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Abstract

An antimagic labeling of a connected graph with m edges is an injective assignment of labels from

{1, . . . , m} to the edges such that the sums of incident labels are distinct at distinct vertices. Hartsfield

and Ringel conjectured that every connected graph other than K2 has an antimagic labeling. We prove

this for the classes of split graphs and graphs decomposable under the canonical decomposition intro-

duced by Tyshkevich. As a consequence, we provide a sufficient condition on graph degree sequences to

guarantee an antimagic labeling.
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1 Introduction

Let G be a graph with m edges. For an injective labeling of the edges of G with the labels 1, 2, . . . , m, we
define f on the vertex set of G by setting f(v) to be the sum of the labels on edges containing v. If f is an
injective function, then we say that both the edge labeling and G are antimagic. Hartsfield and Ringel [6]
conjectured that every connected graph other than K2 has an antimagic labeling. Various classes of graphs
have been shown to be antimagic (see [3], [4], [6], [7], [10], and [11]). In particular, Alon et al. [1] showed that
n-vertex graphs with maximum degree at least n − 2 and graphs with high minimum degree are antimagic.

In this paper we present an algorithm that produces an antimagic labeling for any graph containing
a clique with special neighborhood properties. We characterize the graphs having such cliques; these are
precisely the split graphs and graphs that are decomposable under what has been termed the canonical
decomposition. As a result, we obtain a condition on the degree sequence of a graph that ensures that the
graph is antimagic.

2 A dominating clique condition

We use V (G) and dG(v) to denote the vertex set of G and the degree of vertex v in G. We define the open
and closed neighborhoods of a vertex v in G to be the sets

NG(v) = {u ∈ V (G) : uv ∈ E(G)},

NG[v] = NG(v) ∪ {v},

respectively. Given W ⊆ V (G), let G[W ] denote the induced subgraph of G with vertex set W . A clique in
a graph is a set of pairwise adjacent vertices; an independent set is a set of pairwise non-adjacent vertices.
A split graph is a graph whose vertex set can be partitioned into a clique and an independent set.

Lemma 1. Let G be a connected graph on at least 3 vertices. If G has a clique B such that for every vertex
v in G either NG(v) ⊆ B or B ⊆ NG[v], then G is antimagic.
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Proof. We provide an antimagic labeling of the edges of G. Let A denote the set of vertices v not in B such
that NG(v) ( B. Let A = {a1, . . . , a|A|} and B = {b1, . . . , b|B|}, where in each set the vertices are indexed
in nondecreasing order of degrees, and let C = V (G)− A−B. Note that A is an independent set, and each
vertex of C is adjacent to every vertex of B.

To begin the labeling, order the edges of the form aibj lexicographically on the index pairs (i, j) and
assign them the first numbers in order. Next, label all edges in G[C] arbitrarily with the next smallest
numbers. Define a function g on C by letting g(v) denote the sum of labels on all edges incident with v in
G[C], and denote the vertices of C by c1, . . . , c|C|, where the vertices are indexed in nondecreasing order of
their values under g. Now order the edges of the form cibj lexicographically on the pairs (i, j), and label
them with the next smallest numbers. For vertices v in B, define g′(v) to be the sum of the labels on all
edges joining v with a vertex outside B (at this point all such edges have been labeled). Denote the vertices
of B now as b′1, . . . , b

′
|B|, indexing them in nondecreasing order of their values under g′. Label the remaining

edges b′ib
′
j in lexicographic order on the pairs (i, j).

We prove now that the labeling described is antimagic. For each vertex v in G, let f(v) denote the sum
of the labels on edges containing v. For c ∈ C and ai, aj ∈ A with i < j, note that dG(ai) ≤ dG(aj) < dG(c),
and if ℓ1, ℓ2, ℓ3 are arbitrary labels on edges incident with ai, aj , c, respectively, then ℓ1 < ℓ2 < ℓ3. It follows
that f(ai) < f(aj) < f(c), so f is injective on A, and f takes on different values for any two vertices a ∈ A

and c ∈ C.
For c ∈ C, note that f(c) is the sum of g(c) and the labels on all edges cb for b ∈ B. For ci, cj ∈ C with

i < j, we have g(ci) ≤ g(cj), and for each b ∈ B the edge cib receives a label strictly less than the label on
cjb; hence f(ci) < f(cj), so f is injective on C. Furthermore, for u ∈ A ∪ C and b ∈ B, if v is a neighbor of
u other than b, then v is also a neighbor of b, and edge uv receives a label less than the label on bv; hence
f(u) < f(b). If u has no neighbors other than b, then b has a neighbor other than u (since G is connected
and not K2) and again we see that f(u) < f(b).

Finally, we show that f takes on different values for all vertices of B. This is trivial if |B| = 1. Suppose
that |B| = 2. In this case A∪C is nonempty, since G is not K2. If A is nonempty, then it consists of pendant
vertices adjacent to either b1 or b2. Since dG(b1) ≤ dG(b2), the contribution to f(b1) from edges joining b1

to vertices in A is strictly less than the corresponding contribution to f(b2), by construction. Each vertex
in C is adjacent to both b1 and b2, and the label on the edge joining it to b1 is smaller than the label on the
edge joining it to b2. Since A ∪ C is nonempty, it follows that f(b1) < f(b2).

Finally, suppose that |B| ≥ 3. Let b′i and b′j be vertices of B with i < j; by definition, g′(b′i) ≤ g′(b′j).
Since every other vertex b′k in B is adjacent to both b′i and b′j, with edge b′ib

′
k receiving a lesser label than

b′jb
′
k, it is clear that f(b′i) < f(b′j).

It was shown in [1] that graphs with a dominating vertex are antimagic; Lemma 1 extends this result to
graphs having a special dominating clique.

Following the work of Tyshkevich in [8] (see also [9]), we define a binary operation ◦ with two inputs. The
first input is a split graph S with a given partition of its vertex set into an independent set A and a clique B

(denote this by S(A, B)), and the second is an arbitrary graph H . The composition S(A, B) ◦ H is defined
to be the graph resulting from taking the disjoint union of S(A, B) and H and adding to it all edges having
an endpoint in each of B and V (H). For example, taking P4 as the split graph (with the unique partition of
its vertex set into a clique and an independent set) and K3 as the second input, the composition is the graph
shown in Figure 1. If G contains nonempty induced subgraphs H and S and vertex subsets A and B such that
G = S(A, B) ◦H , then G is (canonically) decomposable; otherwise G is indecomposable. Tyshkevich showed
in [8] that each graph can be expressed as a composition S1(A1, B1)◦ · · · ◦Sk(Ak, Bk)◦H of indecomposable
induced subgraphs (note that ◦ is associative); indecomposable graphs are those for which k = 0. This
representation is known as the canonical decomposition of the graph and is unique up to isomorphism of the
indecomposable subgraphs involved.

Lemma 2. The following are equivalent for a graph G:

(1) G has a clique B such that for all v ∈ V (G) either NG(v) ⊆ B or B ⊆ NG[v];
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Figure 1: The composition of P4 and K3

(2) G is split or canonically decomposable.

Proof. (1) ⇒ (2): Let A be the set of vertices v not in B such that NG[v] ( B, and let C = V (G) − A− B.
Note that A is an independent set. If C = ∅, then G is a split graph. Otherwise, we may write G as the
composition G′(A, B) ◦ G[C], where G′ = G[A ∪ B].
(2) ⇒ (1): If G is split, then we may partition V (G) into an independent set A and a clique B. If G is
decomposable in the canonical decomposition, then we may write G = S(A, B) ◦H for vertex subsets A and
B and induced subgraphs S and H of G. In both cases either NG(v) ⊆ B or B ⊆ NG[v] for each vertex v in
G.

The previous two lemmas immediately establish our main result.

Theorem 3. Connected graphs on at least 3 vertices that are split or canonically decomposable are antimagic.

Observe that canonically decomposable graphs on at least three vertices are connected if and only if they
have no isolated vertices. As a consequence of known degree sequence characterizations of split graphs [5,
Theorem 4] and indecomposable graphs [9, Theorem 2], we have a sufficient degree sequence condition for
antimagic graphs:

Corollary 4. Let G be an n-vertex graph (n ≥ 3) with degree sequence (d1, . . . , dn) in nonincreasing order
such that dn > 0. If there exist integers p and q such that 0 < p + q ≤ n and

p∑

i=1

di = p(n − q − 1) +
n∑

i=n−q+1

di,

then G is antimagic.

3 Conclusion

Theorem 3 shows that to settle the conjecture of Hartsfield and Ringel, it suffices to consider graphs that
are indecomposable under the canonical decomposition. Barrus and West [2] gave a characterization of
indecomposable graphs in terms of alternating 4-cycles, configurations on four vertices a, b, c, and d such
that ab and cd are edges and ad and bc are not. They showed the following.

Theorem 5. A graph G is indecomposable under the canonical decomposition if and only if for every pair
u, v of vertices there is a sequence V1, . . . , Vk of 4-element subsets of V (G) such that u and v belong to V1

and Vk, respectively, Vi ∩ Vi+1 6= ∅ for 1 ≤ i ≤ k − 1, and each Vi is the vertex set of an alternating 4-cycle.

We conclude with the following question.

Question. Are there large families of connected graphs for which it is possible to use the structure of the
alternating 4-cycles in the graph to produce an antimagic labeling?
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