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1. INTRODUCTION

Given a collection F of graphs, a graph G is said to be F-free if G contains no
induced subgraph isomorphic to an element of F. We say that elements of F are
forbidden subgraphs for the class of F-free graphs. Forbidden subgraph notions
have proven fruitful in graph theory; Kuratowski’s Theorem can be rephrased as
a statement of which induced subgraphs are forbidden for planar graphs, and the
Strong Perfect Graph Theorem [2] characterizes perfect graphs in terms of their
forbidden subgraphs.

The degree sequence d(G) of a graph G is the list (d1, d2, . . . , dn) of degrees of
the vertices of G, written in nonincreasing order. We say a graph class C has a degree
sequence characterization if it is possible to determine whether or not a graph G is
in C based solely on the degree sequence of G. Degree sequence characterizations
do not exist for most graph classes, but are extremely useful when they do exist.

In this article, we address the question of which classes of graphs can be
characterized both in terms of a small collection of forbidden subgraphs, and in
terms of their degree sequences. More precisely, let us define a collectionFof graphs
to be degree-sequence-forcing if whenever any realization of a graphic sequence
π is F-free, every other realization of π is F-free as well. We characterize the
degree-sequence-forcing sets of order at most two.

One well-known degree-sequence-forcing set that motivated our interest in
this question is {2K2, C4, C5}. The class of {2K2, C4, C5}-free graphs has been
shown by Földes and Hammer [7] to be exactly the class of split graphs: the
graphs whose vertex sets can be partitioned into a clique and an independent
set. Many results are known about the split graphs. Of particular interest is the
characterization by Hammer and Simeone [11] of split graphs entirely in terms of
their degree sequences: if G is a graph having degree sequence d(G) = (d1, . . . , dn)
in nonincreasing order, then G is split if and only if

m∑

i=1

di = m(m − 1) +
n∑

i=m+1

di,

where m = max{k : dk ≥ k − 1}.
This property of having two characterizations—one in terms of forbidden

subgraphs, the other in terms of degree sequences—is not unique to the class of
split graphs. A threshold sequence is a graphic sequence which is not majorized by
any other graphic sequence, and a graph G is said to be a threshold graph if d(G) is
a threshold sequence. It is not surprising, perhaps, that the threshold graphs can be
characterized in terms of their degree sequences; such a characterization was given
by Hammer et al. [10]. They can be characterized, moreover, by their forbidden
subgraphs; Chvátal and Hammer [4] showed a graph is threshold if and only if it is
{2K2, C4, P4}-free.

A superclass of both the split and the threshold graphs is the class of pseudo-
split graphs. Maffray and Preissman [15] defined the pseudo-split graphs to be the
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{2K2, C4}-free graphs and showed they have a degree sequence characterization
similar to those of the split graphs and threshold graphs.

One reason for the interest in finding degree sequence characterizations of graph
classes is for quick recognition algorithms. Testing whether a graph is F-free takes
polynomial time, but the degree is dependent on the order of the largest element
of F, assuming F is finite (McKee [16] gives a necessary and sufficient condition
for characterizing a graph class in terms of finitely many forbidden subgraphs).
In contrast, degree sequence characterizations usually give rise to linear time
recognition algorithms, as in the case of the split, threshold, and pseudo-split graphs.

In Theorems 22 and 24, we give a complete characterization of the degree-
sequence-forcing sets F when F has cardinality at most two. Our results are
particularly interesting in light of recent work by others determining which sets
F of graphs force the class of F-free graphs to have certain properties. Faudree
et al. [5,6] characterized the sets F of graphs where the class of F-free graphs
are Hamiltonian, and Randerath [17] characterized pairs {A, B} such that {A, B}-
free graphs are 3-colorable. Moreover, Gould et al. [9] characterized all pairs of
connected graphs {A, B} such that any 3-connected {A, B}-free graph is pancyclic.

The concept of degree-sequence-forcing sets can also be stated in the language
of degree sequence problems. Given a graph-theoretic property P invariant under
isomorphism, a graphic sequence π is said to be potentially P-graphic if there exists
a realization of π having property P, and forcibly P-graphic if every realization
of π has property P. Potentially and/or forcibly P-graphic sequences have been
characterized for many properties P, such as planarity [22], k-connectedness, and
Hamiltonicity. In [3] and [20], Chernyak, Chernyak, and Tyshkevich characterize
forcibly P-graphic sequences for the properties P of chordality, strong chordality,
intervality, comparability, and trivial perfectness. Zverovich [23] and Zverovich
and Urbanovich [24] have also classified forcibly 3-colorable sequences and
forcibly 2-matroidal sequences. The survey of Rao [18] presents additional
results on potentially and forcibly P-graphic sequences and provides an extensive
bibliography.

Forcibly P-graphic sequences are clearly potentially P-graphic, though the
converse in general is not true; consider, for example, when P is the property of
planarity. Our goal in this article is to characterize the classesF such that potentially
F-free sequences are forcibly F-free.

2. PRELIMINARIES

In this article, we follow the terminology and notation of West [21]. In particular, for
any graph G and a vertex v of G, we use n(G), dG(v), and d(G) = (d1, d2, . . . , dn)
to denote the number of vertices in G, the degree of v in G, and the degree sequence
of G in non-increasing order, respectively. We shall denote the disjoint union of
two graphs G and H by G + H . We consider all graphs to be simple and to have at
least one vertex, particularly when considering induced subgraphs. We will often
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use “graph” to mean “isomorphism class of graphs,” rather than a specific element
of a given isomorphism class. We trust that the context will make it clear which
meaning is intended.

We say a graph G is A-free if there is no induced copy of A in G and {A, B}-free
if there is no induced copy of A or of B in G. We say that a setF of graphs is degree-
sequence-forcing if whenever a graphic sequence π has an F-free realization,
then every realization of π is F-free. Equivalently, a set F is degree-sequence-
forcing if potentially P-graphic implies forcibly P-graphic when P = F-free. We
will characterize the degree-sequence-forcing sets F when F is of order at most
two.

From the above definitions, the following results are immediate.

Proposition 1. In a pair {A, B} of graphs, if A is an induced subgraph of B, then
{A, B} is a degree-sequence-forcing set if and only if {A} is.

Proposition 2. Given F any collection of graphs, let F c denote the collection of
graphs which are complements of those in F. Then F is degree-sequence-forcing if
and only if F c is degree-sequence-forcing.

Let x, y, u, v be four vertices of a graph where xy, uv are edges and xu, yv are
not edges. A 2-switch is a graph-theoretic operation which deletes edges xy, uv and
adds xu, yv. In this article, we shall denote such a 2-switch by {xy, uv} ⇒ {xu, yv}.
The diagrams showing such a 2-switch shall have xy, uv as dotted edges before the
2-switch, and xu, yv as double edges after the 2-switch. Note that for a 2-switch, the
induced subgraph onx,y,u,vmust be 2K2,C4, orP4. Hence, any {2K2, C4, P4}-free
graph admits no 2-switch. Also, note that any 2-switch preserves the degree of each
vertex of the original graph. The following well-known result will be fundamental
in what follows.

Theorem 3 (Fulkerson et al. [8]). Graphs H and H ′ on the same vertex set have
dH (v) = dH ′(v) for every vertex v if and only if H ′ can be obtained by performing
a sequence of 2-switches on H.

3. FORBIDDEN PAIRS GENERATING CLASSES OF UNIGRAPHS

A graph is said to be a unigraph if it is the only realization, up to isomorphism,
of its degree sequence. Characterizations of unigraphs and algorithms for testing
if a sequence is unigraphic were given by Koren [13], Li [14], and Kleitman and
Li [12].

We make some initial observations. Observation 4 is useful in showing that a set
F is degree-sequence-forcing.

Observation 4. Given any set F of graphs, if every F-free graph is a unigraph,
then F is degree-sequence-forcing.

The following proposition easily follows from the previous observation.

Journal of Graph Theory DOI 10.1002/jgt
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Proposition 5. Let F be one of {K1}, {K2}, or {2K1}. Then every F-free graph is
a unigraph. Hence, {K1}, {K2}, and {2K1} are degree sequence forcing sets.

We now prove a similar proposition about the pairsF of graphs where theF-free
graphs are unigraphs.

Proposition 6. The following pairs are degree-sequence-forcing:

(i) {A, B}, where A is one of K1, K2, or 2K1, and B is arbitrary;
(ii) {P3, K3}, {P3, K3 + K1}, {P3, K3 + K2}, {P3, 2K2}, {P3, K2 + K1};

(iii) {K2 + K1, 3K1}, {K2 + K1, K1,3}, {K2 + K1, K2,3}, {K2 + K1, C4};
(iv) {K3, 3K1}.

Proof.

(i) This follows easily from Proposition 5.
(ii) Note that a graph is P3-free if and only if it is a disjoint union of complete

graphs. A {P3, K3}-free graph thus has every component a copy of K2 or
K1 and therefore must be a unigraph. A {P3, K3 + K1}-free graph falls into
one of two cases: in the first case, the graph is K3-free, and hence must be a
unigraph, as we have seen. In the second case, the graph induces K3 and so
contains at most one component, is complete and therefore is a unigraph.
A {P3, K3 + K2}-free graph either contains no K3 + K1 and hence is a
unigraph; or the graph does contain an induced K3 + K1, in which case
the component containing the triangle is the only nontrivial component,
and hence the graph is a unigraph. A graph which is {P3, 2K2}-free or
{P3, K2 + K1}-free is clearly {2K2, C4, P4}-free, and as such admits no 2-
switch; such graphs are clearly unigraphs. In each of the cases described,
the class of graphs resulting from forbidding the respective pair of induced
subgraphs is a subset of the class of unigraphs; by Observation 4, each of
these pairs is a degree-sequence-forcing set.

(iii) Each of these pairs contains the complements of a pair of graphs from (ii),
so by Proposition 2 we have that these pairs are degree-sequence-forcing.

(iv) By Ramsey’s Theorem, each of the {K3, 3K1}-free graphs contains at most
5 vertices. Direct verification shows that each {K3, 3K1}-free graph is a
unigraph, so Observation 4 implies that {K3, 3K1} is a degree-sequence-
forcing set. �

Each class obtained by forbidding a pair listed above contains graphs with very
strict structural requirements, so it is not surprising that these pairs should be degree-
sequence-forcing. It may be surprising, however, to learn that, other than the pair
{2K2, C4}, these are the only degree-sequence-forcing pairs of graphs. We devote
the rest of this article to proving this result.

We first state a result found about the {2K2, C4}-free graphs.
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Theorem 7 (Maffray and Preissman [15]). A graph G with degree sequence
d(G) = (d1, . . . , dn) in nonincreasing order is {2K2, C4}-free if and only if

p∑

i=1

di = p(p − 1) +
n∑

i=p+1

di,

where p = max{i : di ≥ i − 1}, or
q∑

i=1

di = q(q + 4) +
n∑

i=q+6

di

and dq+1 = · · · = dq+5 = q + 2, where q = max{i : i ≥ i + 4}.
From this, we see that {2K2, C4} is indeed a degree-sequence-forcing set. We

now prove that no other pairs are degree-sequence-forcing.

4. SWITCHING AND THE SIEVE METHOD

Definition 8. Given a pair {A, B} of graphs, we say that A switches to B if
whenever H and H ′ are two graphs such that H induces A, H ′ is A-free, and H ′ can
be obtained by performing a single 2-switch on H, we have that H ′ induces B.

Proposition 9. Let A and B be any two graphs. The following statements are
equivalent:

(i) A switches to B and B switches to A.
(ii) If H and H ′ are any two graphs having the same degree sequence such that

H induces A and H ′ is A-free, then H ′ induces B. Likewise, if H ′ induces B
and H is B-free, then H induces A.

(iii) {A, B} is a degree-sequence-forcing pair.

Proof.

(i) =⇒ (ii): Suppose that H and H ′ are two arbitrary graphs with the same
degree sequence such that H induces A and H ′ is A-free. By Theorem 3,
there exists a sequence of k 2-switches which, when applied to H, results
in H ′. For i = 0, 1, . . . , k, let Hi denote the graph obtained after the ith
2-switch, so that H = H0 and H ′ = Hk. Let j be the last index such that
Hj induces A. Then Hj+1 is A-free and since A switches to B, Hj+1 must
induce B. If there exists a least index j′ > j such that Hj′ does not induce B,
then since B switches to A, Hj′ must induce A. This contradicts our choice
of j as the last index such that Hj induces A. Hence Hi induces B for all
i ≥ j, and specifically H ′ = Hk induces B. Similarly, if H ′ induces B and
H is B-free, then H induces A.

(ii) =⇒ (iii): Suppose that π is any graphic sequence having a realization G
which is {A, B}-free, and let G′ be any other realization of π. If G′ induces A,
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then by (ii) G must induce B, which is a contradiction. Similarly, G′ cannot
induce B. Hence, G′ is {A, B}-free, and since G′ was arbitrary, π is forcibly
{A, B}-free. Since π was also arbitrary, {A, B} is a degree-sequence-forcing
pair.

(iii) =⇒ (i): Suppose that H and H ′ are two graphs such that H induces A, H ′

is A-free, and H ′ can be obtained by performing a single 2-switch on H. If
H ′ is B-free, then d(H ′) = d(H) is potentially but not forcibly {A, B}-free.
This is a contradiction of the assumption that {A, B} is a degree-sequence-
forcing pair. Hence, H ′ induces B, and since H and H ′ were arbitrary, A
switches to B. Similarly, B switches to A. �

As a consequence of the equivalences in Proposition 9, we can use a kind of
“sieve method” to find the possible graphs B which can pair with a graph A to form
a degree-sequence-forcing set. The method is to find several pairs of graphs (H, H ′)
such that d(H) = d(H ′), H induces A, and H ′ is A-free. Then for {A, B} to form
a degree-sequence-forcing set, B must be induced in each of the H ′s. The induced
subgraphs common to all H ′s give the possible choices for B.

Proposition 10. Other than the pairs listed in Proposition 6, there are no degree-
sequence-forcing pairs in which one graph has 3 or fewer vertices.

Proof. We noted in Proposition 6 that K2 or 2K1 can be paired with any graph
to form a degree-sequence-forcing pair. Suppose first that {K3, B} is a degree-
sequence-forcing set. The graphs H1 = K3 + K2 and H ′

1 = P5 are such that H1

induces K3, H ′
1 is K3-free, and d(H1) = d(H ′

1). By Proposition 9, B must be induced
in P5. Similarly, letting H2 be the house graph shown in Figure 1 and H ′

2 = K2,3

demonstrates that B must be induced in K2,3. The only induced subgraphs on 3
or more vertices common to both P5 and K2,3 are P3 and 3K1; hence, K3 belongs
to no degree-sequence-forcing pair other than one whose other element is K1,
K2, 2K1, P3, or 3K1. Taking complements, Proposition 2 shows that {3K1, B} is
a degree-sequence-forcing set if and only if B is one of K1, 2K1, K2, K2 + K1,
or K3.

FIGURE 1. The house graph.
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FIGURE 2. The graphs H1 and H′
1 from Proposition 11.

Suppose now that {P3, B} is a degree-sequence-forcing pair. If we let H = P5

and H ′ = K3 + K2, then by Proposition 9 B must be induced in K3 + K2, and so
must be one of K1, K2, 2K1, K3, K2 + K1, 2K2, K3 + K1, or K3 + K2. Proposition
2 implies that {K2 + K1, B} is degree-sequence-forcing only if B is one of K1, 2K1,
K2, 3K1, P3, C4, K3,1, or K3,2. �

We now turn our attention to sets {A, B} where both A and B have at least 4
vertices.

Proposition 11. The pair {2K2, B}, where B contains at least 4 vertices, is degree-
sequence-forcing if and only if B is C4; the pair {C4, B}, where B contains at least
4 vertices, is degree-sequence-forcing if and only if B is 2K2.

Proof. Let H1 be the left graph shown in Figure 2, and form the 2K2-free
graph H ′

1 by performing the 2-switch {xy, uv} ⇒ {xu, vy}. Let H2 be the left graph
shown in Figure 3, and form the 2K2-free graph H ′

2 by performing the 2-switch
{xv, uy} ⇒ {xy, uv}. Let H3 be the left graph shown in Figure 4, and form the
2K2-free graph H ′

3 by performing the 2-switch {xv, uy} ⇒ {xy, uv}. Note that 2K2

is induced in each of H1, H2, and H3. If {2K2, B} is degree-sequence-forcing, then
B must be induced in each of H ′

1, H ′
2, and H ′

3. The only induced subgraph with at
least 4 vertices common to H ′

1, H ′
2, and H ′

3 is C4, so B must be C4.

FIGURE 3. The graphs H2 and H′
2 from Proposition 11.
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FIGURE 4. The graphs H3 and H′
3 from Proposition 11.

Conversely, Theorem 7 implies that the {2K2, C4}-free graphs are characterized
by their degree sequences, and hence {2K2, C4} is a degree-sequence-forcing pair.

By observing that the complement of C4 is 2K2 and by applying Proposition 2,
{C4, B} is degree-sequence-forcing where B has at least 4 vertices if and only if B
is 2K2. �
Lemma 12. For n ≥ 4, the graph nK1 switches to B if and only if B is an induced
subgraph of K2 + (n − 2)K1.

Proof. Let H be a graph inducing nK1, and let U be a collection of n vertices
in H inducing nK1. Let H ′ be an nK1-free graph obtained by performing a single
2-switch on H. Clearly, such a 2-switch must place an edge between two vertices
of U, and such a 2-switch can involve at most two vertices of U. Then in H ′, the
subgraph induced on U is isomorphic to K2 + (n − 2)K1, so nK1 switches to every
induced subgraph of this graph.

We now show that every graph B to which nK1 switches is an induced subgraph
of K2 + (n − 2)K1. We first define three pairs of graphs.

Define H1 = K2,n, and let x, u, y, v be any 4-cycle in the graph, as shown in
Figure 5. Form the nK1-free graph H ′

1 by performing the 2-switch {xu, yv} ⇒
{xy, uv}.

FIGURE 5. The graphs H1 and H′
1 from Lemma 12.
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FIGURE 6. The graphs H2 and H′
2 from Lemma 12.

Let H2 be a collection of n − 3 isolated vertices and a copy of P5, as shown in
Figure 6. Form H ′

2 by performing the 2-switch {xu, yv} ⇒ {xy, uv}. Note that H ′
2 is

isomorphic to K3 + K2 + (n − 3)K1, and hence has independence number n − 1.
Finally, let H3 be a collection of n − 4 isolated vertices and two copies of P3, as

shown in Figure 7. Form H ′
3 by performing the 2-switch {xu, yv} ⇒ {xy, uv}. The

graph H ′
3 is isomorphic to P4 + K2 + (n − 4)K1 and has independence number

n − 1.
Note that nK1 is induced in each of H1, H2, and H3. If nK1 switches to a graph B,

then B must be induced in each of H ′
1, H ′

2, and H ′
3. We see from H ′

2 that B must be a
disjoint union of complete graphs, and we see from H ′

3 that none of these complete
graphs can be of order greater than 2. Furthermore, we see from H ′

1 that B cannot
contain a copy of 2K2, so at most one of the components of B can have more than
one vertex. Since B cannot induce nK1, there are at most n − 1 components in B,
so B is an induced subgraph of K2 + (n − 2)K1, as claimed. �

We note that it is clear from the definition that A switches to B if and only if A

switches to B, which leads to the following corollary.

Corollary 13. For n ≥ 4, the graph Kn switches to B if and only if B is an induced
subgraph of Kn − e.

FIGURE 7. The graphs H3 and H′
3 from Lemma 12.
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FIGURE 8. The graphs H1 and H′
1 from Lemma 14.

Lemma 14. For n ≥ 4, the graph K2 + (n − 2)K1 switches to B if and only if B
is K2 or cK1, where c ≤ n − 2.

Proof. Let H be a graph inducing K2 + (n − 2)K1, and let H ′ be a K2 + (n −
2)K1-free graph obtained from H after a single 2-switch. First, note that K2 + (n −
2)K1 switches to K2 since all graphs with an edge switch to K2. Furthermore, if
U denotes a set of vertices in H inducing K2 + (n − 2)K1, then every 2-switch
on H resulting in a K2 + (n − 2)K1-free graph involves exactly two vertices of U.
Regardless of how many of these two vertices belong to the copy of K2, the result
after toggling edges in the 2-switch is that the subgraph induced on U contains an
independent set of size at least n − 2.

We now show that K2 + (n − 2)K1 switches to no other graphs. Let H1 denote
the graph consisting of n − 4 isolated vertices and one larger component, as shown
in Figure 8. Form H ′

1 by performing the 2-switch {xu, yv} ⇒ {xy, uv}. Note that
H1 induces K2 + (n − 2)K1, while H ′

1 is isomorphic to K4 + K2 + (n − 4)K1 and
does not induce K2 + (n − 2)K1.

Define H2 as follows: Let x and y be the two vertices in the smaller partite sets
in a copy of K1,1,n−2. As shown in Figure 9, add two new vertices u and v and the
edges the edges uv, xu, and yv to form H2. Form the graph H ′

2 by performing the

FIGURE 9. The graphs H2 and H′
2 from Lemma 14.
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2-switch {xy, uv} ⇒ {xv, uy}. Note that H ′
2 is isomorphic to the graph K2,n, and,

being complete multipartite, is K2 + K1-free, and hence K2 + (n − 2)K1-free.
Now if K2 + (n − 2)K1 switches to B, B must be an induced subgraph of both

H ′
1 and H ′

2. Since H ′
1 is a disjoint union of complete graphs, B must be as well;

since H ′
2 is a complete bipartite graph, B must also be complete bipartite. The

only possibilities are that B is a complete graph of order 2 or less, since H ′
2 is

triangle-free, or a collection of isolated vertices of order at most n − 2, since H ′
1

has independence number n − 2. �

Corollary 15. For n ≥ 4, the graph Kn − e switches to B if and only if B is 2K1

or Kc, where c ≤ n − 2.

Proposition 16. For n ≥ 4, the following are not degree-sequence-forcing pairs
for any B on 3 or more vertices: {nK1, B}, {Kn, B}, {K2 + (n − 2)K1, B}, and
{Kn − e, B}.

Proof. Suppose that {nK1, B} is a degree-sequence-forcing pair. By Proposition
9 and Lemma 12, B is either of the form mK1 with 3 ≤ m ≤ n − 1, or of the form
K2 + jK1 for some 1 ≤ j ≤ n − 2. If B = mK1, then by Lemma 12 we must have
nK1 a subgraph of a graph of order m ≤ n − 1, a contradiction. Suppose B =
K2 + jK1. The graph K2 + K1 does not switch to nK1 for n ≥ 4 by Proposition
10, and by Lemma 14, K2 + jK1 does not switch to nK1 for j ≥ 2 since n > j.
Thus, by Proposition 9, {nK1, B} is not a degree-sequence-forcing pair for any B
on 3 or more vertices. Proposition 2 implies that {Kn, B} is likewise not a degree-
sequence-forcing pair.

Suppose now that the pair {K2 + (n − 2)K1, B} is degree-sequence-forcing.
Lemma 14 immediately gives the result when n = 4, and when n > 4, we have
that B must be of the form cK1, where 3 ≤ c ≤ n − 2. However, since n > c, B
cannot switch to K2 + (n − 2)K1 by Lemma 12. Thus, for no B on 3 or more vertices
is {K2 + (n − 2)K1, B} degree-sequence-forcing, nor, by Proposition 2, is the pair
{Kn − e, B}. �

5. MONOTONE PARAMETERS

Another application of the switching idea is to consider the effect of a 2-switch
on a given graph parameter. We shall call a graph parameter p(G) monotone if
p(H) ≤ p(G) whenever H is an induced subgraph of G. We now state a fact that
shall be useful in the proofs that follow.

Proposition 17. Let p(G) be a monotone parameter and c be a constant. Suppose
that whenever G is a graph with p(G) > c, there exists a graph H with G as an
induced subgraph and a graph H ′ obtained from H by a 2-switch such that p(H ′) <

p(G). Then any degree-sequence-forcing set F has a member F with p(F ) ≤ c.

We illustrate this idea with the following proposition:

Journal of Graph Theory DOI 10.1002/jgt



CHARACTERIZATION OF GRAPH CLASSES 143

Proposition 18. Any degree-sequence-forcing setFmust contain a forest in which
each component is a star.

Proof. SupposeF contains no forest. Let F have the minimum number of cycles
among graphs in F. Let xy be an edge of a cycle in F. Form H by adding two new
vertices u, v and the edge uv. Form H ′ from H by the 2-switch {xy, uv} ⇒ {xu, yv}.
It is clear that H ′ has fewer cycles than H and so is F-free and hence F-free. Thus,
F is not degree-sequence-forcing, a contradiction. Hence, F must contain a forest.

Suppose every forest in F has a component of diameter at least 3. Among the
forests inF consider those which minimize the length of a longest path, and among
these latter forests choose F having a minimum number of paths of this length. Let
� denote the length of the longest path in F, and let xy be an internal edge of a path
in F of length �. Form H by adding two new vertices u, v and the edge uv. Form H ′

from H by the 2-switch {xy, uv} ⇒ {xu, yv}. It is clear that H ′ is a forest having
fewer paths of length � than F does, and the longest path in H ′ has length at most
�. It follows that H ′ induces no element of F. Since H induces F, we have that F
is not degree-sequence-forcing, a contradiction. Thus, F must contain a forest in
which each component is a star. �

The first paragraph of the proof above illustrates the idea of Proposition 17
with p(G) being the number of cycles in G and c = 0. Note that the statement
of Proposition 17 also holds when p(G) takes values in any linearly ordered set,
and such a formulation could be used to provide an alternate version of the second
paragraph of the proof of Proposition 18.

The following corollary is a simple consequence of Propositions 2 and 18.

Corollary 19. Any degree-sequence-forcing set F must contain a graph which is
the complement of a forest of stars.

Proposition 20. Any degree-sequence-forcing set F must contain a graph which
is a disjoint union of complete graphs.

Proof. Let p(G) denote the number of edges needed to make every component
of G complete. Note that p(G) is a monotone parameter. Let G be an arbitrary graph
such that p(G) ≥ 1, and let x and y be two non-adjacent vertices in a component
of G. Form H by adding to G two new vertices u, v and edges xu and yv. Form
H ′ from H by the 2-switch {xu, yv} ⇒ {xy, uv}. It is clear that p(H ′) < p(G). By
Proposition 17, if F is degree-sequence-forcing then F must contain an element F
such that p(F ) = 0, that is, a disjoint union of complete graphs. �

Corollary 21. Any degree-sequence-forcing set F must contain a complete
multipartite graph.
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Hence, we consider the following families of graphs:

K := {Union of complete graphs},
K

c := {Complete multipartite graphs},
S := {Forest of stars},
S

c := {Complements of forests of stars}.

We now characterize all singleton degree-sequence-forcing sets.

Theorem 22. The only degree-sequence-forcing singleton sets F are {K1}, {K2},
and {2K1}.

Proof. Let F = {F }. Then by Propositions 18 and 20 and Corollaries 19 and
21, F ∈ K ∩ K

c ∩ S ∩ S
c = {K1, K2, 2K1}. Proposition 5 then gives the result. �

In characterizing the degree-sequence-forcing pairs, we note that by Propositions
10 and 16 it will be sufficient to characterize the degree-sequence-forcing pairs F
= {F1, F2}, where each Fi has order at least 4 and is not Kn, Kn − e, nK1, or
K2 + (n − 2)K1.

Proposition 23. The only degree-sequence-forcing pair F = {F1, F2} where the
order of each Fi is at least 4 is {2K2, C4}.

Proof. We consider which elements of F are in the families K, K
c, S, S

c.

Case 1. If Fi belongs to all of the above families, that is, Fi ∈ K ∩ K
c ∩ S ∩ S

c

for i = 1 or 2, then Fi ∈ {K1, K2, 2K1}. Hence, Fi has order at most 2, which is a
contradiction of the hypothesis.

Case 2. If Fi belongs to any three of the families, then Fi belongs to

K ∩ K
c ∩ S = {K2, nK1}

or K ∩ K
c ∩ S

c = {2K1, Kn}
or K ∩ S ∩ S

c = {K1, K2, 2K1, K2 + K1}
or K

c ∩ S ∩ S
c = {K1, K2, 2K1, P3}.

Hence, Fi has order at most 3, contradicting the hypothesis, or is a complete or
edgeless graph, contradicting Proposition 16.

Case 3. If F1 belongs to exactly two of the families, then F2 belongs to the other
two families; hence, we may assume

F1 ∈ K⋂
K

c = {Kn, nK1} and F2 ∈ S⋂
S

c = {K1, K2, 2K1, K2 + K1, P3}
or F1 ∈ K⋂

S
c = {Ka + K1, 2K1, Kn} and F2 ∈ Kc

⋂
S = {K1,b, K2, nK1}

or F1 ∈ K⋂
S = {aK2 + bK1} and F2 ∈ Kc

⋂
S

c = {K2,...,2,1,...,1}.
Journal of Graph Theory DOI 10.1002/jgt



CHARACTERIZATION OF GRAPH CLASSES 145

There are only two cases which do not contradict our assumption on the order of
Fi or Proposition 16.

Subcase 1. F1 = Ka + K1 and F2 = K1,b, where a ≥ 3, b ≥ 3. Let v be the
isolated vertex in F1 and xy be any edge of the clique Ka. Form H by adding a vertex
u and adding the edge uv. Form H ′ from H by the 2-switch {xy, uv} ⇒ {xu, yv}.
We note that H ′ is both Ka + K1 and K1,b free. Hence F = {F1, F2} is not degree-
sequence-forcing, a contradiction.

Subcase 2. F1 = aK2 + bK1 where a ≥ 2 and F2 = K2,...,2,1,...,1, with at least
two partite sets of size 2. Let xy and vz be any two edges of F1. Form H by adding
a vertex u and adding the edges ux, uv, and uz. Form H ′ from H by the 2-switch
{xy, uv} ⇒ {xv, yu}. H ′ is F1-free and the only subgraph of the form K2,...,2,1,...,1

with at least two partite sets of size 2 that is induced in H ′ is C4. Thus F2 = C4,
and by Proposition 11 we have F1 = 2K2.

Hence, the result. �
Theorem 24. The list of all degree-sequence-forcing pairs is as follows:

(i) {A, B}, where A is one of K1, K2, or 2K1, and B is arbitrary;
(ii) {P3, K3}, {P3, K3 + K1}, {P3, K3 + K2}, {P3, 2K2}, {P3, K2 + K1};

(iii) {K2 + K1, 3K1}, {K2 + K1, K1,3}, {K2 + K1, K2,3}, {K2 + K1, C4};
(iv) {K3, 3K1};
(v) {2K2, C4}.

Proof. Proposition 6 shows that each of the pairs in (i)–(iv) are degree-
sequence-forcing and by Proposition 10, there are no other degree-sequence-forcing
pairs where one graph has 3 or fewer vertices. Proposition 11 shows that {2K2, C4} is
degree-sequence-forcing, and Proposition 23 shows that besides the pair {2K2, C4},
there are no degree-sequence-forcing pairs where each graph contains at least 4
vertices. �

6. FUTURE WORK

We note that not every superset of a degree-sequence-forcing set is degree-sequence-
forcing; consider, for example, the set {2K2, C4, K1,4} and the three realizations
of the degree sequence (5, 4, 3, 2, 2, 1, 1). However, it follows from Proposition
1 that if F is a family such that the F-free graphs are unigraphs, then F is a
degree-sequence-forcing set, and the union of F with any collection of graphs is a
again degree-sequence-forcing. Other degree-sequence-forcing sets are known to
be subsets of larger degree-sequence-forcing sets as well. We thus define a degree-
sequence-forcing set F of graphs to be minimal if no proper subset of F is a
degree-sequence-forcing set. It is easy to see there are infinitely many minimal
degree-sequence-forcing sets; the setGn of all graphs on n vertices is clearly degree-
sequence-forcing, and each Gn contains a minimal degree-sequence-forcing set.
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However, by Theorems 22 and 24, the number of minimal singletons and pairs is
finite. This provides motivation for the following theorem, whose proof will appear
in [1].

Theorem 25. Given k ≥ 2, there are only finitely many minimal degree-sequence-
forcing k-sets.

The authors are currently working on characterizing the degree-sequence-forcing
triples. We have completed the characterization of nonminimal degree-sequence-
forcing-triples, the only interesting case being where {2K2, C4} is a subset. We have
found nontrivial nonminimal degree-sequence-forcing triples that have not already
appeared in the literature. These results will also appear in [1].

Finally, we note that our results in this article and in [1] guarantee the existence
of degree sequence characterizations for certain graph classes but never explicitly
give such characterizations. Because of the structural simplicity of the graphs in
classes forbidding a degree-sequence-forcing singleton or pair, it is a trivial matter
to generate a degree sequence characterization for these classes, except in the case
of the {2K2, C4}-free graphs; the characterization for this class was found in [15].
Rao describes a method in [19] for finding a degree sequence characterization
for the forcibly P-free graphs, where P is any hereditary property. This method
can therefore generate the degree sequence characterizations we desire, but the
characterizations produced contain very large numbers of inequalities. It appears
that many of the inequalities may be combined or omitted to produce simple
characterizations similar to the one in Theorem 7. It would be interesting to also
generate simple degree sequence characterizations for classes forbidding larger
degree-sequence-forcing sets.
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