F , and it must be the same
as the partition inherited from H . Within the induced copy of F , let c and
ℓ1 be the vertices of H having degree 8 and 6, respectively, and let ℓ2 and
ℓ3 be the pendant vertices. By Proposition 7, we may assume that (H, H ′)
is a minimal F -breaking pair, in the sense that every vertex in H either
belongs to the fixed copy of F or is involved in the 2-switch that creates
H ′; then H contains at most 2 vertices not contained in the copy of F . In
order for there to be an isomorphism-class-changing 2-switch on H , there
must be an induced P4 on H [W1 ∪ W2] that includes a vertex from each of
V (F ) ∩W1 and V (F )∩W2. There must then exist some vertex y in W1 not
contained in the copy of F , y must have some neighbor in W2 other than
c, and y cannot dominate W2. If |W2| = 2 then y is adjacent to ℓ1 but not
to c; but then any 2-switch involving y is of the form {ℓ1y, cv} ⇉ {ℓ1v, cy}
for some v ∈ W1 \ {y}, and H ′[{y, w} ∪ W2 ∪ W3] is a copy of F , where
w ∈ {ℓ2, ℓ3} − v. Thus H contains a vertex x ∈ W2 that does not belong to
F , and V (H) = V (F ) ∪ {x, y}.

If N(y) = {x}, then the 2-switch changing H into H ′ must be {xy, cv} ⇉

{xv, cy}, where v ∈ {ℓ2, ℓ3}; since xv /∈ E(H), the 2-switch in effect merely
switches the roles of y and v without changing the isomorphism class of H .
A similar contradiction arises if N(y) = {ℓ1}. The neighborhood of y cannot
be {x, c} or {ℓ1, c} or {x, c, ℓ1}, for no 2-switch would then be possible on
H . Thus N(y) = {ℓ1, x}, and the 2-switch changing H into H ′ then has the
form {vy, cw} ⇉ {vw, cy}, where v ∈ {ℓ1, x} and w ∈ {ℓ2, ℓ3}. If v = ℓ1 then
ℓ1y /∈ E(H ′), and H ′[W3 ∪ {c, ℓ1, y, u}] ∼= F , where u ∈ {ℓ2, ℓ3}−w. If v = x
then since xy /∈ E(H ′) and H ′ cannot induce F on W3 ∪ {c, x, y, u}, where
u ∈ {ℓ2, ℓ3}−w, we must have xu ∈ E(H ′); but then H ′[W3∪{x, ℓ1, ℓ2, ℓ3}] ∼=
F , a contradiction.
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We conclude that no {2K2, C4, F}-breaking pair exists, so this set is
degree-sequence-forcing. By Proposition 3, it follows that {2K2, C4, F} is
also degree-sequence-forcing.

Lemma 17. If G is a {2K2, C4}-free graph and 〈a, b, c, d〉 is an induced P4

such that every vertex not in {a, b, c, d} is adjacent to exactly 0 or 2 vertices
in {a, d}, then the graph G′ formed by performing the 2-switch {ba, cd} ⇉

{bd, ca} is isomorphic to G.

Proof. Define ρ : V (G) → V (G′) by

ρ(v) =











v, if v /∈ {a, d},

d, if v = a,

a, if v = d.

It is easy to check that ρ is an isomorphism.

Lemma 18. If P = 〈a, b, c, d〉 is an induced P4 in a {2K2, C4, kite}-free
graph G, then every vertex of V (G)−{a, b, c, d} is adjacent to exactly 0 or 2
of {a, d}.

Proof. Let (V1, V2, V3) be a pseudo-splitting partition of G. By Observa-
tion 11, either P is contained within G[V3], in which case the claim is clearly
true by Theorem 10, or a, d ∈ V1 and b, c ∈ V2. Assume the latter holds, and
suppose u 6= b and ua ∈ E(G). Then u ∈ V2, so ub, uc ∈ E(G). Since G
does not induce the kite on {a, b, c, d, u}, we must have ud ∈ E(G). Similar
arguments show that any vertex other than c adjacent to d must also be
adjacent to a, and the result follows.

Proposition 19. The {2K2, C4, kite}-free graphs and {2K2, C4, chair}-free
graphs are unigraphs.

Proof. Any 2-switch on a {2K2, C4, kite}-free graph G must be performed
on an induced P4. Lemma 17 and Lemma 18 imply that the graph resulting
from such a 2-switch is isomorphic to G. It follows from Theorem 5 that G
is a unigraph. Since any {2K2, C4, chair}-free graph H is the complement of
a {2K2, C4, kite}-free graph, H is also a unigraph.

Corollary 20. The triple {2K2, C4, F} is degree-sequence-forcing if F is the
kite or chair graph, or any graph on 4 or fewer vertices.
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Proof. If F ∈ {2K2, C4}, then by Proposition 9 the triple is degree-sequence-
forcing. If F ∈ {4K1, K4}, then by Proposition 14 the triple is degree-
sequence-forcing. If F is any other graph on 4 or fewer vertices, or if F
is the kite or chair graph, then F is induced in either the chair or the
kite graphs. The {2K2, C4, F}-free graphs are then {2K2, C4, chair}-free or
{2K2, C4, kite}-free and hence are unigraphs, so by Observation 4 we have
that {2K2, C4, F} is degree-sequence-forcing.

We now establish some more results about triples F = {2K2, C4, F} where
F induces C5.

Proposition 21. Let F and H be C5-inducing graphs that are {2K2, C4}-
free, and suppose the vertex set of the split part F s of F has a unique partition
into a clique and an independent set. Then H is F -free if and only if Hs is
F s-free.

Proof. Suppose first that Hs induces F s, and assume V (F s) ⊆ V (Hs). Let
(W1, W2, W3) be the pseudo-splitting partition of H . Then (W1, W2) is a
partition of V (Hs) into an independent set and a clique, and if (V1, V2) is a
splitting partition of V (F s), then the uniqueness of the latter partition forces
V1 ⊆ W1 and V2 ⊆ W2. Now in H there is an induced C5 on V3 in which
every vertex dominates W2. Since F is constructed by making each vertex
of a copy of C5 adjacent to each vertex in V2 and not adjacent to any vertex
in V1, it is clear that F is induced in H .

For the converse, suppose that H induces F , and assume V (F ) ⊆ V (H).
Let (W1, W2, W3) be a pseudo-splitting partition of H , and let (V1, V2, V3) be
a pseudo-splitting partition of F . Now H induces a single copy of C5, as does
F , so V3 = W3. Then V1 ∪ V2 ⊆ W1 ∪ W2, and it is clear that F s is induced
in Hs.

Proposition 22. Suppose F is a {2K2, C4}-free graph such that F induces
C5, and V (F s) has a unique partition into a clique and an independent
set. If {2K2, C4, F

s} is degree-sequence-forcing, then {2K2, C4, F} is degree-
sequence-forcing as well.

Proof. Suppose F = {2K2, C4, F} is not degree-sequence-forcing, and let
(H1, H2) be an F -breaking pair. Proposition 21 then implies that Hs

1 induces
F s, and Hs

2 is F s-free; then (Hs
1 , H

s
2) is an F s-breaking pair and hence a

{2K2, C4, F
s}-breaking pair. We conclude that {2K2, C4, F

s} is not degree-
sequence-forcing.
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Corollary 23. Let F be the unique C5-inducing {2K2, C4}-free graph such
that F s ∼= chair. Let G be the unique C5-inducing {2K2, C4}-free graph such
that Gs ∼= P4 (note that G is self-complementary). The sets {2K2, C4, F},
{2K2, C4, F}, and {2K2, C4, G} are degree-sequence-forcing.

Note that the graphs F , F , and G are the C5-inducing graphs referred to
in part (viii) of Theorem 1.

Whether or not a given set F = {2K2, C4}∪G is degree-sequence-forcing
may be tested in a systematic way via the following algorithm:

Step 1. Generate a list containing, for every F in G, all potentially F -
inducing-graphic sequences with up to n(F ) + 2 terms.

Step 2. Retain only those sequences having {2K2, C4}-free realizations.

Step 3. For each sequence π that remains, test whether or not all realiza-
tions of π induce some element of G.

Step 4. If some sequence π is found in Step 3 that has a G-free realization,
then output π; there is an F -breaking pair having this degree sequence.
If no such π is found in Step 3, then conclude that F is degree-sequence-
forcing.

It follows easily from Proposition 7 and the appropriate generalization
of Observation 6 that the algorithm always successfully concludes whether
or not F is a degree-sequence-forcing set. We note that polynomial-time
algorithms exist for Steps 1 and 2 (see [14]); Step 3 may also be automated.
We note that for any F in G, any potentially F -inducing-graphic sequence
that is unigraphic is forcibly F -inducing-graphic, so in order to expedite Step
3, it may be desirable to insert after Step 2 the procedure

Step 2′. Retain only those sequences that are not unigraphic.

A polynomial-time algorithm is given in [13] for this step as well. Using
the procedure above the authors obtained the following result.

Proposition 24. The sets {2K2, C4, K1,3 + K1} and {2K2, C4, (K3 + K1) ∨
K1} are degree-sequence-forcing.
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4 Bipartitioned graphs

In this section we consider a bipartite version of the notion of a degree-
sequence-forcing set. We then use our results to show that the only non-
minimal degree-sequence-forcing triples are the ones presented in Theorem 1.

Define a bipartitioned graph to be a triple (G, V1, V2) where G is a bi-
partite graph with partite sets V1 and V2. We will write G(V1, V2) for the
bipartitioned graph and refer to G as the underlying graph. We define two
bipartitioned graphs G(V1, V2) and G′(V ′

1 , V
′

2) to be isomorphic if there exists
a graph isomorphism φ : V (G) → V (G′) such that φ(V1) = V ′

1 (and hence
φ(V2) = V ′

2).
We define the bicomplement G(V1, V2) of a bipartitioned graph G(V1, V2)

to be the bipartitioned graph H(V2, V1) such that E(H) = {uv : u ∈ V2, v ∈
V1, uv /∈ E(G)}. Note that in the bicomplement the roles of V1 and V2 are
interchanged.

Given a split graph G and a partition V1, V2 of V (G) into an independent
set and a clique, respectively, we define the associated bipartitioned graph to
be Gb(V1, V2), where Gb is formed by deleting all edges with both endpoints
in V2. Note that an arbitrary split graph may have more than one partition
into an independent set and a clique, and hence more than one associated
bipartitioned graph. Given a C5-inducing pseudo-split graph H and a par-
tition V1, V2, V3 of V (H) into an independent set, a clique, and the vertex
set of an induced C5, respectively, define the associated bipartitioned graph
to be Hb(V1, V2), where Hb is formed by deleting V3 from H and remov-
ing all edges with both endpoints in V2, i.e., Hb = (Hs)b. A C5-inducing
pseudo-split graph H has exactly one bipartitioned graph associated with it.

We say a bipartitioned graph H(W1, W2) is an induced subgraph of G(V1, V2)
if Wi ⊆ Vi, i = 1, 2, and H = G[W1∪W2]. We will often be more interested in
isomorphism classes of bipartitioned graphs than with specific graphs them-
selves; for that reason, we say that G(V1, V2) is F (X1, X2)-free if there is
no induced subgraph of G(V1, V2) isomorphic to F (X1, X2), and we say that
G(V1, V2) induces F (X1, X2) if there exists an induced subgraph of G(V1, V2)
isomorphic to F (X1, X2).

We define the degree sequence of a bipartitioned graph G(V1, V2) to be the
ordered pair (d; d′), where d and d′ are lists of the degrees in G of the vertices
in V1 and V2, respectively, written in nonincreasing order. If G(V1, V2) has
degree sequence (d; d′), we say that G(V1, V2) is a realization of (d; d′).
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Example. The chair graph G is shown on the left below. Its unique as-
sociated bipartitioned graph Gb(V1, V2) is shown on the right, with vertices
in V1 on the bottom row and vertices in V2 on the top row. The degree
sequence of Gb(V1, V2) is (1, 1, 1; 2, 1).

b

b b

b b b

b b

b b

We note that nonisomorphic bipartitioned graphs may have a common
degree sequence. We define a set F = {F1(V 1

1 , V 1
2 ), ..., Fk(V k

1 , V k
2 )} of bi-

partitioned graphs to be degree-sequence-forcing if whenever a bipartitioned
graph G(W1, W2) with degree sequence (d; d′) induces no element of F , then
no other realization of (d; d′) induces an element of F .

In examining degree-sequence-forcing sets of bipartitioned graphs we be-
gin with the following useful note:

Observation 25. Given F a collection of bipartitioned graphs, let F c denote
the collection of bicomplements of elements of F . Then F is degree-sequence-
forcing if and only if F c is degree-sequence-forcing.

We define a bipartitioned 2-switch on G(V1, V2) as the deletion of two
edges uv, xy of G and the addition of edges uy, xv not already belonging
to G, where we require u, x ∈ V1 and v, y ∈ V2, as shown on the left in the
diagram below. We again denote this 2-switch by {uv, xy} ⇉ {uy, xv}. Note
that a bipartitioned 2-switch is a 2-switch on the underlying graph. However,
the definition a bipartitioned 2-switch is more restrictive; after the 2-switch
{uv, xy} ⇉ {uy, xv} on G(V1, V2), the sets V1, V2 still partition V (G) into
two independent sets. Such need not be the case when performing a general
2-switch on a bipartite graph, as shown on the right in the diagram below,
where the bottom and top rows of vertices contain subsets of V1 and V2,
respectively.

b

b

b

b

b

b

b

b

u

v

x

y

u

v

x

y

b

b

b

b

b

b

b

b

As with general 2-switches, a bipartitioned 2-switch does not change the
degree of any vertex in the bipartitioned graph. We noted above that a
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bipartitioned 2-switch does not place any edges between vertices belonging to
the same partite set under the given bipartition. We then have the following
analogue of Theorem 5:

Proposition 26. Bipartitioned graphs G(W1, W2) and H(W1, W2) on the
same vertex set satisfy dG(v) = dH(v) for every vertex v ∈ W1 ∪ W2 if and
only if H can be obtained by performing a sequence of bipartitioned 2-switches
on G.

Proof. We prove this by induction on |W1|. When |W1| = 1 there is nothing
to prove; consider now bipartitioned graphs G(W1, W2) and H(W1, W2) as
described in the hypothesis, with |W1| > 1. Let u be a vertex of maximum
degree ∆ among vertices in W1, and let v1, ..., v∆ be a set of vertices in
W2 with the ∆ highest degrees among vertices in W2. We show that by
means of bipartitioned 2-switches we can arrive at a bipartitioned graph
where N(u) = {v1, ..., v∆}. Suppose uvi /∈ E(G) for some i ∈ {1, ..., ∆}.
Then u has a neighbor w in W2 \ {v1, v2, ..., v∆}. Since vi has degree at
least as large as that of w, vi has a neighbor x in W1 \ N(w). Then we
may perform the 2-switch {uw, xvi} ⇉ {uvi, xw} and obtain a graph where
|N(u) ∩ {v1, ..., v∆}| is larger than it previously was. Continuing in this
way, we may arrive at a graph G∗ where N(u) = {v1, ..., v∆}. We may also
perform a sequence of 2-switches on H(W1, W2) to form a graph H∗(W1, W2)
where N(u) = {v1, ..., v∆}. Now the bipartitioned graphs G∗(W1, W2) − u
and H∗(W1, W2)−u agree on the degrees of all vertices, and by the inductive
hypothesis there exists a sequence of bipartitioned 2-switches that changes
G∗(W1, W2)−u into H∗(W1, W2)−u. None of these bipartitioned 2-switches
involve the vertex u, so the bipartitioned 2-switches that change G(W1, W2)
into G∗(W1, W2), followed by the same bipartitioned 2-switches that change
G∗(W1, W2)−u into H∗(W1, W2)−u, followed by the bipartitioned 2-switches
that change H∗(W1, W2) into H(W1, W2), give a sequence of bipartitioned
2-switches that change G(W1, W2) into H(W1, W2). The result follows by
induction.

We are now in a position to show the relationship between degree-sequence-
forcing sets of graphs and degree-sequence-forcing sets of bipartitioned graphs.

Theorem 27. Let F be a collection of {2K2, C4}-free graphs that either all
induce C5 or are all C5-free. Let G be the set of all bipartitioned graphs asso-
ciated with elements of F . Then {2K2, C4} ∪ F is a degree-sequence-forcing
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set of graphs if and only if G is a degree-sequence-forcing set of bipartitioned
graphs.

Proof. Let F and G be as defined above. Suppose first that {2K2, C4}∪F is
degree-sequence-forcing. Let H(W1, W2) be a bipartitioned graph inducing
G(V1, V2), where G(V1, V2) is an element of G. By definition we have that
V1 ⊆ W1 and V2 ⊆ W2. Let H ′(W1, W2) be any other realization of the degree
sequence of H(W1, W2), and let J1, J2 be pseudo-split graphs for which H and
H ′ are associated bipartitioned graphs, respectively, where J1, J2 induce C5 if
and only if the graphs in F do. It is clear that J1 and J2 have the same degree
sequence, and that J1 must induce some element of F . Since {2K2, C4} ∪ F
is degree-sequence-forcing, it follows that J2 also induces some element of F .
Then H ′(W1, W2) must induce some element of G. We conclude that G is
degree-sequence-forcing.

Conversely, let G be degree-sequence-forcing, and suppose that {2K2, C4}
∪F is not degree-sequence-forcing. By Observation 6 there exists a {2K2, C4}
∪F -breaking pair (H1, H2) of {2K2, C4}-free graphs. Now there exists a se-
quence of 2-switches that transforms H1 into H2, and by Proposition 12 there
exists a partition W1, W2, W3 of V (H1) = V (H2) such that in both H1 and
H2, W1 is an independent set, W2 is a clique, and W3 is either empty or the
vertex set of an induced C5. Consider the bipartitioned graphs Hb

1(W1, W2)
and Hb

2(W1, W2) associated with H1 and H2. We have that Hb
1(W1, W2)

induces G(V1, V2), where G(V1, V2) is some element of G. Since G is degree-
sequence-forcing, Hb

2(W1, W2) also induces some element G′(V ′

1 , V
′

2) of G. Let
F be the element of F having G′(V ′

1 , V
′

2) as an associated bipartitioned graph.
The only way that F may not be induced in H2 is for H2 to be C5-free while
F is not. However, if F induces C5, then by assumption every element of F
induces C5, which implies that H1 and hence H2 induce C5 as well. Thus H2

induces an element of F , a contradiction. We conclude that {2K2, C4} ∪ F
is degree-sequence-forcing.

We now apply the technique of monotone parameters, introduced in [1],
to give some necessary conditions on degree-sequence-forcing sets of biparti-
tioned graphs.

Proposition 28. Any degree-sequence-forcing set G of bipartitioned graphs
must contain an element whose underlying graph is a forest.

Proof. For any graph H , let ρ(H) denote the number of cycles in H . It is clear
that ρ is monotone: if F is an induced subgraph of H , then ρ(F ) ≤ ρ(H).
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Let G be a set of bipartitioned graphs, and let G(V1, V2) be an element of
G whose underlying graph G minimizes ρ. If ρ(G) > 0, then let uv be an
edge of G on a cycle, with u ∈ V1 and v ∈ V2. For vertices x, y /∈ V1 ∪ V2,
define V ′

1 = V1 ∪ {x} and V ′

2 = V2 ∪ {y}, and define H(V ′

1 , V
′

2) to be the
bipartitioned graph whose edge set consists of all edges of G, plus the edge
xy. Let H ′(V ′

1 , V
′

2) be the bipartitioned graph resulting from the bipartitioned
2-switch {uv, xy} ⇉ {uy, xv} on H(V ′

1 , V
′

2). It is easily seen that ρ(H ′) <
ρ(G). By the monotonicity of ρ and the minimality of G(V1, V2), we have
that H ′(V ′

1 , V
′

2) is G-free. Since H(V ′

1 , V
′

2) has the same degree sequence as
H ′(V ′

1 , V
′

2) and clearly induces an element of G, we see that G is not degree-
sequence-forcing. Thus if G is degree-sequence-forcing, then some element
G(V1, V2) in G satisfies ρ(G) = 0, and the result follows.

Proposition 29. Any degree-sequence-forcing set G of bipartitioned graphs
must contain an element whose underlying graph is of the form Kℓ,m +nK2 +
pK1 for ℓ, m, n, p ≥ 0.

Proof. For any bipartitioned graph H(V1, V2), let ρ(H(V1, V2)) denote the
smallest number of edges that can be added to H(V1, V2) so that the resulting
underlying graph has the form Kℓ,m + nK2 + pK1 and is still bipartite with
partite sets V1, V2. It is clear that if F (W1, W2) is induced in H(V1, V2),
then ρ(F (W1, W2)) ≤ ρ(H(V1, V2)). Now let G be a set of bipartitioned
graphs, and let G(V1, V2) be an element of G that minimizes ρ. Suppose that
ρ(G(V1, V2)) > 0. Then choose u ∈ V1, v ∈ V2 such that uv belongs to a set
of ρ(G(V1, V2)) edges, each having an endpoint in each of V1, V2, that can
be added to G to make it of the form Kℓ,m + nK2 + pK1. Now for vertices
x, y /∈ V1 ∪ V2, define V ′

1 = V1 ∪ {x} and V ′

2 = V2 ∪ {y}, and define H(V ′

1 , V
′

2)
to be the bipartitioned graph whose edge set consists of all edges of G, plus
the edges uy, xv. Let H ′(V ′

1 , V
′

2) be the bipartitioned graph resulting from
the bipartitioned 2-switch {xv, uy} ⇉ {uv, xy} on H(V ′

1 , V
′

2). It is easily
seen that ρ(H ′(V ′

1 , V
′

2)) < ρ(G(V1, V2)). By the monotonicity of ρ and the
minimality of G(V1, V2), we have that H ′(V ′

1 , V
′

2) is G-free. Since H(V ′

1 , V
′

2)
has the same degree sequence as H ′(V ′

1 , V
′

2) and clearly induces an element of
G, we see that G is not degree-sequence-forcing. Thus if G is degree-sequence-
forcing, then some element G(V1, V2) in G satisfies ρ(G(V1, V2)) = 0, and the
result follows.

Corollary 30. Any degree-sequence-forcing set G of bipartitioned graphs
must contain two elements G(V1, V2) and H(W1, W2) such that G(V1, V2) has
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a forest for its underlying graph, and H(W1, W2) has an underlying graph of
the form Kℓ,m + nK2 + pK1 for some ℓ, m, n, p ≥ 0.

Proof. This follows from Observation 25 and Propositions 28 and 29.

Our first application of these results will be to characterize the degree-
sequence-forcing singleton sets {G(V1, V2)} of bipartitioned graphs.

Proposition 31. Bipartitioned graphs G(V1, V2) and G(V1, V2) both have the
property that their underlying graphs are forests and graphs of the form Kℓ,m+
nK2 + pK1 where ℓ, m, n, p ≥ 0 if and only if either min{|V1|, |V2|} ≤ 1 or
G ∼= K1,m + Kn, where 1 ≤ n ≤ 2.

Proof. It is easy to verify that if min{|V1|, |V2|} ≤ 1 or G ∼= K1,m + Kn,
where 1 ≤ n ≤ 2, then G(V1, V2) and its bicomplement satisfy the properties
required. We now prove the converse. Let G(V1, V2) and its bicomplement
have the described properties. Then G is of the form Kℓ,m + nK2 + pK1

for some ℓ, m, n, p ≥ 0 with ℓ ≤ m. Since G is also a forest, we have that
0 ≤ ℓ ≤ 1.

Suppose first that ℓ = n = 0; then G ∼= (m + p)K1. Since the bicom-
plement of G(V1, V2) is also a forest, either V1 or V2 contains at most one
vertex.

If ℓ = 0 and n ≥ 1, then G ∼= nK2 + (m + p)K1. Fix an edge uv in G.
Then for any x ∈ V1\{u, v} and y ∈ V2\{u, v}, we must have x adjacent to y;
otherwise, u, v, x, y belong to a component in G(V1, V2) that is not complete
bipartite, a contradiction to our assumption. Thus either min{|V1|, |V2|} = 1,
or m = p = 0 and n = 2 and hence G ∼= 2K2

∼= K1,1 + K2.
Suppose instead that ℓ = 1. We may assume that m ≥ 2 since otherwise

we could write G as n′K2 + p′K1, which was handled in the previous case.
Suppose that min{|V1|, |V2|} ≥ 2. We may also assume that the component
K1,m has its center in V2 (otherwise, the bicomplement of G(V1, V2) contains
a star component on 3 or more vertices whose center belongs to V2, and
we may proceed in the proof with the bicomplement). Then there is some
vertex u in V2 not belonging to the K1,m. If there is another vertex v in V2

not belonging to the K1,m, then G(V1, V2) is not a forest, so |V2| = 2. Since
G has the form K1,m + nK2 + pK1, u has at most one neighbor in V1. Any
vertex in V1 not contained in the K1,m must be adjacent to u; otherwise, u

belongs to a component in G(V1, V2) that is not complete bipartite. Hence
G is isomorphic to either K1,m + K2 or K1,m + K1.
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Proposition 32. The set G = {G(V1, V2)} is degree-sequence-forcing if and
only if G(V1, V2) satisfies one of the following:

(a) min{|V1|, |V2|} ≤ 1;

(b) G ∼= 2K2;

(c) G ∼= K1,2 + Kn, where 1 ≤ n ≤ 2.

Proof. Let G be a degree-sequence-forcing set. By Propositions 28, 29 and 31,
and Corollary 30, we have that either min{|V1|, |V2|} ≤ 1 or G ∼= K1,m + Kn

for 1 ≤ n ≤ 2. Suppose first that G ∼= K1,m + K2, with min{|V1|, |V2|} ≥ 2.
Then m > 0; suppose that m ≥ 3. Assume first that the center y of the K1,m

in G belongs to V2. Let V ′

2 = V2 ∪ {x}, where x /∈ V1 ∪ V2, and form the
bipartitioned graph H1(V1, V

′

2) whose edge set consists of E(G) plus an edge
from x to a vertex in V1 in each component of G. Let a be the neighbor of x
belonging to the component of order 2 in G, and let b be a leaf of the K1,m to
which x is not adjacent in H1. Form H2(V1, V

′

2) by performing on H1(V1, V
′

2)
the bipartitioned 2-switch {xa, yb} ⇉ {xb, ya}. Since G is degree-sequence-
forcing, H2(V1, V

′

2) induces G(V1, V2), and to obtain a copy of G(V1, V2) we
must delete x, the only vertex of degree 2 in V ′

2 . However, deleting x yields an
isolated vertex in H2(V1, V

′

2), a contradiction, since G has no isolated vertex.
A similar contradiction arises if we assume that y belongs to V1; we simply
interchange the roles of V1 and V2. We thus conclude that m ≤ 2, and hence
G ∼= 2K2 or G ∼= K1,2 + K2.

Suppose next that G ∼= K1,m + K1 with min{|V1|, |V2|} ≥ 2. Then m > 0
and the isolated vertex z in G belongs to the same partite set as the center
y of the K1,m. Suppose that m ≥ 3, and assume that y and z belong to V2.
Let V ′

2 = V2 ∪ {x} and V ′

1 = V1 ∪ {a}, where x, a /∈ V1 ∪ V2, and let b, c be
two neighbors of y in V1. Form the bipartitioned graph H1(V

′

1 , V
′

2) whose
edge set consists of E(G) plus the edges xc, xa, and za. Form H2(V

′

1 , V
′

2)
by performing on H1(V

′

1 , V
′

2) the bipartitioned 2-switch {yb, xa} ⇉ {ya, xb}.
For H2(V

′

1 , V
′

2) to induce G(V1, V2), y must be the center of the K1,m as it is
the only vertex with degree greater than 2, and y’s neighbors must be the
leaves of the copy of K1,m. However, both x and z are adjacent to a neighbor
of y, so G(V1, V2) is not induced in H2(V

′

1 , V
′

2), a contradiction. A similar
argument produces a contradiction when y and z belong to V1. We conclude
again that m ≤ 2, which produces the desired result.
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We have shown that the degree-sequence-forcing set G must satisfy the
conditions stated in the proposition. To see that these conditions are suffi-
cient for G to be degree-sequence-forcing, we apply Theorem 27 to the C5-
inducing graphs F from Propositions 14 and 16 and Corollary 23 in Section
3. Every bipartitioned graph of the form described appears as the associated
bipartitioned graph of some such F .

In preparation for later results we now present a result on the structure
of split graphs.

Proposition 33. Suppose S is a split graph with more than one associated
bipartitioned graph, up to isomorphism. Then S has exactly two associated
bipartitioned graphs G(V1, V2) and H(W1, W2), up to isomorphism, with |V2|
being the clique number ω(S) and |W2| = ω(S) − 1. Furthermore, G(V1, V2)
has some isolated vertex u ∈ V2 and H(W1, W2) has some vertex v ∈ W1 that
dominates W2, such that G(V1, V2) − u ∼= H(W1, W2) − v.

Proof. Let S be a split graph. Suppose that G(V1, V2) and H(W1, W2) are
two bipartitioned graphs associated with S, with |V2| = |W2|. We show that
G(V1, V2) ∼= H(W1, W2). We may assume without loss of generality that
V1∪V2 = W1 ∪W2 = V (S). Note that since W1 is an independent set and V2

is a clique in S, we have |V2∩W2| ≥ |V2|−1. If |V2∩W2| = |V2|, then V2 = W2

and in fact G(V1, V2) = H(W1, W2). Suppose instead that |V2∩W2| = |V2|−1.
Then we may write V2 \ W2 = {v} and W2 \ V2 = {w}, and we have v ∈ W1

and w ∈ V1. Since V1 and W1 are independent sets, we find that N(v) ⊆ W2

and N(w) ⊆ V2. Since NS(v) and NS(w) both contain V2 ∩ W2, it follows
that the map φ : V (S) → V (S) given by φ(v) = w, φ(w) = v, and φ(y) = y
for all y /∈ {v, w} is an automorphism on S such that φ(V2) = W2. This
same map translates to an isomorphism between bipartitioned graphs; thus
we have shown that if |V2| = |W2|, then G(V1, V2) ∼= H(W1, W2).

Suppose that G(V1, V2) and H(W1, W2) are now two nonisomorphic bi-
partitioned graphs associated with S. Then |V2| 6= |W2|; assume without
loss of generality that |V2| > |W2|. Since at most one vertex of a maximum
clique can belong to W1, we have ω(S) − 1 ≤ |W2|. Then |V2| = ω(S) and
|W2| = ω(S)−1. Let Q be a clique of size ω(S) in S. Since W1 is an indepen-
dent set in S, at most one vertex of Q can belong to W1; it follows that we
may write Q = W2 ∪ {q}, where q is some vertex in W1. Then q is adjacent
to every vertex in W2 in S and hence in H . Since W1 is an independent set,
q has no other neighbors in S. Then W1 \{q}, W2∪{q} is a partition of V (S)
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into an independent set and a clique, respectively. Let H∗(W1\{q}, W2∪{q})
be the associated bipartitioned graph for this partition. Here the vertex q is
an isolated vertex in W2 ∪{q}, and |W2 ∪{q}| = ω(S). As we showed above,
H∗(W1 \ {q}, W2 ∪ {q}) is isomorphic to G(V1, V2). Let q′ be the image of q
under an isomorphism from H∗(W1 \ {q}, W2 ∪ {q}) to G(V1, V2). Then q′ is
an isolated vertex in V2 whose deletion from G(V1, V2) yields a bipartitioned
graph isomorphic to H(W1, W2) − q, as desired.

As a consequence of Proposition 33, if a split graph has two associated
bipartitioned graphs, we may express them in the form G(V1, V2 + u) and
H(V1 + u, V2) for some graphs G, H on the same vertex set.

Proposition 34. Let F = {G(V1, V2 +u), H(V1 +u, V2)} be the set of associ-
ated bipartitioned graphs of a split graph S. Let G′ = G−u and H ′ = H −u.
If F is a degree-sequence-forcing pair then G′(V1, V2) ∼= H ′(V1, V2) must be
one of the following:

(a) nK1, with n ≥ 0 and |V2| ≤ 1,

(b) K2,

(c) K1,2,

(d) K2 + K1, with |V2| = 1,

(e) K1,2 + K1, with |V2| = 1,

(f) bicomplements of the above graphs.

Proof. By Proposition 33 we can consider F to be of the form F = {G(V1, V2+
u), H(V1 + u, V2)} and that G′(V1, V2) ∼= H ′(V1, V2) as bipartitioned graphs,
where G′ = G−u and H ′ = H−u. By Propositions 28 and 29 and Corollary
30 and the fact that the classes of forests, bicomplement of forests, graphs of
the form Kℓ,m + nK2 + pK1 and their bicomplements are hereditary under
induced subgraphs, we find that G′(V1, V2) ∼= H ′(V1, V2) must be one of the
graphs mentioned in Proposition 31.

Case 1: min{|V1|, |V2|} ≤ 1.
Subcase 1.1: min{|V1|, |V2|} = 0. Then all vertices are in one part of the

bipartition in both G′ and H ′, and F is clearly degree-sequence-forcing.
Subcase 1.2: min{|V1|, |V2|} = 1. We assume that |V2| = 1 since if |V1| = 1

then the bicomplement of G′(V1, V2) falls under this case. With |V2| = 1, we
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find that G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m + nK1, where m, n ≥ 0.
Claim 1: If m ≥ 3, n ≥ 0 then {G(V1, V2 + u), H(V1 + u, V2)} is not degree-
sequence-forcing.
Proof. Graphs G and H are as shown in the figure below. Let c denote the
center of the nontrivial star component in G, let v1, ..., vm denote the leaves
adjacent to c, and let a1, ..., an denote the isolated vertices in V1. Form
H1(V1 + y, V2 + u + x) by adding to G vertices x and y and edges xv1, xy, uy.
Let H2(V1 + y, V2 + u + x) be the bipartitioned graph resulting from the
2-switch {cvm, xy} ⇉ {xvm, cy}. Suppose a copy of G(V1, V2 + u) is induced
in H2(V1 + y, V2 + u + x). We may obtain this copy by deleting a vertex in
each of V1 + y and V2 + u + x. Because of degree and distance conditions,
we cannot delete c and must delete u and x, a contradiction. We also see
that H is not induced in H2. Thus {G(V1, V2 + u), H(V1 + u, V2)} is not
degree-sequence-forcing.

b

b b b

b

b b bb b b b b b

b

b b b bb b bb b b b b b

G H

c cu

v1 v2 vm a1 a2 an v1 v2 vm a1 a2 an u

b

b b b

b

b b bb b b b b b

bc

bc

b

b b b

b

b b bb b b b b b

bc

bc

H1

c u

v1 v2 vm a1 a2 an

x

y

H2

c u

v1 v2 vm a1 a2 an

x

y

Claim 2: If m ∈ {1, 2} and n ≥ 2, then {G(V1, V2 + u), H(V1 + u, V2)} is
not degree-sequence-forcing.
Proof. Graphs G and H are as shown in the figure below (we have illustrated
the case m = 2). Again let c denote the center of the nontrivial star com-
ponent in G, let v1, ..., vm denote the leaves adjacent to c, and let a1, ..., an

denote the isolated vertices in V1. Form H1(V1 + y, V2 + u + x) by adding
to G vertices x and y and edges xy, xa1, xa2, ...xan, uy. Also add edge xv2 if
m = 2. Form bipartitioned graph H2(V1 + y, V2 + u + x) by performing on
H1 the 2-switch {cv1, xy} ⇉ {cy, xv1}. Suppose that H2(V1 + y, V2 + u + x)
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induces a copy of G(V1, V2+u). We may obtain this copy (call it G′′(W1, W2))
by deleting one vertex in H2 from each of V1 + y, V2 + u + x. In order to
leave n isolated vertices in W1 ∩ (V1 + y), we must delete x; in order to leave
an isolated vertex in W2 ∩ (V2 + u + x), we must delete y. However, then no
vertex in W2 has degree at least m in G′′, a contradiction. Furthermore, if a
copy of H(V1 + u, V2) were induced in H2(V1 + y, V2 + u + x), then deleting
two vertices of V2 + u + x would yield this subgraph, and for no pair is this
the case. Thus {G(V1, V2 + u), H(V1 + u, V2)} is not degree-sequence-forcing.
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b b b b bb b b
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b

b b b b

b
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c c c cu u ux x

v1 v2 a1 an v1 v2 a1 an u v1 v2 a1 an y v1 v2 a1 an y

G H H1 H2

Case 2: G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m +Kn for 1 ≤ n ≤ 2. If m+n ≤ 2
then Case 1 applies, so we assume that m + n ≥ 3.

Subcase 2.1: G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m +K1, where m ≥ 2. Then G
and H are as shown in the figure below. Form H1(V1 +y, V2 +u) by adding to
G vertex y and edges yb, yu. Let H2(V1+y, V2+u) be the bipartitioned graph
resulting from the 2-switch {cvm, by} ⇉ {cy, bvm}. If a copy of G(V1, V2+u) is
induced in H2(V1+y, V2+u), it may be obtained by deleting a vertex in V1+y.
Since c is the only vertex in V2+u having degree m, none of its neighbors may
be the deleted vertex; however, deleting vm leaves a subgraph not isomorphic
to G. No vertex of H2 has degree m + 1, so H(V1 + u, V2) is also not an
induced subgraph of H2(V1 + y, V2 + u). Thus {G(V1, V2 + u), H(V1 + u, V2)}
is not degree-sequence-forcing.
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c b u
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Subcase 2.2: G′(V1, V2) ∼= H ′(V1, V2) ∼= K1,m + K2, where m ≥ 1. Graphs
G and H must be as shown in the figure below. Form H1(V1 + u + y, V2 + x)
by adding to H the vertices x, y and edges xv for v ∈ {v1, v2...vm, y}. Obtain
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H2(V1 +u+y, V2 +x) by performing on H1 the 2-switch {xy, bu} ⇉ {xu, by}.
If a copy of H(V1 +u, V2) is induced in H2(V1 +u+y, V2 +x), we may isolate
it by deleting from H2 one vertex in each of V1 + u + y, V2 + x. However,
H is connected, and no pair of vertices in H2 may be deleted to leave a
connected subgraph. Thus H2(V1 +u+y, V2+x) is H(V1 +u, V2)-free. Graph
H2(V1 + u + y, V2 + x) is also G(V1, V2 + u)-free, since no two vertices may be
deleted to leave in V1 + u + y exactly two vertices of degree 1 with different
neighbors. Thus {G(V1, V2+u), H(V1+u, V2)} is not degree-sequence-forcing.
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We conclude with the characterization of all non-minimal degree-sequence-
forcing triples of graphs.

Proof of Theorem 1. That the sets listed are degree-sequence-forcing is es-
tablished in Propositions 8, 9, 14, 15, and 16; Corollaries 20 and 23; and
Proposition 24. We now show that these are the only non-minimal degree-
sequence-forcing triples. We may assume that the triple F has the form
{2K2, C4, F}, where F is {2K2, C4}-free. It follows from Theorem 27 that to
characterize F such that F is degree-sequence-forcing, it suffices to charac-
terize the degree-sequence-forcing sets G of bipartitioned graphs such that G
consists of the bipartitioned graph or graphs associated with a single pseudo-
split graph F . Propositions 32 and 34 provide requirements on the structure
of F , which we now examine in detail. Suppose first that F has a unique
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pseudo-splitting partition; then F induces C5, or F s has a unique partition
into a clique and independent set. In either case G consists of a single graph,
and from Proposition 32 it follows that F is of a form described in items
(iii), (iv), (vi), and (viii) above. Suppose instead that F has more than one
pseudo-splitting partition. Then F is split, and G consists of two graphs as
described in Proposition 34. It then follows that F is of the form (ii), (v),
(vii), or (ix).

5 Conclusion

Theorem 1 provides a complete list of all non-minimal degree-sequence-
forcing triples of graphs. Given a triple F from this list, we have shown
that the F -free graphs have a degree sequence characterization, but we have
not addressed the question of what the characterization is. Employing the
structural characterization of {2K2, C4}-free graphs given in Theorem 10, the
authors have found structural characterizations of the F -free graphs for sev-
eral such F ’s. These could conceivably lead to simple degree sequence char-
acterizations for these classes, which could in turn lead to linear-time recog-
nition algorithms similar to those known for threshold, split, and pseudo-split
graphs. One class in particular that is not well understood at this time is
the class of {2K2, C4, K1,3 +K1}-free graphs. Finding a structural character-
ization or degree sequence characterization for this class (or at least a short
proof that {2K2, C4, K1,3 + K1} is degree-sequence-forcing that does not rely
on a computer) would be interesting.

A complete list of all minimal degree-sequence-forcing triples is not known
at present. The authors have shown, as will appear in [2], that for any natural
number k, there are finitely many minimal degree-sequence-forcing k-sets.
Thus the problem of listing all minimal degree-sequence-forcing triples is a
finite one, and the authors have already identified several of these triples not
previously appearing in the literature.

Finally, the characterization of all degree-sequence-forcing triples of the
form {2K2, C4, F} was greatly aided by recasting the degree-sequence-forcing
set problem in the context of bipartitioned graphs. In Propositions 32 and
34 we identify all degree-sequence-forcing singleton sets and some pairs of
bipartitioned graphs; finding a complete list of degree-sequence-forcing k-
sets of bipartitioned graphs for any given k ≥ 2 is an open problem.
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