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My main research interests lie in structural and extremal graph theory, with secondary
interests in combinatorics and linear algebra. One focus of my research is on understanding
how limited or local information, which may accurately describe several different graphs, may
be used to determine properties that hold for all graphs fitting that information. For instance,
much of my work has dealt with the degree sequence of a graph, the list of integers recording
how many edges are incident with each vertex in the graph. This is local information, as
knowing how many edges meet at each vertex seems at first to give no indication of which
vertices are adjacent to each other. It is also limited information in that most degree sequences
belong to several nonisomorphic graphs (the realizations of the degree sequence). However, the
degree sequence contains a surprising amount of information about a graph, and there is a rich
interplay between the local degree information and both the local and the global structure of the
graph. This structural information is necessarily true of all realizations of the degree sequence,
which is helpful if the isomorphism class of the graph is not known. Information available from a
degree sequence is also useful from a computational standpoint, as the degree sequence typically
requires much less memory and time to store and manipulate than a complete specification of
the graph does.

Another theme in my research is the analysis of graph structure in extremal problems on
graphs. Extremal problems ask for the optimum values of graph parameters under various
conditions. My research seeks to understand the configurations or properties present in a
graph that force the parameter values to behave as they do, for such graph parameters as the
reconstruction number, tree-depth, and independence number.

The following description of my work will focus in turn on my results on degree sequences and
the structure they impose on realizations, hereditary families of graphs that are characterized
by degree sequences, and structural results related to extremal problems.

Graphic sequences and their realizations

A list of nonnegative integers is graphic if it is the degree sequence of a simple graph. Not
every list is graphic; there are many equivalent sets of conditions for deciding this for a given
list (for a summary, see [29]). Comparing graphic and non-graphic lists of positive numbers, it
is apparent that short lists are often not graphic. In joint work with S. G. Hartke, F. K. Jao,
and D. B. West, I showed [11] that a partial converse holds for this statement: every list with
an even sum that is “long enough” is graphic. We give a precise value for this length threshold
in terms of the largest and smallest entries in the list and the maximum difference g between
consecutive terms. Zverovich and Zverovich [40] found a threshold that is quadratic in the
largest entry when no conditions on g are specified. Our work generalizes this result and shows
that the threshold becomes linear, asymptotically, when g is fixed.

In [8] I introduced a relaxation of the notion of a realization of a degree sequence d by
studying edge labelings of the complete graph with labels from the interval [0, 1] so that the
sum of values on all edges meeting at a vertex equals a specified term of d. The labels in each

of these “fractional” realizations are the coordinates of a point in R(n
2), and the collection of all

such points forms a convex polytope P (d). Not surprisingly, the simple graph realizations of d
correspond to vertices of P (d). However, for many d there are non-integral vertices of P (d) that
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do not correspond to simple graph realizations of d. I characterized the degree sequences d for
which P (d) has only integral vertices (the decisive sequences) in terms of configurations that
cannot appear in any of their realizations and also in terms of the numerical values present in
d. The class of these sequences properly includes the well-studied class of threshold sequences.

Given a graphic list, and considering now only simple graph realizations, what can the degree
sequence guarantee about the structure of an arbitrary realization? In general, it may not be
possible to conclude that two vertices with specified degrees will be adjacent (or non-adjacent),
but in some cases it is. This is certainly true for the threshold graphs, those graphs in which
every adjacency relationship is uniquely determined by the degree sequence. In [7] I determined
necessary and sufficient conditions for a pair of vertices to be adjacent (or non-adjacent) in all of
the realizations of a degree sequence, and I also determined the structure of the overall forced
subgraphs present in a realization and its complement. I showed that in several ways these
forced relationships give a measure of how close a degree sequence is to a threshold sequence.

In studying properties of the realizations of a degree sequence, it helps to understand how
the realizations are linked. A well-known result in [24] states that two graphs have the same
degree sequence if and only if one can be transformed into the other through a sequence of
graph operations known as 2-switches. A 2-switch takes an alternating 4-cycle, a configuration
on four vertices in which two edges and two non-edges alternate in a cyclic fashion, and toggles
the status of the edges and non-edges. Understanding the changes possible through 2-switches
offers insight into the differences among graphs with the same degree sequence. In [6] I studied
conditions under which a 2-switch changes the isomorphism type of a graph. I showed that if
a 2-switch results in a different isomorphism class, then the alternating 4-cycle involved must
be a part of one of four larger configurations; if a graph contains neither of two additional
configurations, then this necessary condition is also sufficient.

For graphs, 2-switches transform realizations of a degree sequence into each other. Similar
ideas and operations apply to directed graphs, and in particular to tournaments (directed graphs
where every pair of vertices is joined by exactly one directed edge). The tournament analogue
of a degree sequence is a score sequence, the list of vertex outdegrees, and one analogue of a
2-switch involves reversing the arcs of directed triangles. In an attempt to find a closer digraph
analogue to the notion of an alternating 4-cycle, D. Brown and I are currently studying the �-
interchange graph B(T ) of a tournament T , in which vertices correspond to tournaments having
a given score sequence and edges join tournaments linked by a single reversal of a directed 4-
cycle [9]. The graph B(T ) is itself an analogue of the so-called realization graph of a graph
degree sequence, which has been shown to be connected and sometimes Hamiltonian [2]. We
have shown that for all but transitive tournaments, B(T ) always consists of two components,
and under certain conditions it is a vertex-transitive graph.

Alternating 4-cycles play an important role in the study of degree sequences because of their
presence in every 2-switch. In order to shed still further light on how the alternating 4-cycles of
a graph interact with the degree sequence, in [16] D. West and I defined the A4-structure of a
graph G to be the 4-uniform hypergraph having the same vertex set as G in which four vertices
form an edge if and only if they comprise the vertex set of an alternating 4-cycle in G. We
showed that two graphs having the same A4-structure are either both perfect or both imperfect,
and if the graphs are also triangle-free, then the vertex sets of their matchings with at least two
edges are identical in the two graphs. The A4-structure also provides a new motivation for the
canonical decomposition of a graph, as defined by Tyshkevich [36, 37]; in particular, a graph is
canonically indecomposable if and only if its A4-structure is connected. It follows that graphs
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with the same degree sequence agree on the numbers and sizes of connected components in
their A4-structures. I further showed in [6] that the Erdős–Gallai inequalities, classic conditions
for recognizing degree sequences [22], actually provide information about the vertex sets of
components in the decomposition or A4-structure.

While the canonical decomposition is a useful tool for studying degree sequences, it has other
uses as well, and sometimes these uses lead to unexpected degree sequence results. For instance,
the Antimagic Labeling Conjecture states that any connected graph with m edges may have
its edges labeled with 1, . . . ,m so that the sums at vertices are pairwise distinct [26]. In [3] I
showed that the conjecture is true for split graphs and graphs with more than one component
in the canonical decomposition. As a consequence, I derived a sufficient condition on degree
sequences for antimagic labelings to exist for each of their realizations.

Hereditary classes characterized by degree sequences

A graph class is hereditary if whenever a graph is in the class, all induced subgraphs of the graph
also belong to the class. Several fundamental classes of graphs are hereditary, including the
bipartite graphs and the planar graphs. Given a hereditary class G, every graph not belonging
to G is a forbidden subgraph for G, since that graph does not appear as an induced subgraph of
any element of G. Knowing the forbidden subgraphs for G that are minimal under the induced
subgraph partial order is one way to characterize graphs in G.

A number of well known hereditary graph classes have degree sequence characterizations,
that is, it is possible to determine whether a graph belongs to the class knowing only its degree
sequence. This requires that for every degree sequence d, either all or none of the realizations
of d belong to the class. Examples of such classes include the families of threshold graphs, split
graphs, and matrogenic graphs. Each of these classes is known for strict structure imposed on
its graphs and for easily stated forbidden subgraph characterizations (see [29]).

As outlined below, my work has defined and characterized new hereditary families having
degree sequence characterizations, and has provided context for all such families.

In [8] I introduced the class of decisive graphs. These graphs are the realizations of the
decisive sequences described above in connection with the polytope of fractional realizations. I
characterized these graphs in terms of 70 forbidden induced subgraphs and also in terms of their
canonical decompositions; a graph is decisive if and only if any non-split canonical component
has one of a small number of forms. The decisive graphs properly include all threshold, split,
and pseudo-split graphs.

In a series of two papers [5, 6] I studied hereditary classes of unigraphs. A unigraph is a graph
that is the unique realization, up to isomorphism, of its degree sequence. In [6] my study of
2-switches provided a new characterization of the matrogenic graphs, a well-studied hereditary
class of unigraphs. I also defined the hereditary unigraphs to be the unigraphs having only
unigraphs as induced subgraphs. The hereditary unigraphs comprise the largest hereditary class
containing only unigraphs, and as such they properly contain the threshold graphs, matroidal
graphs, and matrogenic graphs. In [6] I characterized the hereditary unigraphs in terms of
forbidden configurations and forbidden induced subgraphs. In [5] I further characterized the
hereditary unigraphs in terms of their canonical decompositions and degree sequences, and I
showed how these characterizations naturally generalize those known for threshold, matroidal,
and matrogenic graphs.

In addition to studying specific hereditary families with degree sequence characterizations, I
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have worked to develop a theory of all such classes. Together with M. Kumbhat and S. Hartke,
I have studied the sets of minimal forbidden induced subgraphs for these families. In [12] we
defined a set F of graphs to be degree-sequence-forcing (DSF) if the class of F -free graphs has a
degree sequence characterization. We showed that every DSF set must contain a disjoint union
of complete graphs, a complete multipartite graph, a forest of stars, and the complement of
a forest of stars. We characterized the DSF sets of size at most 2 and the non-minimal DSF
triples, i.e., DSF sets of three graphs with a proper DSF subset [12, 14]. Hartke and I continued
this work in [13] by designing a computer algorithm that identifies all minimal DSF triples. In
preparation for the algorithm, we established further conditions on DSF sets and on minimal
DSF sets in particular. Of note, we showed that there are finitely many minimal DSF sets of
any given size, and we presented a bound on the orders of the graphs these sets contain.

Structural aspects of extremal problems

Broadly speaking, extremal graph theory studies the optimization of graph parameters. Often
graphs that optimize a given parameter have an elegant structure that allows them to do so.
Part of my work has involved determining various parameters for graphs and studying how
these values are related to aspects of the graphs’ structure.

In ongoing work [10], M. Ferrara, J. Vandenbussche, P. Wenger, and I examine a colored
version of a classical graph saturation parameter. A t-edge-colored graph is a simple graph in
which each edge has been labeled with a value (a “color”) from {1, . . . , t}. A rainbow copy
of H is obtained from H by coloring its edges so that no two edges have the same color. We
define satt(H,n) to be the minimum number of edges in an n-vertex, t-edge-colored graph G
that contains no rainbow copy of H but has the property that adding any edge to G, in any
color, creates a rainbow copy of H. We show that this parameter is well defined for all t and
H. We provide various upper and lower bounds on satt(H,n) when H is a path, cycle, star,
matching, or complete graph, as well as when H satisfies various other structural properties.

In [4] I compared the independence number α(G), i.e., the maximum number of pairwise
non-adjacent vertices that can be found in G, to the residue r(G), a parameter that is computed
through an iterative reduction process on the degree sequence of G. It is known [23] that the
residue is always a lower bound for the independence number of a graph. However, r(G) is
computed from the degree sequence of G, which may also be the degree sequence of several
other graphs, and these graphs may vary widely on their independence numbers, so r(G) and
α(G) may differ greatly; indeed, in [4] I showed that the difference may be arbitrarily large.
However, it is an open question as to how much r(G) may differ from α(G) when G has the
lowest independence number among all the realizations of d. Nelson and Radcliffe [30] showed
that if d is a graphic list whose maximum and minimum values differ by at most 1, then d
has a realization G such that α(G) and r(G) may differ by at most 1. Using the canonical
decomposition and a characterization of the unigraphs by Tyshkevich [37], I showed that the
same is true of all unigraphs; in fact, I precisely determined the graphs for which the difference
is 1. Along the way I eliminated most of the need for iteration in computing the residue by
reducing the problem to finding the residue of the canonical “core” of a graph, the only non-
iterative result to date that simplifies computation of r(G).

One of the most famous open problems in graph theory is the Graph Reconstruction Con-
jecture [27, 38]. It states that each graph on at least 3 vertices is uniquely determined by its
deck, the multiset of induced subgraphs (called cards) obtained by deleting one vertex from the
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graph. Results so far have shown how to determine many of a graph’s properties from its deck,
and the conjecture has been proved for various classes of graphs. However, the general problem
remains open at this time. A parameter introduced by S. Ramachandran for measuring how
hard it is to reconstruct a graph is degree-associated reconstruction number drn(G) of a graph
G. This parameter was defined in [32] as the minimum number of degree-associated cards (i.e.,
pairs consisting of a card and the degree in G of the deleted vertex) that suffice to uniquely
determine G. The Reconstruction Conjecture is equivalent to showing that drn(G) is defined for
each graph G. In [17] Douglas B. West and I observed that drn(G) ≤ 2 for almost all graphs G
(asymptotically), and we characterized the graphs for which drn(G) = 1. We obtained drn(G)
for all G in various graph classes. In particular, it is known that drn(T ) ≤ 3 for any tree T ; we
showed that for all caterpillars but one, drn(T ) ≤ 2, and we conjecture that there are at most
finitely many trees with drn(T ) = 3. We also showed that drn(G) ≥ 3 for all vertex-transitive
graphs other than complete graphs, and that equality holds for hypercubes. In a sense, this
says that vertex-transitive graphs are generally harder to reconstruct. Future work may extend
our results on vertex-transitive graphs. Understanding better the difficulties in reconstructing
these graphs may lead to better understanding of how to reconstruct any graph.

The tree-depth (also known as the vertex ranking number) of a connected graph G is the
minimum integer k such that it is possible to label the vertices of G with values from {1, . . . , k}
so that every path joining vertices with the same label also contains a vertex with a higher label.
The tree-depth is minor-monotonic, so if G contains H as a minor, then the tree-depth of G is
at least as large as the tree-depth of H. In [15] J. Sinkovic and I studied minor-minimal graphs
having a desired tree-depth k; these are k-critical graphs. We showed that several families
of graphs were k-critical, and we gave an inductive construction that produces a large class
Mk of k-critical graphs. Our construction relies on a property we called 1-uniqueness, and
we conjectured that all critical graphs are 1-unique. If this is the case, then Mk provides a
framework in which to understand all critical graphs with tree-depth k.

Future directions

Following are some research questions that I plan to pursue in the near future.
Which hereditary graph families have degree sequence characterizations? This question has

motivated my research on degree-sequence-forcing sets, and as mentioned above, my coauthors
and I have placed a number of hereditary families from the literature in context by examining
small sets of forbidden subgraphs. However, classical hereditary families such as the bipartite
graphs, the planar graphs, and the perfect graphs are alike in that they have no degree sequence
characterization and cannot be characterized by a finite number of forbidden induced subgraphs.
This leads me to conjecture that every hereditary family with a degree sequence characterization
must have a finite number of minimal forbidden induced subgraphs, and I expect that my research
in the near future will focus in part on proving this conjecture. As a beginning, S. Hartke
and I have introduced the set D(G) for a graph G, the set of all minimal graphs (under the
induced subgraph order) having the same degree sequence as a graph that induces G [13]. We
characterized DSF sets in terms of the D-sets of their elements, and we found nearly all the
minimal DSF triples by explicitly finding the eight graphs in D(K3). In general, I conjecture
that D(G) contains finitely many graphs, and I have a construction that I believe generates the
largest graphs possible forD(G). The truth of this latter conjecture, in conjunction with a recent
finiteness result of Chudnovsky and Seymour [20], would imply that every hereditary family with
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a degree sequence has a characterization in terms of finitely many forbidden subgraphs.
My work on hereditary families with degree sequence characterizations has focused largely

on the sets of minimal graphs that could not appear as induced subgraphs of graphs in the
family. Turning the question around, several unsolved questions concern the presence, rather
than absence, of a particular induced subgraph or subgraphs. Given a graph G, is it true that
there is always a degree sequence for which every realization contains G as an induced subgraph?
Results in this direction could lead to better bounds in terms of the degree sequence on such
graph parameters as the matching, clique, and independence numbers, improving upon results
such as those of Caro and Wei [19, 39] and Favaron et al. [23]. It seems likely that a resolution
to such “forced subgraph” problems will require approaches quite different from those used to
study forbidden subgraphs. As first steps towards a theory in this area, we might characterize
the graphs that can be induced in a unigraph (since being induced in all realizations of a degree
sequence is trivially satisfied); in one sense this problem serves as a complement to the problem
of characterizing the hereditary unigraphs [5, 6]. We might also characterize the subgraphs we
can build using the forced edges and forced non-adjacencies described in [7]; such subgraphs
must clearly appear in every realization of the degree sequence used.

Finally, having attended the Rocky Mountain Mathematics Consortium Summer School
on algebraic graph theory in June 2013, and at present collaborating on a grant proposal to
organize a conference on Ramanujan graphs, I look forward to expanding my research into
algebraic aspects of graphs. One question I plan to investigate is under what circumstances
membership in a hereditary family may be recognized by examining a graph’s eigenvalues.
This is a spectral analogue of the motivating question behind degree-sequence-forcing sets, and,
given that triangle-free graphs and bipartite graphs are large graph classes that have spectral
characterizations of this type, the question promises to have an interesting answer.
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