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Abstract

We define the A4-structure of a graph G to be the 4-uniform hypergraph on the
vertex set of G whose edges are the vertex subsets inducing 2K2, C4, or P4. We show
that perfection of a graph is determined by its A4-structure. Also, the A4-structure is
naturally related to the canonical decomposition of a graph as defined by Tyshkevich
[Discrete Mathematics 220 (2000) 201-238]; in particular, a graph is indecomposable
if and only if its A4-structure is connected. We also characterize those graphs having
the same A4-structure as a split graph.

1 Introduction

The P4-structure of a simple graph G is the 4-uniform hypergraph with the same vertex
set as G whose edges are the vertex subsets inducing a 4-vertex path. Chvátal [4] defined
the P4-structure in 1984 in studying the complexity of recognizing perfect graphs. Since its
introduction, the P4-structure has also been used in refinements of the modular decomposi-
tion of a graph (see [16] and [20]) and in defining or characterizing several classes of graphs
(see [2] for a hierarchy of graph classes defined in terms of their P4-structure).

If F is any set of unlabeled graphs, we may similarly define the F -structure of a graph
G as the hypergraph on the vertex set of G having as edges the vertex subsets that induce
elements of F . Such structures have been studied when F is {P3}, {C5, P3 + K1, P3 + K1},
{2K2, C4, C5}, {P3, K2+K1}, and {K3, 3K1} (see [11], [12], [13], [14], and [15]). (The disjoint
union and the join of graphs G and H will be denoted by G + H and G ∨ H , respectively.)

In this paper we consider the A4-structure of a graph G, which we define as the 4-uniform
hypergraph on the vertex set of G having as edges those vertex subsets that induce an element
of {2K2, C4, P4}. This terminology reflects that 2K2, C4, and P4 are the 4-vertex graphs that
contain an alternating 4-cycle, which is a configuration on four vertices a, b, c, d in which ab
and cd are edges while bc and ad are not. An alternating 4-cycle and the three resulting
graphs appear in Figure 1, where dashed segments denote required non-adjacencies.
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Figure 1: Alternating 4-cycle and A4-graphs

We have several motivations for defining a hypergraph in terms of alternating 4-cycles.
First, alternating 4-cycles are a fundamental notion in the study of degree sequences. A
2-switch is a graph transformation that exchanges the edges and non-edges of an alternating
4-cycle. This usually changes the isomorphism class, but it does not change the degree
sequence. In fact, a well known result of Fulkerson, Hoffman, and McAndrew [8] states that
two unlabeled graphs have the same degree sequence if and only if one can be changed into
the other via 2-switches. Thus we may expect to find relationships between the A4-structure
and the degree sequence of a graph.

A second motivation is the relation of alternating 4-cycles to the canonical decomposition
of a graph, defined by Tyshkevich in [23] (see also [24]). We explore this relation in Sec-
tion 3, showing that a graph is indecomposable if and only if its A4-structure is a connected
hypergraph. In Section 4, we show that the A4-structure is to the canonical decomposition
as the P4-structure of a graph is to a refinement of its modular decomposition.

Our third motivation is the role of alternating 4-cycles in characterizing threshold graphs,
matroidal graphs, and matrogenic graphs. Threshold graphs were introduced in [5] in con-
nection with set-packing problems and have been rediscovered several times (see [18] for the
history). One of the many known characterizations is in terms of the A4-structure. Thresh-
old graphs are precisely those graphs having no alternating 4-cycle [5], which is the statement
that the A4-structure has no edges.

A graph G is matroidal if the edge pairs appearing in alternating 4-cycles are the circuits
of a matroid on E(G). These were introduced and characterized in [19] as the graphs not
containing an induced 5-cycle or the configuration C in Figure 2, where dashed segments
join vertices required to be nonadjacent; C consists of a vertex triple S and vertices x, y /∈ S
such that N(x) ∩ S and N(y) ∩ S partition S into two nonempty sets.

x

y

S

Figure 2: The configuration C

A graph G is matrogenic if the vertex sets of alternating 4-cycles are the circuits of a
matroid on V (G). These were introduced and characterized in [7] as the graphs forbidding
C (but allowing induced 5-cycles). Among graphs on five vertices, C5 is the only one having
more than three edges in its A4-structure, and the graphs in which C appears are those whose
A4-structures have two or three edges.

Using C, both classes are characterized by their A4-structures.
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Observation 1.1. A graph is matrogenic if and only if no five of its vertices induce exactly
two or three edges in the A4-structure. A graph is matroidal if and only if no five of its
vertices induce more than one edge in the A4-structure.

The (q, t)-graphs were defined in [1] as graphs in which no q vertices induce more than
t copies of P4; the P4-free graphs are the (4, 0)-graphs, and the (5, 1)-graphs have been
studied as P4-sparse graphs [10]. Letting [q, t]-graphs be those in which no q vertices induce
more than t edges in the A4-structure, the threshold graphs become the [4, 0]-graphs, and
by Observation 1.1 the matroidal graphs are the [5, 1]-graphs.

In Section 2, we show that the only graphs having the same A4-structure as a cycle are
the cycle and its complement (except for cycles with length in {3, 4, 6}); thus membership in
the class of perfect graphs is determined by the A4-structure. In a triangle-free graph, it also
determines which induced subgraphs (with more than two vertices) have perfect matchings.
In Section 5 the problem of obtaining all realizations of a given A4-structure motivates our
characterization of A4-split graphs, which are the graphs G such that some split graph has
the same A4-structure as G. A split graph is a graph whose vertex set can be partitioned
into a clique (a set of pairwise adjacent vertices) and an independent set (a set of pairwise
nonadjacent vertices).

We use V (G) and E(G) to denote the vertex and edge sets of a graph G (no loops or
multiple edges). Let NG(v) = {u ∈ V (G) : uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}. Let
dG(v) = |NG(v)|. A vertex v in G is isolated if dG(v) = 0, pendant if dG(v) = 1, and
dominating if NG[v] = V (G). Given a subset S of V (G), the subgraph G[S] induced by S
is the graph with vertex set S in which two vertices are adjacent if and only if they are
adjacent in G. Let G− v = G[V (G)− v]. Given a set F of graphs, G is F-free if no induced
subgraph of G is isomorphic to an element of F .

2 A4-structure and cycles

Given an A4-structure H , any graph whose A4-structure is (isomorphic to) H is a realization
of H . Given graphs G and G′ with A4-structures H and H ′, an A4-isomorphism from G
to G′ is a bijection ϕ : V (G) → V (G′) that is an isomorphism from H to H ′. If an A4-
isomorphism exists from G to G′, then we say that G and G′ have the same A4-structure or
are A4-isomorphic. Our main result in this section characterizes the graphs having the same
A4-structure as a cycle. We begin with several observations.

Observation 2.1. If four vertices induce an alternating 4-cycle in a graph, then they also
induce an alternating 4-cycle in the complement of the graph. Hence a graph and its com-
plement have the same (labeled) A4-structure.

Observation 2.2. Four vertices form an edge in the A4-structure of a graph G
(a) if and only if the subgraph they induce in G has no vertex of degree 0 or 3.
(b) if and only if the induced subgraph has no triangle or independent 3-set.
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In [4], Chvátal showed that odd cycles of length at least 5 and their complements are
the only realizations of their respective P4-structures, and he conjectured that two graphs
with the same P4-structure are either both perfect or both imperfect. Reed [21] proved this.
The statement is now known as the Semistrong Perfect Graph Theorem, since it implies the
Perfect Graph Theorem of Lovász [17] and is in turn implied by the Strong Perfect Graph
Conjecture, proved much later by Chudnovsky et al. [3].

Strong Perfect Graph Theorem ([3]). A graph G is perfect if and only if it induces no
odd cycle of length at least 5 or the complement of such a cycle.

Motivated by the results of Chvátal and Reed, we show that the cycle Cn and its comple-
ment are the only realizations of their respective A4-structures if and only if n /∈ {3, 4, 6}. By
the Strong Perfect Graph Theorem, it then follows that graphs with the same A4-structures
are either both perfect or both imperfect.

The claim follows by inspection for n ≤ 6, so we restrict to n ≥ 7 and consider the
cycle with vertices u1, . . . , un in order. Let G be a graph with vertex set {v1, . . . , vn} and
A4-structure H such that mapping ui to vi for all i defines an A4-isomorphism. Furthermore,
since both G and G are A4-isomorphic to Cn under this map, we may assume that v1v2 ∈
E(G). We will prove that the map is a graph isomorphism. In comparing the A4-structures
of Cn and G, all addition and subtraction in indices of vertices will be done modulo n.

Lemma 2.3. No triangle or independent 3-set in G contains two vertices with (cyclically)
consecutive indices.

Proof. From the A4-structure of Cn, for any i, j ∈ {1, . . . , n} there is some edge of the A4-
structure of G containing vi, vi+1, and vj. By Observation 2.2(b), these vertices induce no
triangle or 3K1 in G.

Note that the A4-structure of Cn (and G) is the set of all 4-tuples consisting of two pairs
of consecutively-indexed vertices.

Lemma 2.4. There is no index i such that vi is adjacent in G to exactly one of {vi−1, vi+1}.

Proof. We argue by contradiction. By symmetry in the indices, we may assume that
vi−1vi ∈ E(G) and vivi+1 /∈ E(G). By symmetry in G and G, we may assume that
vi+1vi−1 /∈ E(G). Since {vi−2, vi−1, vi, vi+1} and {vi−1, vi, vi+1, vi+2} are both edges in the A4-
structure H , Observation 2.2(a) requires vi−2, vi+2 ∈ NG(vi+1). Since {vi−3, vi−2, vi+1, vi+2}
and {vi−2, vi−1, vi+1, vi+2} are also edges of H , Observation 2.2(a) and (b) respectively forbid
vi+1vi−3 and vi−2vi+2 from E(G). The present status is shown in Figure 3.

Since {vi−3, vi−2, vi, vi+1} is an edge in H but vi+1 is not adjacent to vi−3 or vi, Obser-
vation 2.2(b) requires vi−3vi ∈ E(G). Since n ≥ 7, {vi−2, vi, vi+1, vi+2} is not an edge in H ,
and hence vivi+2 /∈ E(G). Now {vi, vi−3, vi+1, vi+2} is an edge in H , a contradiction.

For an alternating 4-cycle, we use the notation [a, b : c, d], indicating that ab, cd ∈ E(G)
and bc, da /∈ E(G).
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Figure 3: The subgraph of G from Lemma 2.4.

Theorem 2.5. For n ≥ 7, if G has the same A4-structure as Cn, then G is isomorphic to
Cn or Cn.

Proof. Since G and its complement have the same A4-structure, we may assume that v1v2 ∈
E(G). We complete the proof by showing that G has no edges of the form vivj where i and
j are not cyclically consecutive. This yields G ∼= Cn.

By Lemma 2.4, G has a spanning cycle with vertices v1, . . . , vn in order. By Lemma 2.3,
vivi+2 /∈ E(G) for all i. Suppose that G has a chord vjvk for vertices vj and vk at a
distance of at least 3 on the cycle. By Lemma 2.3, vjvk−1, vjvk+1 /∈ E(G). It follows that
[vj , vk : vk−2, vk−1] and [vj , vk : vk+2, vk+1] are alternating 4-cycles in G. Since n ≥ 7, either
vk−2 or vk+2 is not consecutive to vj , which contradicts the description of the A4-structure
of Cn. Thus G has no chords and hence is isomorphic to Cn.

Corollary 2.6. If two graphs have the same A4-structure, then they are either both perfect
or both imperfect.

Proof. Suppose that G and G′ have the same A4-structure, and let ϕ : V (G) → V (G′) be an
A4-isomorphism. Let n be an odd integer such that n ≥ 5. By Theorem 2.5, G induces Cn

or Cn on a vertex subset S if and only if G′ induces Cn or Cn on ϕ(S). The Strong Perfect
Graph Theorem then implies the result.

The conclusion of Theorem 2.5 does not hold when n = 6; the graph C6 shares its A4-
structure with G′ and G′, where G′ is any graph obtained by deleting up to three pairwise
non-incident edges from K3,3. Note also that Theorem 2.5 applies to long cycles of both
parities, whereas Chvátal’s analogous result for P4-structure deals only with odd cycles.

We conclude our discussion of cycles and A4-structure by presenting a result on matchings
in triangle-free graphs. We need a lemma.

Lemma 2.7. If G is a 6-vertex triangle-free graph whose vertex set can be partitioned into
three pairs of vertices such that the union of any two of these pairs is an edge in the A4-
structure of G, then G has a perfect matching.

Proof. Let H be the A4-structure of G, and let A, B, and C denote the vertex pairs described,
so that V (G) = A ∪ B ∪ C and A ∪ B, A ∪ C, B ∪ C ∈ E(H). If the vertices in each of A,
B, and C induce an edge in G, then G has a perfect matching. If not, then we may assume
without loss of generality that a1a2 /∈ E(G), where A = {a1, a2}. Since A ∪ B ∈ E(H),
vertices a1 and a2 belong to non-incident edges a1b1 and a2b2 in G[A ∪ B]. Similarly, there
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exist non-incident edges a1c1 and a2c2 in G[A∪C]. Since G is triangle-free, b1c1, b2c2 /∈ E(G).
However, B ∪ C ∈ E(H), so B ∪ C induces two non-incident edges. Whether these edges
are {b1b2, c1c2} or {b1c2, b2c1}, it follows that G has a spanning cycle and hence a perfect
matching.

For graphs G and G′, we say that a bijection ϕ : V (G) → V (G′) preserves matchings if
a set S is the vertex set of a matching of size at least 2 in G if and only if ϕ(S) is the vertex
set of a matching in G′.

Theorem 2.8. Let G and G′ be triangle-free graphs, and let ϕ : V (G) → V (G′) be a
bijection. The map ϕ is an A4-isomorphism if and only if it preserves matchings.

Proof. Suppose that ϕ preserves matchings. In a triangle-free graph G, the four vertices
spanned by a matching of size 2 contain no 3-clique or independent set of size 3, so by
Observation 2.2(b) these vertices form an edge in the A4-structure of G. Conversely, the
three 4-vertex graphs 2K2, P4, and C4 that have an alternating 4-cycle all have perfect
matchings. Thus a vertex subset S in G induces an alternating 4-cycle if and only if ϕ(S)
induces an alternating 4-cycle in G′; hence ϕ is an A4-isomorphism.

Suppose instead that ϕ : V (G) → V (G′) is an A4-isomorphism, and let S be the vertex
set of some matching in G of size at least 2. We may partition the edges of the matching on S
into pairs and triples of edges; let S1, S2, . . . , Sj be the vertex sets of these edge sets. By the
previous paragraph and Lemma 2.7, the sets ϕ(Si) are the vertex sets of disjoint matchings
in G′. The union of these matchings is a matching on ϕ(S), so ϕ preserves matchings.

3 Canonical decomposition and A4-structure

In this section we describe the relationship between the A4-structure of a graph and its
canonical decomposition, as defined by Tyshkevich [23, 24].

A splitted graph is a triple (G, A, B) such that G is a split graph whose vertices partition
into an independent set A and a clique B. Two splitted graphs (G, A, B) and (G′, A′, B′)
are isomorphic if there exists a graph isomorphism ϕ : V (G) → V (G′) such that ϕ(A) =
A′. Given a splitted graph (G, A, B) and a graph H on disjoint vertex sets, we define
the composition of (G, A, B) and H to be the graph (G, A, B) ◦ H formed by adding to
G + H all edges uv such that u ∈ B and v ∈ V (H). For example, when H = K3 and
G = P4, with A the set of endpoints and B the set of midpoints of G, the composition
(G, A, B) ◦ K3 is the graph on the left in Figure 4 (here and henceforth, heavy lines joining
sets of vertices mean that all possible edges joining the two sets are present). On the right
we show (G, A, B) ◦ ((G, A, B) ◦ K3).

The operation ◦ is associative, so henceforth we omit parentheses for grouping when
performing multiple compositions. Note that in a composition (Gk, Ak, Bk)◦· · ·◦(G1, A1, B1)◦
G0, each vertex in Bi is adjacent to every vertex in

⋃
j<i V (Gj), each vertex in Ai is adjacent

to none of the vertices in
⋃

j<i V (Gj), and only the rightmost graph in the composition
can fail to be a split graph. A graph is decomposable if it can be written as a composition
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A

B

V (H)

Figure 4: The compositions (G, A, B) ◦ H and (G, A, B) ◦ (G, A, B) ◦ H .

(G, A, B)◦H , where G and H both have at least one vertex. Otherwise, it is indecomposable.
Tyshkevich proved the following:

Theorem 3.1 (Tyshkevich [24]). Every graph G can be expressed as a composition

G = (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦ G0 (∗)

of indecomposable components, where the (Gi, Ai, Bi) are indecomposable splitted graphs and
G0 is a non-null indecomposable graph (if G is indecomposable, then k = 0). Furthermore,
graphs G and G′ expressed as (∗) and G′ = (G′

ℓ, A
′

ℓ, B
′

ℓ)◦· · ·◦(G′

1, A
′

1, B
′

1)◦G′

0 are isomorphic
if and only if G0

∼= G′

0, k = ℓ, and (Gi, Ai, Bi) ∼= (G′

i, A
′

i, B
′

i) for all i.

Theorem 3.1 states both existence and uniqueness of the decomposition into indecom-
posable components, so we call it the canonical decomposition. We next characterize inde-
composable graphs in terms of their A4-structures. A hypergraph H is connected if, for all
x, y ∈ V (H), there exist edges A0, . . . , Ak such that x ∈ A0, y ∈ Ak, and consecutive edges
in the list intersect. The distance between vertices x and y in a connected hypergraph is the
least k for which such a list exists. A component of H is a maximal connected hypergraph
contained in H .

Theorem 3.2. A graph is indecomposable with respect to canonical decomposition if and
only if its A4-structure is connected. Hence, the vertex sets of the Gi in the canonical de-
composition (∗) are exactly the vertex sets of the components in the A4-structure of G.

The proof is lengthy, so we first prove several preliminary results.

Observation 3.3. If a graph G has more than one vertex and has canonical decomposition
(∗), then G has an isolated vertex or dominating vertex if and only if k ≥ 1 and Gk has
exactly one vertex. The vertex is dominating in G if Ak = ∅ and is isolated in G if Bk = ∅.

Observation 3.4. If G = (Gk, Ak, Bk) ◦ · · · ◦ (G1, A1, B1) ◦G0, then G = (Gk, Bk, Ak) ◦ · · · ◦
(G1, B1, A1) ◦ G0.

Proposition 3.5. If G is an indecomposable graph with more than one vertex, then every
vertex of G belongs to an alternating 4-cycle in G.

Proof. We prove the contrapositive. Suppose that some vertex v in G belongs to no alter-
nating 4-cycle. If v is a dominating or isolated vertex, then G is decomposable by Observa-
tion 3.3, so we may assume that v is neither. Let V1 = N(v) and V2 = V (G) − N [v].
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If V1 is not a clique, then there exist u, w ∈ V1 such that uw /∈ E(G). For a ∈ V2, since
neither [v, w : u, a] nor [v, u : w, a] is an alternating 4-cycle (both contain v), a is adjacent
to neither u nor w. Hence the vertices of V1 having a neighbor in V2 are pairwise adjacent;
indeed, each such vertex dominates V1. Let B = {x ∈ V1 : NG(x) ∩ V2 6= ∅}.

Note also that V2 is an independent set; if a and b were adjacent vertices in V2, then
[v, u : a, b] would be an alternating 4-cycle containing v. Letting S = V1 −B, we can express
G as the composition (G′, V2, B) ◦ (K1, ∅, {v}) ◦ G[S], where G′ = G[V2 ∪ B]. Since G has
more than one vertex, at least one of V2, B, S is nonempty, so G is decomposable. Hence we
may assume that V1 is a clique in G.

We note that the complement of an alternating 4-cycle is an alternating 4-cycle, so v also
belongs to no alternating 4-cycle in G. Since NG(v) = V2 and V (G) − NG[v] = V1, we may
similarly assume that V2 is a clique in G and hence an independent set in G.

Since V1 is a clique and V2 is an independent set, with V1 ⊆ N(v), we have G =
(G′, V2, V1) ◦ G[{v}], where G′ = G[V2 ∪ V1]. Hence in all cases G is decomposable.

When A and B are edges in the A4-structure of G, we write A → B to mean that
G[A] ∼= P4, the midpoints of G[A] dominate B, and the endpoints of G[A] are nonadjacent
to each vertex in B. When discussing relations among the edges of the A4-structure, it is
convenient to use H(G) to denote the A4-structure of a graph G.

Lemma 3.6. If A and B are disjoint edges in H(G) such that no edge of H(G) intersects
both A and B, then A → B or B → A.

Proof. Let [a, b : c, d] and [e, f : g, h] be alternating 4-cycles in G[A] and G[B], respectively.
Since {a, b, e, f} /∈ E(H(G)) and each of these vertices already has a neighbor among the
other three, Observation 2.2(a) implies that one vertex in {a, b, e, f} dominates the other
three; let a be such a vertex. Since neither [a, f : g, h] nor [a, e : h, g] is an alternating 4-cycle
in G, we have ag, ah ∈ E(G). Thus a dominates B. It follows that d has no neighbor v in
B, for otherwise [a, u : v, d] would be an alternating 4-cycle, where u is the non-neighbor of
v in B. Making the same argument starting with {c, d, g, h} now implies that c dominates
B (since d does not dominate B) and that b has no neighbor in B.

Finally, note that bd /∈ E(G) and ac ∈ E(G), since otherwise [b, d : e, f ] or [a, e : h, c]
would be an alternating 4-cycle, respectively. We conclude that G[A] ∼= P4, with midpoints
a and c dominating B, and endpoints b and d adjacent to no vertex of B. Thus A → B.

The same conclusion holds by a symmetric argument if b dominates {a, e, f}. If instead e
or f dominates the other three vertices of {a, b, e, f}, then we arrive similarly at B → A.

Lemma 3.6 implies that if two vertices of G each belong to an induced 2K2 or C4, then
they have distance at most 3 in H(G), since some edge of H(G) must intersect these edges
containing them. We also have the following result.

Corollary 3.7. Let G be a graph. If A and B are edges in distinct components of H(G),
then A → B or B → A.

Lemma 3.8. Let G be a graph. If A, B, and C are edges in H(G) such that A → B and
A ∩ C is nonempty, then B 9 C.
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Proof. If B → C, then the midpoints of the path induced by B dominate C, and the
endpoints have no neighbors in C. Hence no vertex in C can dominate or be independent of
B. Since every vertex of A dominates or is independent of B, we conclude that A∩C = ∅.

Proposition 3.9. Let G be a graph. Let Q1 and Q2 be distinct components of H(G), and
let A and B be edges in Q1 and Q2, respectively. If A → B, then C → D for any edges C
in Q1 and D in Q2.

Proof. Since A, C ∈ E(Q1), there are edges R0, . . . , Rk ∈ E(Q1) such that A = R0, C = Rk,
and Ri−1∩Ri 6= ∅ for 1 ≤ i ≤ k. By Corollary 3.7, B → Ri or Ri → B for each i. Inductively,
from Ri → B, Lemma 3.8 forbids B → Ri+1, and hence Ri+1 → B. In particular, C → B.

Similarly, since B, D ∈ E(Q2), there are edges S0, . . . , Sℓ ∈ E(Q2) such that B = S0,
D = Sℓ, and Si−1 ∩ Si 6= ∅ for 1 ≤ i ≤ ℓ. Corollary 3.7 implies that Si → C or C → Si for
each i. If S1 → C, then Lemma 3.8 yields C 9 B, which is false; hence C → S1. Repeating
this argument iteratively yields C → Si for each i. Thus C → D.

A tournament is an orientation of a complete graph.

Lemma 3.10. Let T be a directed graph whose vertices are the components of H(G), defined
by putting Q1Q2 ∈ E(T ) if Q1 has an edge A and Q2 has an edge B such that A → B. If G
is indecomposable, then T is a transitive tournament.

Proof. We write Q1 → Q2 if Q1Q2 ∈ E(T ). Since G is indecomposable, Proposition 3.5
implies that each component of H(G) has an edge. By Corollary 3.7, any two vertices of T
are adjacent. By Proposition 3.9, Q1 → Q2 implies Q2 9 Q1. Hence T is a tournament.

If Q1 → Q2 → Q3, then by the definition of “→” there exist Ai ∈ E(Qi) for i ∈ {1, 2, 3}
such that A1 → A2 → A3. We claim A1 → A3, which again by definition yields Q1 → Q3.

Since A1 → A2 → A3, we have G[A1] ∼= G[A2] ∼= P4. For i ∈ {1, 2}, let ai be a leaf in
G[Ai], and let bi be its neighbor in G[Ai]. Since Q1, Q2, Q3 are distinct components, when
c ∈ A3 neither [b1, a1 : b2, c] nor [b2, a2 : c, a1] is an alternating 4-cycle. Hence cb1 ∈ E(G)
and ca1 /∈ E(G). Since a1 may be either leaf in G[A1], we conclude that A1 → A3.

Proposition 3.11. For any graph G, no edge of H(G) contains vertices from distinct com-
ponents of the canonical decomposition of G.

Proof. Let (Gk, Ak, Bk)◦· · ·◦(G1, A1, B1)◦G0 be the canonical decomposition of G. Suppose
that some alternating 4-cycle [u, v : w, x] has vertices in more than one Gi. Let j be the
largest index such that Gj contains some vertex of the alternating 4-cycle. If such a vertex
is in Bj , then its nonneighor on the alternating 4-cycle must lie in Aj, since Bj dominates
V (Gi) for i < j. If such a vertex is in Aj, then its neighor on the alternating 4-cycle must
lie in Bj , since vertices of Aj are independent of V (Gi) for i < j. Hence following along the
alternating 4-cycle implies that its vertices all lie in V (Gj).

We are now ready to prove our main result:

Proof of Theorem 3.2. Given a graph G, suppose first that H(G) is connected. For
u, v ∈ V (G), there exist edges E0, . . . , Ek of H(G) such that u ∈ E0 and v ∈ Ek, and
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Ei ∩Ei−1 6= ∅ for 1 ≤ i ≤ k. Applying Proposition 3.11 to vertices in the sets E0, . . . , Ek in
turn yields that u and v belong to the same component in the canonical decomposition of
G. Thus G is indecomposable.

If G is indecomposable, then the digraph T of Lemma 3.10 is a transitive tournament. If
H(G) is disconnected, then T is nontrivial; let Q be the source vertex. By Proposition 3.5,
every component of H(G) contains an edge. Every edge of Q in H(G) corresponds to an
induced P4 in G whose midpoints dominate every vertex outside V (Q) and whose endpoints
have neighbors (in G) only in V (Q).

Therefore, no vertex in V (Q) is both a midpoint of some induced P4 and an endpoint of
another, and V (Q) splits into sets A and B consisting of the endpoints and the midpoints
of the induced copies of P4 in G[V (Q)], respectively. Two adjacent vertices of A would
create an alternating 4-cycle with any two adjacent vertices of G − V (Q); similarly, two
nonadjacent vertices of B would create an alternating 4-cycle with any two nonadjacent
vertices of G − V (Q). We conclude that B is a clique and A is an independent set in G.
Hence G = (G′, A, B) ◦ G[V (G) − V (Q)], where G′ = G[A ∪ B], and G is decomposable.

Having shown that G is indecomposable if and only if H(G) is connected, it follows
that the components of H partition the set V (G) into exactly the same subsets that the
components in the canonical decomposition do.

Theorem 3.2 provides a connection between the A4-structure of a graph and its degree
sequence. This is not surprising, since alternating 4-cycles can be used to convert one
realization of a degree sequence into another. Tyshkevich [23, 24] gave a characterization of
indecomposable graphs in terms of their degree sequences that has a quick explanation in
terms of these ideas.

Proposition 3.12. Applying a 2-switch to a graph G does not change the partition of V (G)
given by the components of the canonical decomposition of G.

Proof. Proposition 3.11 implies that every alternating 4-cycle C is contained within a single
component Gi of the canonical decomposition. Note that C must have two vertices in the
clique Bi and two in the independent set Ai. Since Bi is a clique and Ai is independent,
C must alternate between Bi and Ai. Hence performing a 2-switch along C leaves Bi and
Ai as a clique and an independent set, thereby preserving the components of the canonical
decomposition other than Gi. Furthermore, Gi cannot change into a decomposable graph,
because the vertices of C would then form an alternating 4-cycle intersecting more than one
component of the decomposition.

Corollary 3.13 (Tyshkevich [23, 24]). For every graph G, the degree sequence of G uniquely
determines the number of indecomposable components in the canonical decomposition of G
and the degree sequences of those components.

Corollary 3.14. If G and G′ are graphs with the same degree sequence, then H(G) and
H(G′) have the same number of components and the same sizes of vertex sets of corresponding
components.
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4 A4-structure and modules

Expanding on the previous section, we show that A4-structure is to canonical decomposition
as P4-structure is to other graph decompositions. In particular, we develop an analogue of
the “primeval decomposition” of Jamison and Olariu [16] (see Theorem 4.8), which itself
refines the well known “modular decomposition” of Gallai [9] (see Theorem 4.7).

The key is an analogue of the notion of “module”. A module in a graph G is a nonempty
set S ⊆ V (G) such that every vertex outside S is adjacent to all of S or to none of S. A
module S is trivial if |S| = 1 or S = V (G).

Lemma 4.1 (Seinsche [22]). The following hold for every graph G.

(i) The vertex set of an induced P4 in G and a module in G can intersect only in zero,
one, or four vertices.

(ii) G is P4-free if and only if every induced subgraph with at least three vertices has a
nontrivial module.

We introduce a restricted notion of module that plays for A4-structure the role that
modules play for P4-structure. An alternating path is a list of vertices whose consecutive
pairs alternate being adjacent and nonadjacent; the first may equal the last, but otherwise the
vertices are distinct. We write 〈v0, . . . , vp〉 for an alternating path of length p with endpoints
v0 and vp. An alternating path is S-terminal if it has length at least 2 and its only vertices
in S are its endpoints. Modules are characterized by forbidding S-terminal alternating paths
of length 2. A strict module is a set S in V (G) such that G has no S-terminal alternating
path of any length. In fact, it suffices to forbid only the short alternating paths.

Proposition 4.2. A vertex subset S of a graph G is a strict module if and only if G has no
S-terminal alternating paths of length 2 or 3.

Proof. If S is a strict module, then by definition G has no short S-terminal alternating paths.
If S is not a strict module, then G has an S-terminal alternating path; let 〈v0, . . . , vp〉 be a
shortest one. If p ≥ 4, then consider v2. Whether v2 is adjacent to v0 or not, we can start
from v0 and continue from v2 to v1 or v3. That is, 〈v0, v2, v1, v0〉 or 〈v0, v2, v3, . . . , vp〉 is a
shorter S-terminal alternating path. Thus p ≤ 3.

As with modules, the full vertex set is a trivial strict module. Always single vertices
are modules, but they need not form strict modules. Proposition 4.4 below is analogous to
Lemma 4.1. Recall that the threshold graphs are the graphs having no alternating 4-cycles.

Theorem 4.3 (Chvátal–Hammer [5]). A graph G is a threshold graph if and only if G arises
from a single vertex by iteratively adding an isolated vertex or a dominating vertex.

Proposition 4.4. The following hold for every graph G.

(i) Every alternating 4-cycle and strict module intersect in zero or four vertices.

(ii) G has no alternating 4-cycles if and only if every induced subgraph with at least two
vertices has a nontrivial strict module.
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Proof. (i) If a vertex set S contains one, two, or three vertices of an alternating 4-cycle C,
there is an S-terminal alternating path along C, so S is not a strict module.

(ii) If G has an alternating cycle, then by (i) it has a 4-vertex induced subgraph with
no nontrivial strict module. If G has no alternating cycle, then every induced subgraph
G′ is a threshold graph. By Theorem 4.3, G′ has a dominating or isolated vertex u. Now
V (G′) − {u} is a strict module in G′.

A strict module in G yields a composition for G in the sense of Tyshkevich.

Proposition 4.5. Let S be a strict module in a graph G. If A and B are the sets of all
vertices in V (G)−S that are adjacent to none of S or to all of S, respectively, then A is an
independent set and B is a clique. Hence G = (G′, A, B) ◦ G[S], where G′ = G[A ∪ B].

Proof. If two vertices in A are non-adjacent or two vertices of B are adjacent, then these
vertices are the midpoints of a (possibly closed) S-terminal alternating path of length 3,
preventing S from being a strict module.

Whenever G = (G′, A, B) ◦ G0, the vertex set of G0 is a strict module in G. We thus
conclude the following.

Corollary 4.6. A graph G is indecomposable with respect to canonical decomposition if and
only if it has no nontrivial strict module.

Corollary 4.6 shows that in the study of strict modules, indecomposable graphs play a
role like that of prime graphs for modules, which we now recall. A graph is prime if it has
no nontrivial modules. A module S is proper if S 6= V (G); single-vertex modules are proper.
Gallai [9] showed that if G and G are both connected, then every vertex in G belongs to a
unique maximal proper module. The modular decomposition tree of a graph is obtained by
recursively applying the following result.

Theorem 4.7 (Gallai [9]). Let G be a graph with at least two vertices. Exactly one of the
following conditions holds.

(i) G is disconnected.

(ii) G is disconnected.

(iii) The maximal proper modules partitition V (G), and the subgraph induced by a set con-
sisting of one vertex from each maximal proper module is a maximal prime subgraph.

Jamison and Olariu [16] developed a refinement called primeval decomposition using the
P4-structure. A graph G is p-connected if for every partition of its vertex set into two
nonempty disjoint sets, some edge in the P4-structure intersects both sets. A maximal p-
connected induced subgraph of G is a p-component. A p-connected graph G is separable if
its vertex set splits into two nonempty disjoint sets such that each P4 not contained within
one of the sets has its endpoints in one set and its midpoints in the other. The primeval
decomposition of a graph partitions its vertex set into modules via the following theorem.
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Theorem 4.8 (Jamison–Olariu [16]). For a graph G, exactly one of the following holds.

(i) G is disconnected.

(ii) G is disconnected.

(iii) G is p-connected.

(iv) There is a unique proper separable p-component Q of G with a partition Q1, Q2 of V (Q)
such that every vertex not in V (Q) is adjacent to all of Q1 and none of Q2.

We present in Theorem 4.9 an analogue of Theorem 4.8 for A4-structure and canonical
decomposition. Let an A4-component of a graph G be a subgraph of G induced by the vertices
of some component of the A4-structure of G. Theorem 3.2 shows that the A4-components of
G are precisely the components of the canonical decomposition of G. Define a graph to be
A4-separable if its vertices can be partitioned into two nonempty sets V and W such that
every 4-vertex induced subgraph having an alternating 4-cycle has an alternating 4-cycle
whose vertices alternate between V and W , as illustrated in Figure 5.

V

W

Figure 5: Alternating 4-cycles in an A4-separable graph.

Split graphs with at least two vertices are A4-separable. Each vertex of an alternating
4-cycle C has a neighbor and a nonneighbor along C, so no clique or independent set can
have three vertices of C. Also, C cannot have consecutive vertices in a clique and the other
two in an independent set, because adjacency in C is the same for both pairs. Hence every
alternating cycle in a split graph alternates between the clique and the independent set.

Theorem 4.9. For any graph G with more than one vertex having canonical decomposition
(*) into Gk, . . . , G0, exactly one of the following is true:

(i) G has an isolated vertex.

(ii) G has an isolated vertex.

(iii) The A4-structure of G is connected.

(iv) There is a unique proper A4-separable A4-component Q of G with a partition Q1, Q2 of
V (Q) such that every vertex not in V (Q) is adjacent to none of Q1 and to all of Q2.

Proof. Here “proper” means V (Q) 6= V (G). Since Gk, . . . , G0 are the A4-components of G,
the only candidate for Q in (iv) is Gk; for any other Gi, the vertices of Gk ensure that no
nontrivial partition of Gi can satisfy the adjacency condition.

Indecomposable graphs have no isolated or dominating vertex, so no two of (i), (ii), (iii)
can simultaneously hold. If (iii) holds, then there is no proper A4-component. If (i) or (ii)
holds, then Gk is not A4-separable. Hence at most one of the conditions holds.
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If (iii) fails, then k ≥ 1. If (i) and (ii) fail, then Ak and Bk are both nonempty. Since
split graphs are A4-separable, Gk is an A4-component of G having the properties in (iv). We
have noted that Gk is the only candidate, so at least one of the conditions holds.

5 A4-split graphs

In this section we characterize the A4-split graphs, those having the same A4-structure as
some split graph. As motivation, we show that this problem arises in the problem of con-
structing all graphs having a given A4-structure.

Example 5.1. Graphs with the same A4-structures. Proposition 3.11 states that every
alternating 4-cycle in a graph G lies within one component of the canonical decomposition.
Thus permuting the indecomposable components in a canonical decomposition does not
change the A4-structure H(G).

By Theorem 3.2 and Proposition 3.11, each component of H(G) is uniquely determined
by the component of the canonical decomposition having the same vertex set. Replacing
a component of the canonical decomposition with another subgraph having the same A4-
structure yields a graph with the same A4-structure as G.

To illustrate these two operations, let G2 be a copy of K1 with vertex u, let G1 be a
copy of K1 with vertex v, and let G0 = K2 + P3. Given G with canonical decomposition
(G2, ∅, {u}) ◦ (G1, {v}, ∅) ◦ G0, let G′ be the graph formed by transposing the first two
components of the canonical decomposition; that is, G′ = (G1, {v}, ∅) ◦ (G2, ∅, {u}) ◦ G0.
Let G′

0 be the 5-vertex graph with degree sequence (3, 2, 1, 1, 1); note that G0 and G′

0 have
the same A4-structure. Let G′′ be the graph formed from G by replacing G0 with G′

0; that
is, G′′ = (G2, ∅, {u}) ◦ (G1, {v}, ∅) ◦ G′

0. The graphs G, G′, and G′′ appear in Figure 6.
Though the graphs are pairwise nonisomorphic, they have the same A4-structure.

G G′ G′′

Figure 6: Different graphs with the same A4-structure.

Given a graph G with canonical decomposition (Gk, Ak, Bk)◦· · ·◦(G1, A1, B1)◦G0, call G0

the core of G. The components of the decomposition other than the core are all split graphs.
To generate other graphs having the same A4-structure as G, we may wish to permute the
indecomposable components of G under the canonical decomposition. If the core G0 is not
a split graph, then we cannot move the vertices of G0 to a different position in the canonical
decomposition unless we first replace G0 by a split graph G′

0 having the same A4-structure
as G0. To determine whether this is possible, we seek a characterization of the graphs having
the same A4-structure as a split graph; these are the A4-split graphs.

14



The characterization of A4-split graphs uses several other concepts. A split partition of
a split graph partitions the vertex set into a clique and an independent set. An separating
partition of an A4-separable graph G partitions V (G) into two sets such that every induced
subgraph having an alternating 4-cycle has an alternating 4-cycle that alternates between
the two sets. A graph G and its A4-structure are A4-balanced if V (G) can be partitioned
into two sets such that every alternating 4-cycle of G has two vertices in each; the two sets
then form a balancing partition. By definition, every A4-separable graph is A4-balanced; the
converse fails, since every bipartite graph is A4-balanced, but C6 is not A4-separable.

Given an A4-balanced A4-structure H with balancing partition {V1, V2} and a vertex
v ∈ Vi, the v-restriction of H is the graph on V3−i in which two vertices are adjacent if and
only if they both lie in some edge of H containing v. An A4-balanced A4-structure H has the
bipartite restriction property if there is a balancing partition of H such that for all v ∈ V (H)
the v-restriction of H is bipartite.

The k-pan is the graph obtained by attaching a pendant vertex to a vertex of a k-cycle;
the co-k-pan is its complement. The 4-pan and co-4-pan are shown in Figure 7.

Figure 7: The 4-pan and the co-4-pan.

Theorem 5.2 (Földes–Hammer [6]). G is a split graph if and only if G is {2K2, C4, C5}-free.

Corollary 5.3. For any split partition (Q, S) of a split graph, every induced 4-vertex path
has its midpoints in Q and its endpoints in S, and {Q, S} is a balancing partition.

Proof. The placement of 4-vertex paths is immediate. By Theorem 5.2, the vertices of every
alternating 4-cycle induce P4.

Theorem 5.4. For a graph G with core G0 and A4-structure H, the following statements
are equivalent.

(a) G is A4-split.

(b) H is A4-balanced and has the bipartite restriction property.

(c) G and G are both {C5, P5, K2 + K3, co-4-pan, K2 + P4, K2 + C4, 2K2 ∨ 2K1}-free.

(d) G is a split graph, or one of {G0, G0} is a disjoint union of stars.

(e) G is A4-separable.

Proof. We show that each condition implies the next and that (e) implies (a).
(a)⇒(b). Let G′ be a split graph with the same A4-structure H as G, and let (Q, S) be a

split partition of G′. By Corollary 5.3, {Q, S} is a balancing partition, so H is A4-balanced.
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For any induced copy of P4 in G′ with vertices a1, a2 ∈ Q and b1, b2 ∈ S, each ai has one
neighbor in {b1, b2} and each bi has one neighbor in {a1, a2}. Hence if v ∈ V (G′) and B is the
v-restriction of H , then in G′ vertex v has exactly one neighbor in each edge of B. Giving
the neighbors and nonneighbors of v in V (B) opposite colors thus yields a proper 2-coloring
of B. Hence B is bipartite, and H has the bipartite restriction property.

(b)⇒(c). Since a graph and its complement have the same A4-structure, the existence
of balancing partitions and the bipartite restriction property are preserved under comple-
mentation. They are also preserved under taking induced subgraphs. It thus suffices to
show that the A4-structure of each graph listed in (c) is not A4-balanced or does not have
the bipartite restriction property. For C5, each 4-set contains an alternating 4-cycle, but no
bipartition of V (C5) splits each 4-set equally. The co-4-pan, P5, and K2 + K3 have the same
A4-structure H∗ with three edges. In H∗, the only balancing partition has two vertices in
one set and three vertices in the other. The v-restriction of H∗ for a vertex v in the 2-set is
K3, so H∗ does not have the bipartite restriction property. The A4-structures of K2 + P4,
K2 + C4, and 2K2 ∨ 2K1 also each have a unique balancing partition and a vertex v such
that the v-restriction of the A4-structure is K3.

(c)⇒(d). Suppose that neither G nor G has any graph listed in (c) as an induced sub-
graph. If G is not a split graph, then the core G0 of G is not a split graph. Since by
hypothesis G0 is C5-free, Theorem 5.2 implies that G0 induces 2K2 or C4. By complementa-
tion, we may assume that G0 induces 2K2, with edges ab and cd; let U = {a, b, c, d}. Since
G is {K2 + K3, P5, co-4-pan}-free, every vertex of G0 outside U has 0, 1, or 4 neighbors in
U . Partition V (G0) − U into sets X, Y , A, B, C, and D, by those whose neighborhoods in
U are U , ∅, {a}, {b}, {c}, and {d}, respectively (see Figure 8).

C

A

D

B

X Y

a

c

b

d

Figure 8: The graph G0 from Theorem 5.4.

Since G0 is (2K2 ∨ 2K1)-free, X is a clique. If X 6= ∅, choose x ∈ X. Since G0 is
co-4-pan-free, A = B = C = D = ∅. Let Y ′′ be the set of isolated vertices in G0[Y ]. Let
Y ′ = Y −Y ′′. Adjacent vertices y1, y2 ∈ Y ′ are both adjacent to x; otherwise, {y1, y2, x, a, b}
induces K2 + K3 or the co-4-pan. Thus all of X is adjacent to all of Y ′. Now G0 =
(G0[X ∪ Y ′′], Y ′′, X) ◦ G0[{a, b, c, d} ∪ Y ′], contradicting the indecomposability of G0.

Hence X = ∅. Since G0 is (K2+P4)-free, A or B is empty, as is C or D. By symmetry, we
may assume B = D = ∅. Since G0 is {K2 + K3, P5}-free, A∪C is independent. Since G0 is
(K2+P4)-free, no vertex of Y has a neighbor in A∪C. Thus G0[A∪{a, b}] and G0[C∪{c, d}]
are components of G0 that are stars. Since G0 is {K2 + K3, K2 + P4, K2 + C4}-free, G0[Y ]
is {K3, P4, C4}-free. The {K3, P4, C4}-free graphs are forests with diameter at most 2 and
hence also are disjoint unions of stars.
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(d)⇒(e). If G is a split graph, then we have observed that a split partition of G is A4-
separating. Hence we may assume by complementation that G0 is a disjoint union of stars.
Let A′ be a largest independent set in G0, and let B′ = V (G0) − A′. Any 4-vertex induced
subgraph of G0 having an alternating 4-cycle is isomorphic to 2K2 and has two nonadjacent
vertices in each of A′ and B′; thus A′, B′ is A4-separating. Since the other components
Gk, . . . , G1 of the canonical decomposition are split graphs and every alternating 4-cycle lies
entirely within a single component (by Proposition 3.11), the partition of V (G) into sets
Ak ∪ · · · ∪ A1 ∪ A′ and Bk ∪ · · · ∪ B1 ∪ B′ is A4-separating.

(e)⇒(a). Let V1 and V2 form an A4-separating partition of V (G). Obtain a split graph
G′ from G by deleting all edges of G[V1] and adding all edges missing from G[V2], so (V2, V1)
is a split partition of G′. Let H ′ be the A4-structure of G′; we claim that H ′ = H .

For each edge of H , there is an alternating 4-cycle in G that alternates between V1 and
V2, and hence the cut between V1 and V2 on these four vertices is a matching. In G′, these
vertices induce P4, so E(H) ⊆ E(H ′). Conversely, in G′ every alternating 4-cycle alternates
between V1 and V2. Those edges and non-edges are the same as in G, so E(H ′) ⊆ E(H).
Thus equality holds, and G has the same A4-structure as the split graph G′.
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[11] C. T. Hoàng, On the disc-structure of perfect graphs. I. The co-paw-structure, Discrete
Appl. Math. 94 (1999), no. 1-3, 247–262.
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[13] C. T. Hoàng and B. Reed, On the co-P3-structure of perfect graphs, SIAM J. Discrete
Math. 18 (2004/05), no. 3, 571–576.

[14] S. Hougardy, On the P4-structure of perfect graphs, PhD thesis, Shaker Verlag, Aachen
1996.

[15] S. Hougardy, The P4-structure of perfect graphs. Perfect graphs, 93–112, Wiley-Intersci.
Ser. Discrete Math. Optim., Wiley, Chichester, 2001.

[16] B. Jamison and S. Olariu, p-components and the homogeneous decomposition of graphs,
SIAM J. Discrete Math. 8 (1995), no. 3, 448–463.

[17] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2
(1972), no. 3, 253–267.

[18] N. V. R. Mahadev and U. N. Peled, Threshold graphs and related topics, Annals of
Discrete Mathematics, 56. North-Holland Publishing Co., Amsterdam, 1995.

[19] U. N. Peled, Matroidal graphs, Discrete Math. 20 (1977/78), no. 3, 263–286.

[20] T. Raschle and K. Simon, On the P4-components of graphs, Discrete Appl. Math. 100
(2000), no. 3, 215–235.

[21] B. Reed, A semistrong perfect graph theorem, J. Combin. Theory Ser. B 43 (1987), no.
2, 223–240.

[22] D.Seinsche, On a property of the class of n-colorable graphs, Journal of Combinatorial
Theory, Series B 16 (1974), 191–193.

[23] R. Tyshkevich, Canonical decomposition of a graph, Dokl. Akad. Nauk BSSR 24 (1980),
no. 8, 677–679, 763. In Russian.

[24] R. Tyshkevich, Decomposition of graphical sequences and unigraphs, Discrete Math.
220 (2000), no. 1-3, 201–238.

18


